FINAL REPORT for RESEARCH PROJECT 2001-16 (FHWA/NC

Total Page:16

File Type:pdf, Size:1020Kb

FINAL REPORT for RESEARCH PROJECT 2001-16 (FHWA/NC FINAL REPORT For RESEARCH PROJECT 2001-16 (FHWA/NC/2002-017) A Sign Inventory Study to Assess and Control Liability and Cost By Stephanie C. Vereen Graduate Research Assistant Joseph E. Hummer, Ph.D., P.E. Associate Professor William J. Rasdorf, Ph.D., P.E. Professor Department of Civil Engineering North Carolina State University Raleigh, NC August 2002 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2002-017 4. Title and Subtitle 5. Report Date A Sign Inventory Study to Assess and Control Liability and Cost August 2002 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Stephanie Vereen, Dr. Joseph E. Hummer, and Dr. William Rasdorf 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Department of Civil Engineering North Carolina State University Campus Box 7908 Raleigh, NC 27695-7908 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered North Carolina Department of Transportation Final Report Research and Analysis Group January 1, 2001 - June 30, 2002 1 South Wilmington Street Raleigh, NC 27601 14. Sponsoring Agency Code 2001-16 15. Supplementary Notes 16. Abstract The goal of this work was to determine, quantify, and present to the North Carolina Department of Transportation (NCDOT) alternative approaches for meeting the Federal Highway Administration’s (FHWA) proposed minimum levels of retroreflectivity for signs. This study used knowledge of the current NCDOT sign maintenance practices to synthesize a list of components and alternatives to comply with the standard. The fundamental contribution of the work lies in creating alternative methods to evaluating sign retroreflectivity to ensure compliance with a standard while minimizing the cost and labor required to do so. The four alternatives formulated were: 1) Continue with current inspection method, 2) Make improvements to current inspection method, 3) Implement a Sign Inventory Management System in addition to the current inspection method, and 4) A combination of alternative 2 and alternative 3. It was the recommendation of this report that, although the most costly, alternative 4, the combination of alternative 2 and 3, be adopted by NCDOT. It was also recommended that an evaluation be made periodically to determine what benefits and improvement in sign condition, if any, have resulted from the alternative’s implementation. 17. Key Words 18. Distribution Statement signs, retroreflectivity, standards, inventory, inspection 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 218 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized ii DISCLAIMER The contents of this report reflect the views of the authors and not necessarily the views of the University. The authors are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of either the North Carolina Department of Transportation or the Federal Highway Administration at the time of publication. This report does not constitute a standard, specification, or regulation. iii ACKNOWLEDGEMENTS Significant assistance was provided for this project by several organizational units of the NCDOT. Of particular note are Ray Goff from Division 6, Tom Thrower from Division 10, and J. Dean Ledbetter from Division 11, who were of great assistance. Ron King and Susan Kunz of the Signing Unit provided unlimited information. In addition, Brad Hibbs and Frank Julian of the Federal Highway Administration, Chuck Congelton and Danny Stanley of Correction Enterprise and the Bunn Sign Shop, and Tim Foster and Lorraine Jennings of Highway Division 11 provided assistance. The entire NCDOT Research Unit, the Project 2001-16 Committee, and the late Mohammed Mustafa provided help and valuable feedback. This assistance is gratefully acknowledged. iv EXECUTIVE SUMMARY The State of North Carolina currently maintains approximately 78,000 miles of road and approximately 1 million signs. In the near future, the Federal Highway Administration (FHWA) is expected to release minimum levels for sign retroreflectivity. The pending guidelines will present several new issues to state transportation agencies responsible for sign placement and maintenance, including liability, safety issues, organizational concerns, and resource concerns such as labor and cost. “The implementation of retroreflectivity standards would create a need for accurate, reliable, and cost-effective method to review traffic signs in the field 1”. To date, no one has developed a system or methodology to meet the standards on a scale as vast as that faced by NCDOT. The main objective of this project is to determine, quantify, and present to NCDOT alternative approaches for meeting the standard. This project will identify a number of approaches, work with the NCDOT to select a subset of the most promising approaches, gather data and information to quantify the alternatives against various criteria, and present them to NCDOT. The result will be to lay out and quantify choices that would enable NCDOT to minimize costs, reduce liability, improve safety, and comply with the proposed standards. A literature survey revealed two reports formulated by FHWA in 1998. The first report used input from several state and local agencies to “evaluate the applicability and practicality of: the minimum-maintained levels of sign retroreflectivity proposed by FHWA and the hand-held retroreflectometer that measures signs retroreflectivity2.” The second report presented explanations and procedures to assist agencies in developing their own sign management systems to meet the minimum retroreflectivity requirements3” which was used as a guide in the sign management system section of this project. Other literature addressed issues such as how many signs may not be in compliance when the proposed standards are implemented, the cost to replace these signs, feedback from agencies on the standards and hand-held retroreflectometer evaluations. The current sign maintenance and inspection methods of NCDOT were observed and evaluated. A life cycle of a sign in North Carolina was created based on visits to the sign manufacturing plant in Bunn, NC, discussion with State Signing Engineers, and visits to State highway Divisions to see storage methods and accompany an actual nighttime sign inspection. 