Processing of Human Faeces by Wet Vermifiltration for Improved On-Site Sanitation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NWP-2-235 Installing Drain Components Remove Drain PLUG (A) from FLANGE (B)
Installation Instructions Bidet Fittings Bidet with Drain Actuating Rods in front of Valves Model No. 2-235 Congratulations on the purchase of your Newport Brass product, an excellent choice, that will give you years of quality service and enhance the look and style of your home. Recommended installation by a Professional Plumbing Contractor Note: The use of petroleum base plumbers putty on our products will nullify the warranty. We recommend the use of clear silicone sealing materials. Installing Hot & Cold Valves The blue marked valve goes into the right side hole, the red marked valve goes into the left side hole. See Figure 1. Place flange NUT (1) and WASHER (2) on valve BODY (3). Insert valve BODY (3) from underside through hole in mounting surface at rear of bidet. Adjust valve to appropriate height above mounting surface to accomodate handle assembly. Using additional NUT (1) and WASHER (2) secure valve BODY (3) in place. Before tightening down flange NUT (1), check handle alignment and stem height by placing handle onto Valve (3). Any adjustments for rotational alignment must be made to the valve BODY (3), not to the cartridge. See Figure 2. Figure 1 Diverter Valve Figure 2 Vacuum Breaker 4 2 Cold Water 1 Hot Water Valve Valve 6 (RED) (BLUE) b 3 5 Pop-Up Outlet Knob/Rod 4 24” Hose to Douche Spray 1/2” NPSM Inlet 6 12” Supply Lines a c Installing Diverter Valve / Vacuum Breaker If unassembled, apply thread sealant to tapered end of ELBOW (7) and 14 19 connect to side outlet of diverter VALVE (11). -
A Combined Vermifiltration-Hydroponic System
applied sciences Article A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment Kirill Ispolnov 1,*, Luis M. I. Aires 1,Nídia D. Lourenço 2 and Judite S. Vieira 1 1 Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; [email protected] (L.M.I.A.); [email protected] (J.S.V.) 2 Applied Molecular Biosciences Unit (UCIBIO)-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT), NOVA University of Lisbon, 2829-516 Caparica, Portugal; [email protected] * Correspondence: [email protected] Abstract: Intensive swine farming causes strong local environmental impacts by generating ef- fluents rich in solids, organic matter, nitrogen, phosphorus, and pathogenic bacteria. Insufficient treatment of hog farm effluents has been reported for common technologies, and vermifiltration is considered a promising treatment alternative that, however, requires additional processes to remove nitrate and phosphorus. This work aimed to study the use of vermifiltration with a downstream hydroponic culture to treat hog farm effluents. A treatment system comprising a vermifilter and a downstream deep-water culture hydroponic unit was built. The treated effluent was reused to dilute raw wastewater. Electrical conductivity, pH, and changes in BOD5, ammonia, nitrite, nitrate, phosphorus, and coliform bacteria were assessed. Plants were monitored throughout the experiment. Electrical conductivity increased due to vermifiltration; pH stayed within a neutral to mild alkaline range. Vermifiltration removed 83% of BOD5, 99% of ammonia and nitrite, and increased nitrate by Citation: Ispolnov, K.; Aires, L.M.I.; 11%. -
Recode Draft Plumbing Code for Composting and Urine Diversion Toilets
June 9, 2014 Recode Draft Plumbing Code for Composting and Urine Diversion Toilets Editor Mathew Lippincott recodeoregon.org Collaborators Laura Allen greywateraction.org Mark Buehrer 2020engineering.org Molly Danielsson recodeoregon.org Melora Golden recodeoregon.org Colleen Mitchell 2020engineering.com Kim Nace richearthinstitute.org Glenn Nelson compostingtoilet.com Abe Noe-Hayes richearthinstitute.org David Omick watershedmg.org/soil-stewards John Scarpulla sfwater.org Justification Introduction Water scarcity and pollution concerns are driving Environmental Protection: the adoption of composting and urine diversion Urine diversion can reduce nitrogen in domestic toilet systems in the