Mathematical Analysis of the Interaction of an Inviscid Fluid with Immersed Structures Krisztian Benyo

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Analysis of the Interaction of an Inviscid Fluid with Immersed Structures Krisztian Benyo Mathematical analysis of the interaction of an inviscid fluid with immersed structures Krisztian Benyo To cite this version: Krisztian Benyo. Mathematical analysis of the interaction of an inviscid fluid with immersed structures. Fluid mechanics [physics.class-ph]. Université de Bordeaux, 2018. English. NNT : 2018BORD0156. tel-01927910 HAL Id: tel-01927910 https://tel.archives-ouvertes.fr/tel-01927910 Submitted on 20 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de doctorat de l’Université de Bordeaux École doctorale de mathématiques et d’informatique Spécialité : Mathématiques Appliquées Présentée par Krisztián Benyó pour obtenir le grade de docteur de l’Université de Bordeaux Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées Date de soutenance : 25 septembre 2018 Directeurs de thèse : M. David Lannes DR CNRS (Université de Bordeaux) M. Franck Sueur Professeur (Université de Bordeaux) Rapporteurs : M. Pascal Noble Professeur (Université Paul Sabatier) M. Takéo Takahashi CR Inria (Université de Lorraine) Devant la commission d’examen composée de : Emmanuel Audusse MdC Université Paris 13 Examinateur Afaf Bouharguane MdC Université de Bordeaux Examinatrice Catherine Choquet Professeur Université de La Rochelle Examinatrice David Lannes DR CNRS Université de Bordeaux Co-directeur Pascal Noble Professeur Université Paul Sabatier Rapporteur Franck Sueur Professeur Université de Bordeaux Directeur Takéo Takahashi CR Inria Université de Lorraine Rapporteur 2018 Doctoral dissertation University of Bordeaux Doctoral School of Mathematics and Computer Science Discipline: Applied Mathematics Presented by Krisztián Benyó for the degree of Doctor of Philosophy Mathematical analysis of the interaction of an inviscid fluid with immersed structures PhD supervisors: Prof. David Lannes DR CNRS (Université de Bordeaux) Prof. Franck Sueur Professeur (Université de Bordeaux) Reviewers: Prof. Pascal Noble Professeur (Université Paul Sabatier) Prof. Takéo Takahashi CR Inria (Université de Lorraine) Examiners: Prof. Emmanuel Audusse MdC (Université Paris 13) Prof. Afaf Bouharguane MdC (Université de Bordeaux) Prof. Catherine Choquet Professeur (Université de La Rochelle) 2018 Résumé : Cette thèse porte sur l’analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées. Plus précisément, elle est structurée autour de deux axes principaux. L’un d’eux est l’analyse asymptotique du mouvement d’une particule infinitésimale en milieu liquide. L’autre concerne l’interaction entre des vagues et une structure immergée. La première partie de la thèse repose sur l’analyse mathématique d’un système d’équa- tions différentielles ordinaires non-linéaires d’ordre 2 modélisant le mouvement d’un solide infiniment petit dans un fluide incompressible en 2D. Les inconnues du modèle décrivent la position du solide, c’est-à-dire la position du centre de masse et son angle de rotation. Les équations proviennent de la deuxième loi de Newton avec un prototype de force de type Kutta-Joukowski. Plus précisément, nous étudions la dynamique de ce système lorsque l’inertie du solide tend vers 0. Les principaux outils utilisés sont des développements asymptotiques multi- échelles en temps. Pour la dynamique de la position du centre de masse, l’étude met en évidence des analogies avec le mouvement d’une particule chargée dans un champ électromagnétique et la théorie du centre-guide. En l’occurrence, le mouvement du centre- guide est donné par une équation de point-vortex. La dynamique de l’angle est quant à elle donnée par une équation de pendule non-linéaire lentement modulée. Des régimes très différents se distinguent selon les données initiales. Pour de petites vitesses angulaires initiales la méthode de Poincaré-Lindstedt fait apparaitre une modulation des oscillations rapides, alors que pour de grandes vitesses angulaires initiales, un movement giratoire bien plus irrégulier est observé. C’est une conséquence particulière et assez spectaculaire de l’enchevêtrement