1 Black, K.L., McGee, H.W., and Hussain, S.F., Implementation Strategies for Sign Retroreflectivity Standards. NCHRP Report 346, Transportation Research Board, Washington, D.C. (April 1992). 2 McGee, Hugh W., and Taori, Sunil, “Impacts on State and Local Agencies for Maintaining Traffic Signs Within Minimum Retroreflectivity Guidelines” BMI, Vienna, VA (1998) 3 McGee, Hugh W. and Paniati, Jeffrey A., An Implementation Guide for Minimum Retroreflectivity v Two studies were performed in conjunction with this report to estimate the number of signs on North Carolina roads because an accurate approximation was unknown. These reports resulted in an estimate of approximately 11,300 signs on Interstate roads, 369,700 signs on primary routes and 605,000 signs on secondary routes. A main impetus for this report and concern of NCDOT with the proposed standards is driver safety. Another concern is liability issues and the state’s exposure to increased liability. The maximum amount that can be awarded to a defendant in a tort claim against the State was raised from $150,000 to $500,000 on June 30, 2000. The threat of another increase to $1,000,000 and the forthcoming implementation of the proposed minimum values as a standard expose DOT to a high potential for liability claims as a result of non-compliant signs. Although, history reveals that few claims are actually awarded any money (of the claims filed during 2001 that cited some type of signing concern as the cause -not necessarily retroreflectivity- no awards were made or the cases were still pending), the opportunity for high cost claims to occur will be increased. Research included exploring retroreflectivity and it’s principles, sign types and their classifications, sign sheeting types, and software and technologies available for measurement. Using the existing literature and information collected from NCDOT meetings and observations, a preliminary list of about 30 alternatives was generated. These alternatives were presented to the NCDOT research team to retrieve comments and feedback as to which alternatives they would like to see evaluated. The meeting resulted in four alternatives, which are: 1) Maintain nighttime visual inspection method (current method), 2) Maintain nighttime inspection method with improvements, 3) Implement a sign inventory management system, and 4) Combination of Alternatives 2 and 3. The four alternatives were outlined and costs were generated for each one. A spreadsheet to determine the accuracy of nighttime sign inspection method was created. It was also used to calculate how many signs would potentially not be in compliance after visual inspection. It was determined that the visual inspection method produces a fairly low percentage of signs that are potentially not in compliance after the inspection. It is anticipated that the percentage of signs potentially not in compliance for NCDOT are lower because of sign personnel experience and that accuracy would increase if improvements were made to inspector training. Requirements
Recommended publications
  • U.S. Department of Transportation
    234144· REPORT NO. FRA-OR&D-75-54 PB244532 1111111111111111111111111111 FIELD EVALUATION OF LOCOMOTIVE CONSPICUITY LIGHTS D.8. Devoe C.N. Abernethy . :~ . • REPRODUCED BY U.S. DEPARTMENT OF .COMMERCE NATIONAL TECHNICAL INFORMATiON SERVICE SPRINGFIELD, VA 22161 MAY 1975 FINAL REPORT DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161 Prepared for U.S. DEPARTMENT OF TRANSPORTATION FEDERAL RAILROAD ADMINISTRATION Office of Research and Development Washington DC 20590 NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Govern­ ment assumes no liability for its contents or use thereof. \ \ NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are con­ sidered essential to the object of this report. Technical keport Documentation Page 1. Report No. 2. Governmenl Accession No. FRA-OR&D-75-54 t--:~;-,--....,...,.....,......--:-------_..L.-_--------------f'-,~'.:---:--:::---':"'-':"'-'---""~-""--'-'----'---1 4. T,ll_ and Subtitle 5. Report Date FIELD EVALUATION OF LOCOMOTIVE CONSPICUITY May 1975 LIGHTS 6. Performing Organization C"de h~:--:""""'"7-;---'-----------------------j8. Performing Organi zation Report No. 7. Author l s) D.B. Devoe CN AbernethY DOT-TSC-FRA-74-11 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) U.S. Department of Transportation RR402/R 5331 Transportation Systems Center 11. Contract or Grant No. Kendall Square Cambridge MA 02142 12. Sponsoring A.gency Name and Address Final Report U.S. Depar~ment of Transportation March - June 1974 Federal Railroad Administration Office of Research and Development 14.
    [Show full text]
  • Flashlight Ebook
    FLASHLIGHT PDF, EPUB, EBOOK Lizi Boyd | 40 pages | 12 Aug 2014 | CHRONICLE BOOKS | 9781452118949 | English | California, United States Flashlight PDF Book App Store Preview. The source of the light often used to be an incandescent light bulb lamp but has been gradually replaced by light-emitting diodes LEDs since the mids. Some models of flashlight include an acceleration sensor to allow them to respond to shaking, or to select modes based on what direction the light is held when switched on. LED flashlights were made in the early s. Perf Power. This was the first battery suitable for portable electrical devices, as it did not spill or break easily and worked in any orientation. CS1 maint: archived copy as title link U. Water resistance, if specified, is evaluated after impact testing; no water is to be visible inside the unit and it must remain functional. The standard described only incandescent lamp flashlights and was withdrawn in Colored light is occasionally useful for hunters tracking wounded game after dusk, or for forensic examination of an area. Solar powered flashlights use energy from a solar cell to charge an on-board battery for later use. Remove All. Don't feel overwhelmed with our surplus of options. Retailer Walmart. Anodized Aluminum. A flashlight may have a red LED intended to preserve dark adaptation of vision. Price Free. And it even goes with a compass, giving you the direction in the darkness. Lanterns Lanterns. The working distance is from the point of view of the user of the flashlight. An IP X8 rating by FL1 does not imply that the lamp is suitable for use as a diver's light since the test protocol examines function of the light only after immersion, not during immersion.