US and abroad. In the US, wastewater by 80%, and Composting Toilet these systems have been treated unevenly by Systems can reduce household nitrogen by close a patchwork of regulations in Health, Onsite to 90%, both at installed costs of $3-6,000. This is Sanitation, and Building Code departments a higher performance than Alternative Treatment because they do not fit neatly into categories Technologies (ATTs) and sand filters currently designed to guarantee safe sanitary drainage required in many jurisdictions with surface and systems. It is the opinion of this code group that groundwater concerns, and at a fraction of the composting and urine diversion toilets are at a cost. This code brings new, lower cost options for turning point, mature enough to build sound environmental protection to homeowners. regulation around while also being a site of active research and development. Our intent is Innovation: therefore to create code language that provides This code enables the installation of innovative for strict protections on public health while also technologies by creating a code with clear encouraging the growth of domestic industry and inspection points to safeguard public health even innovation in composting and urine diversion in the event of the failure of new or experimental systems. -
M. Silvia Díaz Cruz Damià Barceló Editors
The Handbook of Environmental Chemistry 36 Series Editors: Damià Barceló · Andrey G. Kostianoy M. Silvia Díaz‐Cruz Damià Barceló Editors Personal Care Products in the Aquatic Environment The Handbook of Environmental Chemistry Founded by Otto Hutzinger Editors-in-Chief: Damia` Barcelo´ l Andrey G. Kostianoy Volume 36 Advisory Board: Jacob de Boer, Philippe Garrigues, Ji-Dong Gu, Kevin C. Jones, Thomas P. Knepper, Alice Newton, Donald L. Sparks More information about this series at http://www.springer.com/series/698 Personal Care Products in the Aquatic Environment Volume Editors: M. Silvia Dı´az‐Cruz Á Damia` Barcelo´ With contributions by A.G. Asimakopoulos Á M. Al Aukidy Á D. Barcelo´ Á M. Badia-Fabregat Á M.J. Bernot Á G. Caminal Á A. Chisvert Á M.M. de Oliveira e Sa´ Á K. Demeestere Á M. Di Carro Á M.S. Dı´az-Cruz Á J.C.G. Esteves da Silva Á P. Gago-Ferrero Á C. Ianni Á J.R. Justice Á K. Kannan Á M. Li Á M. Lv Á E. Magi Á M.S. Miranda Á D. Molins-Delgado Á S. Montesdeoca-Esponda Á I.N. Pasias Á B.R. Ramaswamy Á A. Salvador Á J.J. Santana-Rodrı´guez Á Z. Sosa-Ferrera Á Q. Sun Á S. Tanwar Á N.S. Thomaidis Á H. Van Langenhove Á T. Vega-Morales Á P. Verlicchi Á T. Vicent Á B. Yang Á G.-G. Ying Á C.-P. Yu Á E. Zambello Editors M. Silvia Dı´az‐Cruz Damia` Barcelo´ Department of Environmental Chemistry Department of Environmental Chemistry IDAEA-CSIC IDAEA-CSIC Barcelona Barcelona Spain Spain University of Girona ICRA Girona Spain ISSN 1867-979X ISSN 1616-864X (electronic) The Handbook of Environmental Chemistry ISBN 978-3-319-18808-9 ISBN 978-3-319-18809-6 (eBook) DOI 10.1007/978-3-319-18809-6 Library of Congress Control Number: 2015944206 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. -
Solid Waste and Faecal Sludge Management in Situations of Rapid, Mass Displacement1
Helpdesk Report Solid waste and faecal sludge management in situations of rapid, mass displacement1 Brigitte Rohwerder Institute of Development Studies 30 October 2017 Question What lessons and evidence is there from situations of rapid, mass displacement into sites and/or camps with limited space and limited physical access options for solid waste and faecal sludge management? Contents 1. Overview 2. Solid waste management 3. Faecal sludge management 4. References 1 Part of a series of queries relating to the Bangladesh Rohingya refugee crisis (WASH series) The K4D helpdesk service provides brief summaries of current research, evidence, and lessons learned. Helpdesk reports are not rigorous or systematic reviews; they are intended to provide an introduction to the most important evidence related to a research question. They draw on a rapid desk- based review of published literature and consultation with subject specialists. Helpdesk reports are commissioned by the UK Department for International Development and other Government departments, but the views and opinions expressed do not necessarily reflect those of DFID, the UK Government, K4D or any other contributing organisation. For further information, please contact [email protected]. 1. Overview Solid waste and faecal sludge management in situations of rapid mass displacement are important to public health and providing for a better environment. Despite this, both have been neglected in WASH programmes, which tend to have a focus on water. However increasing efforts are being made -