des trajectoires homocliniques. La deuxième partie de la thèse porte sur le problème des vagues dans le cas où le domaine occupé par le fluide est à surface libre et avec un fond plat sur lequel un objet solide se translate horizontalement sous l’effet des forces de pression du fluide. Nous avons étudié deux systèmes asymptotiques qui décrivent le cas d’un fluide parfait incompressible en faible profondeur. Ceux-ci correspondent respectivement aux équations de Saint-Venant et de Boussinesq. Grâce à leur caractère bien-posé en temps long, les modèles traités permettent de prendre en compte certains effets de la mécanique du solide, comme les forces de friction, ainsi que les effets non-hydrostatiques. Notre analyse théorique a été complétée par des études numériques. Nous avons développé un schéma de différences finies d’ordre élevé et nous l’avons adapté à ce prob- lème couplé afin de mettre en évidence les effets d’un solide (dont le mouvement est limité à des translations sur le fond) sur les vagues qui passent au dessus de lui. A la suite de ces travaux, nous avons souligné l’influence des forces de friction sur ce genre de systèmes couplés ainsi que sur le déferlement des vagues. Quant à l’amortissement dû aux effets hydrodynamiques, une vague ressemblance avec le phénomène de l’eau morte est mise en évidence. Fluid-structure interaction v Mots-clés : interaction fluide-structure, analyse asymptotique, dynamique des fluides, équations d’Euler, particules immergées, équation de Newton vi Krisztián Benyó Abstract: This PhD thesis concerns the mathematical analysis of the interaction of an inviscid fluid with immersed structures. More precisely it revolves around two main problems: one of them is the asymptotic analysis of an infinitesimal immersed particle, the other one being the interaction of water waves with a submerged solid object. Concerning the first problem, we studied a system of second order non-linear ODEs, serving as a toy model for the motion of a rigid body immersed in a two-dimensional perfect fluid. The unknowns of the model describe the position of the object, that is the position of its center of mass and the angle of rotation; the equations arise from Newton’s second law with the consideration of a Kutta-Joukowski type lift force. It concerns the detailed analysis of the dynamic of this system when the solid inertia tends to 0. For the evolution of the position of the solid’s center of mass, the study highlights similarities with the motion of a charged particle in an electromagnetic field and the well- known “guiding center approximation”; it turns out that the motion of the corresponding guiding center is given by a point-vortex equation. As for the angular equation, its evo- lution is given by a slowly-in-time modulated non-linear pendulum equation. Based on the initial values of the system one can distinguish qualitatively different regimes: for small angular velocities, by the Poincaré-Lindstedt method one observes a modulation in the fast time-scale oscillatory terms, for larger angular velocities however erratic rota- tional motion is observed, a consequence of Melnikov’s observations on the presence of a homoclinic tangle. About the other problem, the Cauchy problem for the water waves equations is consid- ered in a fluid domain which has a free surface on the upper vertical limit and a flat bottom on which a solid object moves horizontally, its motion determined by the pressure forces exerted by the fluid. Two shallow water asymptotic regimes are detailed, well-posedness results are obtained for both the Saint-Venant and the Boussinesq system coupled with Newton’s equation characterizing the solid motion. Using the particular structure of the coupling terms one is able to go beyond the standard scale for the existence time of solutions to the Boussinesq system with a moving bottom. An extended numerical study has also been carried out for the latter system. A high order finite difference scheme is developed, extending the convergence ratio of previous, staggered grid based models. The discretized solid mechanics are adapted to represent important features of the original model, such as the dissipation due to the friction term. We observed qualitative differences for the transformation of a passing wave over a moving solid object as compared to an immobile one. The movement of the solid not only influ- ences wave attenuation but it affects the shoaling process as well as the wave breaking. The importance of the coefficient of friction is also highlighted, influencing qualitative and quantitative properties of the coupled system. Furthermore, we showed the hydrodynamic damping effects of the waves on the solid motion, reminiscent of the so-called dead water phenomenon. Fluid-structure interaction vii Keywords: fluid-structure interaction, asymptotic analysis, fluid dynamics, Euler equa- tion, immersed particule, Newton equation viii Krisztián Benyó Laboratoire d’accueil : Institut de Mathématiques de Bordeaux, Université de Bordeaux Bât. A33,
Recommended publications
  • Fighting for Tenure the Jenny Harrison Case Opens Pandora's
    Calendar of AMS Meetings and Conferences This calendar lists all meetings and conferences approved prior to the date this issue insofar as is possible. Instructions for submission of abstracts can be found in the went to press. The summer and annual meetings are joint meetings with the Mathe­ January 1993 issue of the Notices on page 46. Abstracts of papers to be presented at matical Association of America. the meeting must be received at the headquarters of the Society in Providence, Rhode Abstracts of papers presented at a meeting of the Society are published in the Island, on or before the deadline given below for the meeting. Note that the deadline for journal Abstracts of papers presented to the American Mathematical Society in the abstracts for consideration for presentation at special sessions is usually three weeks issue corresponding to that of the Notices which contains the program of the meeting, earlier than that specified below. Meetings Abstract Program Meeting# Date Place Deadline Issue 890 t March 18-19, 1994 Lexington, Kentucky Expired March 891 t March 25-26, 1994 Manhattan, Kansas Expired March 892 t April8-10, 1994 Brooklyn, New York Expired April 893 t June 16-18, 1994 Eugene, Oregon April4 May-June 894 • August 15-17, 1994 (96th Summer Meeting) Minneapolis, Minnesota May 17 July-August 895 • October 28-29, 1994 Stillwater, Oklahoma August 3 October 896 • November 11-13, 1994 Richmond, Virginia August 3 October 897 • January 4-7, 1995 (101st Annual Meeting) San Francisco, California October 1 December March 4-5, 1995
    [Show full text]
  • Asymptotology of Chemical Reaction Networks
    Chemical Engineering Science 65 (2010) 2310-2324 Asymptotology of Chemical Reaction Networks A. N. Gorban ∗ University of Leicester, UK O. Radulescu IRMAR, UMR 6625, University of Rennes 1, Campus de Beaulieu, 35042 Rennes, France A. Y. Zinovyev Institut Curie, U900 INSERM/Curie/Mines ParisTech, 26 rue d’Ulm, F75248, Paris, France Abstract The concept of the limiting step is extended to the asymptotology of multiscale reaction networks. Complete theory for linear networks with well separated reaction rate constants is developed. We present algorithms for explicit approximations of eigenvalues and eigenvectors of kinetic matrix. Accuracy of estimates is proven. Performance of the algorithms is demonstrated on simple examples. Application of algorithms to nonlinear systems is discussed. Key words: Reaction network, asymptotology, dominant system, limiting step, multiscale asymptotic, model reduction PACS: 64.60.aq, 82.40.Qt, 82.39.Fk, 82.39.Rt 87.15.R-, 89.75.Fb 1. Introduction was proposed by Kruskal (1963), but fundamental research in this direction are much older, and many Most of mathematical models that really work fundamental approaches were developed by I. New- are simplifications of the basic theoretical models ton (Newton polyhedron, and many other things). Following Kruskal (1963), asymptotology is “the arXiv:0903.5072v2 [physics.chem-ph] 14 Jun 2010 and use in the backgrounds an assumption that some terms are big, and some other terms are small art of describing the behavior of a specified solution enough to neglect or almost neglect them. The closer (or family of solutions) of a system in a limiting case. consideration shows that such a simple separation ..