Sustainable Environmental Protection Using Modified Pit-Latrines
Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Promotor: Prof. dr.ir. G. Lettinga Hoogleraar in de anaërobe zuiveringstechnologie en hergebruik van afvalstoffen Co-promotoren: Dr. W. T. M. Sanders Post-doc onderzoeker bij de sectie Milieutechnologie, Wageningen Universiteit, Nederland Prof. A. Mashauri Dar-es-Salaam Universiteit, Tanzania Samenstelling promotiecommissie: Prof. G. Spaargaren Wageningen Universiteit Prof. dr. H. J. Gijzen UNESCO-IHE, Delft, Nederland Dr. G. J. Medema KIWA Water Research, Nieuwegein, Nederland Prof. Dr. H. Folmer Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool Wimek Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 maart 2003 des namiddags te half twee in de aula CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG. Chaggu, E. J. Sustainable Environmental Protection Using Modified Pit-Latrines ISBN: 90-5808-989-4 Subject headings: excreta disposal/blackwater/nightsoil/anaerobic digestion/improved pit latrines Abstract - Chaggu, E. J. (2004). Sustainable Environmental Protection Using Modified Pit-Latrines. Ph.D Thesis, Wageningen University, The Netherlands. Pit-latrines are on-site excreta disposal facilities widely used as anaerobic accumulation system for stabilizing human wastes like excreta, both in rural and urban settlements of developing countries. Flooding of pit-latrines is often a common phenomenon, especially in situations of high water table (HWT) conditions and during the rainy season, causing a health jeopardy to residents. The pits are not water-tight, the (ground)water can freely flow in and out of the pit, especially in HWT areas. -
HEALTH ASPECTS of DRY SANITATION with WASTE REUSE Anne Peasey
HEALTH ASPECTS OF DRY SANITATION WITH WASTE REUSE Anne Peasey Task No. 324 WELL STUDIES IN WATER AND ENVIRONMENTAL HEALTH Health Aspects of Dry Sanitation with Waste Reuse Anne Peasey WELL Water and Environmental Health at London and Loughborough Health Aspects of Dry Sanitation with Waste Reuse ii London School of Hygiene and Tropical Medicine Keppel Street London WC1E 7HT © LSHTM/WEDC Peasey, A. (2000) Health Aspects of Dry Sanitation with Waste Reuse WELL Designed and Produced at LSHTM Health Aspects of Dry Sanitation with Waste Reuse EXECUTIVE SUMMARY BACKGROUND Dry sanitation is defined in this report as the on-site disposal of human urine and faeces without the use of water as a carrier. This definition includes many of the most popular options for low- cost sanitation including pit latrines, Ventilated Improved Pits, SanPlats, etc. There has always been an interest in the reuse of human waste as a fertiliser, and there has been much recent work on the development of composting and other processes to permit human waste reuse. This report examines the practice of dry sanitation with reuse in Mexico, with a particular focus on health issues and the lessons to be learned from case studies and experience. DRY SANITATION WITH REUSE There are two distinct technical approaches to dry sanitation with reuse; · Dehydration. Urine and faeces are managed separately. The deposited faecal matter may be dried by the addition of lime, ash, or earth, and the contents are simply isolated from human contact for a specified period of time to reduce the presence of pathogens. · Decomposition (composting) In this process, bacteria, worms, or other organisms are used to break organic matter down to produce compost. -
Community Wastewater Treatment by Using Vermifiltration Technique