    [Show full text]
  • Tropical Geometry of Biological Systems O Radulescu
    Tropical Geometry of Biological Systems O Radulescu To cite this version: O Radulescu. Tropical Geometry of Biological Systems. CASC 2020, Sep 2020, Linz, Austria. hal- 02949563 HAL Id: hal-02949563 https://hal.archives-ouvertes.fr/hal-02949563 Submitted on 25 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tropical Geometry of Biological Systems (Invited Talk) O. Radulescu University of Montpellier, and CNRS UMR5235 LPHI, Montpellier, France [email protected] Abstract. Tropical geometry ideas were developed by mathematicians that got inspired from very different topics in physics, discrete mathe- matics, optimization, algebraic geometry. In tropical geometry, tools like the logarithmic transformation coarse grain complex objects, drastically simplifying their analysis. I discuss here how similar concepts can be applied to dynamical systems used in biological modeling. In particular, tropical geometry is a natural framework for model reduction and for the study of metastability and itinerancy phenomena in complex biochemical networks. Keywords: Tropical geometry, chemical reaction networks, model reduction, singular perturbations, metastability, itinerancy 1 Introduction Mathematical modelling of biological systems is a daunting challenge. In or- der to cope realistically with the biochemistry of cells, tissues and organisms, both in fundamental and applied biological research, systems biology models use hundreds and thousands of variables structured as biochemical networks [16,38,1].
    [Show full text]
  • Appendix a Linear and Nonlinear Mathematical Physics: from Harmonic Waves to Solitons
    Appendix A Linear and Nonlinear Mathematical Physics: from Harmonic Waves to Solitons It does not say in the Bible that the fundamental equations of physics must be linear. -E. Fermi 1 In this section we describe briefly a very impressing development of Nonlinear Science strongly connected with the discovery of solitons ( Manevitch, 1996). In the last few decades, problems of a qualitatively new type have appeared in different fields of physics. A turning point was transition from quasi-linear (almost linear) Physics to essentially nonlinear Physics. Such a transition would be impossible or, at least, near hopelessly difficult without a parallel development of mathematical techniques fitting well with the new physical ideas. Therefore it is very important that modern progress in physics took place at the same time as amazing mathematical discoveries. Similar key notions (though in different guises), for the first time, after a long period, turn out to be at the center of attention simultaneously of physicists and mathemati­ cians. Certainly a soliton or particle-like wave is a case in point. This term first appeared in the pages of scientific journals some forty years ago and one sees it, perhaps, in all fields of physics. The role of the soliton in nonlinear mathematical physics is similar to the role of har­ monic oscillations and waves (corresponding, for example to pure tones in acoustics and pure colors in optics) in the quasi-linear case. Therefore we can symbolically characterize the path from quasi-linear to nonlin­ ear mathematical physics, as it is called in the title of this section, as: 183 184 ASYMPTOTOLOGY: IDEAS, METHODS, AND APPLICATIONS from harmonic waves to solitons.
    [Show full text]
  • A Structural Perspective on the Dynamics of Biochemical Systems Sylvain Soliman
    A structural perspective on the dynamics of biochemical systems Sylvain Soliman To cite this version: Sylvain Soliman. A structural perspective on the dynamics of biochemical systems. Bioinformatics [q-bio.QM]. Université Paris Sud - Orsay, 2016. tel-01403712 HAL Id: tel-01403712 https://tel.archives-ouvertes.fr/tel-01403712 Submitted on 7 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HABILITATION À DIRIGER DES RECHERCHES Spécialité : Informatique par Sylvain Soliman A structural perspective on the dynamics of biochemical systems Présentée le 7 décembre 2016 devant le jury composé de : M. Vincent Danos (Rapporteur) M. Simon de Givry (Rapporteur) M. Nicolas Le Novère (Rapporteur) M. Philippe Dague M. Alain Denise M. François Fages M. Christophe Soulé H.D.R. préparée au sein de l’EPI LIFEWARE CENTRE DE RECHERCHE Inria Saclay – Île-de-France 1 rue Honoré d’Estienne d’Orves Bâtiment Alan Turing Campus de l’École Polytechnique 91120 Palaiseau Abstract In recent years Systems Biology has become a rich field of study, trying to encompass all the information that has become available thanks to the new high-throughput techniques of biologists. Fifteen years ago, a fundamental breakthrough was the publication of Kurt Kohn’s map of the cell cycle control in mammals.