International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017) © International Research Publication House http://www.irphouse.com Community Wastewater Treatment By Using Vermifiltration Technique Author 1 Nandini Misal Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Author 2 Mr.NitishA.Mohite Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Abstract cowdung,clay and loaded with vermis-Eisenia fetida Now-a-days many developing countries cannot afford the earthworms. wastewater treatment processes as they are costly,need more The wastewater is allowed to pass through the filter,the space to construct the treatment plant and in addition use of earthworms consume and metabolise oils,fats and other chemicals for the treatment.They need some more options at compounds.The water percolating through is collected in low cost,space saving and ecofriendly another container.Earlier report of Sinha et.al(2008) have techniques.Vermifiltration is one of the simple,low proved that the body of earthworms works as a “biofilter”and cost,ecofriendly,chemical free technique used to treat the the body walls absorbs the solids from wastewater.It has been canteen wastewater using the Eisenia fetida earthworm observed that the earthworms are potentially capable of species.The earthworms are potentially capable of digesting digesting the waste organic material and remove the 5days the waste organic material and reduce it through ingestion.It is BOD5 near about 90%,COD by 85-90%, TS by 90-95%,TDS considered to be an innovative ecofriendly technology that by 95%,TSS by 95-98%. -
UD & Composting Toilets (Ecosan)
UD Toilets and Composting Toilets in Emergency Settings This Technical Brief looks at the criteria for selecting Urine Diversion (UD) and Composting Toilets options in an emergency setting, including the construction, operation and maintenance of such units which is used to store and dry the faeces over a specified Ecological Sanitation or period. Normally, it is recommended to store faeces for a Sustainable Sanitation? minimum of 12-months in one vault before emptying. Adding a desiccating material such as ash or sawdust will The approach of Ecological Sanitation (Ecosan) in accelerate the faeces drying process. Typically, in a well- emergency settings breaks with conventional excreta managed ecosan unit, storage times of greater than 3- disposal options such as pit latrines or pour-flush toilets. months will reduce many pathogens to safe levels, in Traditionally, Ecosan systems re-use both faeces and particular those responsible for Ameobiasis, Giardiasis, urine, turning them into either a soil conditioner or a Hepatitis A, Hookworm, Whipworm, Threadworm, fertilizer. This not only benefits peoples’ health through Rotavirus, Cholera, Escherichia coli, and Typhoid safe excreta disposal and by reducing environmental amongst others. Ascaris is more persistent though, and contamination, but also implies re-using the by-products may require retention times of 12-months or more. for some form of agricultural activity. In an emergency setting, the choice of ecosan options is very often driven by factors other than the re-use of all or part of the by-products. Ecosan toilets are very often better suited to rocky ground or areas with high water tables, making them more resistant to cyclic flooding for instance. -
TRAPS No. IPC IRC Description
MATERIALS Traps TRAPS 4 MAX 24" 1 3 2 MAX 30" No. IPC IRC Description Vertical distance from fi xture to the 1 1002.1 P3201.6 trap weir can not exceed 24". Horizontal distance from the fi xture 2 1002.1 P3201.6 outlet to the centerline of the trap inlet can not exceed 30". Each fi xture trap must have a liquid 3 1002.4 P3201.2 seal of not less than 2" and not more than 4". Combination plumbing fi xture can share a trap as long as one compartment is P3201.6 4 1002.1 (2) not more than 6" deeper than the other Exc. 2 compartment and compartment outlets are 30" or less apart. YOU SHOULD KNOW: IPC 908.1, 1002.5 AND IRC P3201.7 • IPC 908.1, IRC P3107.1: An individual vent is permitted to vent two traps or trapped fi xtures as a common vent. • IPC 1002.5, IRC P3201.7 & TABLE P3201.7: Fixture trap size shall be suffi cient to drain the fi xture rapidly and not less than the size located in Table 709.1. For additional resources visit www.code-ref.com 7 PERMITS AND INSPECTION PERMITS (IRC R105 • IPC 106) REQUIRED (IRC R 105.1 • IPC 106.1) • Construction, alteration, removal, or repair of any plumbing system. APPLICATION (IRC R105.3 • IPC 106.3) • Submit application to local building department. • Submit two or more sets of all supporting construction documents. • Code offi cial can waive the requirement for submitting supporting construction documents. ISSUANCE (IRC R105.3.2, IRC 105.6 • IPC 106.5) • Typically issued for a period of 180 days. -