    [Show full text]
  • Arxiv:1802.05745V1 [Physics.Chem-Ph] 15 Feb 2018 Rpitsbitdt Elsevier to Submitted Preprint Hoiso Ope Hmclratos He Simple Invented: Three Been Have Ideas Reactions
    Model reduction in chemical dynamics: slow invariant manifolds, singular perturbations, thermodynamic estimates, and analysis of reaction graph A.N. Gorbana,b aDepartment of Mathematics, University of Leicester, Leicester, LE1 7RH, UK bLobachevsky University, Nizhni Novgorod, Russia Abstract The paper has two goals: (1) It presents basic ideas, notions, and methods for reduction of reaction kinetics models: quasi-steady-state, quasi- equilibrium, slow invariant manifolds, and limiting steps. (2) It describes briefly the current state of the art and some latest achievements in the broad area of model reduction in chemical and biochemical kinetics, including new results in methods of invariant manifolds, computation singular perturbation, bottleneck methods, asymptotology, tropical equilibration, and reaction mechanism skeletonisation. Keywords: reaction network, quasi steady state, quasi-equilibrium, limiting step, dominant path, entropy production Historical introduction • The Quasi Steady State approximation or QSS (some of species, very often these are some of Three eras (or waves) of chemical dynamics can be intemediates or radicals, exist in relatively small associated with their leaders [1]: (1) the vant Hoff amounts; they reach quickly their QSS concentra- wave (the first Nobel Prize in Chemistry, 1901) (2) the tions, and then follow, as a slave, the dynamics of Semenov–Hinshelwood wave, and (3) the Aris wave. these other species remaining close to the QSS). The problem of modelling of complex reaction networks The QSS is defined as the steady state under con- was in the focus of chemical dynamics research since dition that the concentrations of other species do the invention of the concept of “chain reactions” by not change; Semenov and Hinshelwood (the shared Nobel Prize in Chemistry, 1956).
    [Show full text]
  • Lincoln University Digital Thesis
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Two reduction methods to simplify complex ODE mathematical models of biological networks and a case study: The G1/S checkpoint/DNA-damage signal transduction pathways A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Computer Sience at Lincoln University by Mutaz Khazaaleh Lincoln University 2018 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Computer Science Two reduction methods to simplify complex ODE mathematical models of biological networks and a case study: The G1/S checkpoint/DNA-damage signal transduction pathways by Mutaz Khazaaleh Model reduction is a hot topic in studies of biological systems. By reducing the complexity of detailed models through finding important elements, developing multi-level models and keeping the soul (biological meaning) of the model, model reduction can help answer many important questions raised about these systems. This thesis addressed several issues related to complex systems, complexity, biological systems complexity and the different reduction methods used to simplify biological models.
    [Show full text]
  • As a Conclusion
    As a Conclusion This book proposed a tour d’horizon, a fresco, on linear and nonlinear extrapolation methods, Padé approximation, formal orthogonal polynomials, continued fractions, and related topics. It also has the unique feature of mixing mathematical concepts and results, their history, a detailed analysis of important publications, personal testimonies by researchers involved in research on these domains, and information, anecdotes, and exclusive remembrances on some actors. After a mathematical introduction to these themes, we gave an account of their status of knowledge around 1950, that is, at the time most scholars, Aitken, Richard- son, Shanks, Wynn, and others, began their research. In the course of the analysis of these works, and in particular of Peter Wynn’s papers and reports (all written alone), some more mathematical concepts were introduced and explained. Then the recent developments of the domains were presented. In published papers and books, research is most of the time introduced in an impersonal way, although developed by people who have existed or are still alive. The human side of research is missing. This is why we asked researchers who personally played (and are still playing) a role in these fields, and whose works are related to those described herein, to send us their testimonies. They show how research in a domain starts and evolves. For the same reason, biographies of other scholars encountered have been included. The human side of research plays a fundamental part in its development. This is why congresses form an important feature of our profession, since they allow researchers to meet other specialists and to build relationships that often last a lifetime.
    [Show full text]