SMC: Guide 5: Gérer Les Toilettes Et Les Douches Publiques
EAU ET ASSAINISSEMENT POUR TOUS Guide méthodologique n°5 Gérer les toilettes et les douches publiques 2 sommaire 3 Introduction 6. Deux conditions préalables à une bonne gestion : une conception adéquate des ouvrages et une promotion de l’hygiène ciblée u 11. CHAPITRE 1. La gestion des blocs sanitaires dans les établissements scolaires u 25. CHAPITRE 2. La gestion des blocs sanitaires dans les centres de santé 33. CHAPITRE 3. La gestion des blocs sanitaires u dans les lieux publics marchands 55. CHAPITRE 4 La gestion des blocs sanitaires u partagés dans les quartiers défavorisés 69 Le suivi et le contrôle de la gestion des blocs sanitaires 78. Bibliographie GUIDE N°5_Mise en page 1 24/11/10 14:46 Page1 EAU ET ASSAINISSEMENT POUR TOUS Guides méthodologiques n°5 Gérer les toilettes et les douches publiques Stratégies municipales concertées (SMC), un programme coordonné par le PDM (Partenariat pour le développement municipal) et le programme Solidarité Eau (pS-Eau) GUIDE N°5_Mise en page 1 24/11/10 14:46 Page2 • Auteur : Jérémie Toubkiss, UrbaConsulting • Contributeurs : . Laura Hurter, UrbaConsulting . Bruno Valfrey, UrbaConsulting . Denis Désille, pS-Eau . Christophe Le Jallé, pS-Eau • Publication réalisée sur un financement de l’AFD et de la Facilité ACP-UE pour l'eau de la Commission euro- péenne Conception graphique, mise en page : Solange Münzer Impression : Panoply, novembre 2010 GUIDE N°5_Mise en page 1 24/11/10 14:46 Page3 Introduction De quoi parle cette publication ? tions sanitaires et environnementales dans la Le présent ouvrage d’aide à la décision a pour zone d’implantation. -
A Social Network Analysis of Open Defecation Practices in India
University of Pennsylvania ScholarlyCommons Master of Behavioral and Decision Sciences Capstones Behavioral and Decision Sciences Program 8-9-2019 A Social Network Analysis of Open Defecation Practices in India Kajal Patil University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/mbds Part of the Social and Behavioral Sciences Commons Patil, Kajal, "A Social Network Analysis of Open Defecation Practices in India" (2019). Master of Behavioral and Decision Sciences Capstones. 16. https://repository.upenn.edu/mbds/16 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mbds/16 For more information, please contact [email protected]. A Social Network Analysis of Open Defecation Practices in India Abstract India faces a major public health issue as it has the highest rate of open defecation in the world. Open defecation is associated with significant negative effects such as diarrhea, parasitic worm infections and stunting. Over the past few decades, the Indian government launched multiple campaigns to tackle this issue. Unfortunately, the campaigns have achieved limited success in changing the population’s open defecation behaviour. In 2014, the Modi government launched the Swachh Bharat Abhiyan (Clean India Mission) with the aim of eliminating open defecation in five years. As of 2018, however, 44% of Indians still defecate in the open. As a result, it is increasingly important to understand the social and behavioral drivers that motivate open defecation behaviour. The aim of this paper is to study the effects of social networks and social interactions on an individual’s open defecation behaviour. The survey data used in this paper is from a three-year long research project conducted by Penn Social Norms Group (Penn SoNG) in association with the Bill and Melinda Gates Foundation.