    [Show full text]
  • 2021 Streamlight® Tactical Catalog
    PROFESSIONAL-GRADE ILLUMINATION TOOLS NEW NEW TLR-7® SUB TLR-7®A TLR-8®A TLR-8®A G TLR-7®A TLR-7® TLR-8® TLR-8® G TLR-9™ pg. 6 pg. 7 pg. 7 pg. 8 Contour Remote pg. 9 pg. 9 pg. 10 pg. 11 pg. 8 UPGRADED UPGRADED UPGRADED NEW TLR-1 HL® TLR-2 HL® TLR-2 HL® G T L R -1 HP L® T L R -1® TLR-6® TLR-VIR® ll TLR-VIR® TLR® RM 1 pg. 16 pg. 17 pg. 17 pg. 18 Game Spotter pgs. 20-21 pg. 22 pg. 23 pg. 24 pg. 19 PROTAC® RAIL MOUNT SIDEWINDER® SIDEWINDER® SIDEWINDER SIDEWINDER® SL-B26™ Li-Ion PROTAC® 90 PROTAC® 90 X USB PROTAC® HL-X USB HL-X L ASER MILITARY RESCUE COMPACT® II BOOT USB Battery Pack pg. 40 PROTAC® 90 X PROTAC® HL-X pg. 32 pg. 34 pg. 35 MILITARY pg. 37 pgs. 38-39 pg. 41 pg. 42 pg. 36 NEW PROTAC® 1L-1A A PROTAC® 2AA PROTAC® 1AAA PROTAC® 2AAA POLYTAC® X USB STINGER® 2020 STINGER® LED STINGER LED HL® STINGER HPL® pg. 46 pg. 47 pg. 47 pg. 48 POLYTAC® X pg. 50 STINGER DS® LED STINGER DS LED HL® STINGER DS HPL® pg. 49 pg. 51 pg. 52 pg. 53 SIEGE® AA SUPER SIEGE® THE SIEGE® BANDIT® BANDIT® Pro QB® ENDURO® PRO ENDURO® PRO USB pg. 60 pg. 61 pg. 61 pg. 62 pg. 62 pg. 63 pg. 63 pg. 63 UPGRADED UPGRADED STYLUS PRO® STYLUS PRO® USB STYLUS PRO® STYLUS PRO® 360 STYLUS PRO® COB STYLUS® STREAMLIGHT JR.® LED USB UV pg.
    [Show full text]
  • 9.8 Making a Shaker (Or Forever) Flashlight
    9.8 Making a Shaker (or Forever) Flashlight Grade 9 Activity Plan 1 Reviews and Updates 2 9.8 Making a Shaker (or Forever) Flashlight Objectives: 1. To apply knowledge of electromagnetic induction to generate power for the flashlight. 2. To be familiar with some basic circuit elements and their functions. 3. To understand how a shaker flashlight works by making one. Key words/concepts: power, generator, electricity, magnet, coil, charge, AC, DC, rectifier, diode, electromagnetic induction, capacitors, Electromotive force. Curriculum outcomes: 109-14, 209-3, 210-7, 308-15, 308-16, 308-17. Take-home product: shaker flashlight 3 Segment Detail African Proverb and Cultural “Do good because of tomorrow.” Relevance Ghana (5 min.) Introduce a Shaker Flashlight. (Pass it around) Pre-test What is a magnet? How does it work? (10 min.) Show a magnetic field. Background Introduce students to components of the shaker flashlight (10 min.) and outline their functions. Focus on circuit parameters. Make an AC generator Activity 1 Introduce simplified equations: wire loops + metal rod + (10 min.) magnet = Induced current. Activity 2 Introduce full-wave rectifiers and their uses, guide students (15 min.) into building their own. Activity 3 Assemble the components of the flashlight and test them. (20 min.) Reassemble and discuss exercise. Ask and answer questions. Post-test Similarities and Differences between AC and DC. (20 min.) Similarities and Differences between Electromagnets and AC Generators. Suggested interpretation of proverb: This lesson teaches about the parts of the forever flashlight, one in particular being the capacitor. It stores energy created from shaking the flashlight, used to power the light bulb at a later time.
    [Show full text]
  • Download Lighting
    Rechargeable LIGHTING 75713 74751 Stinger® Rechargeable LED Flashlight Strion LED HL® Rechargeable Flashlight » Premier rechargeable duty light » Extraordinary brightness in a wide beam pattern » Machined aircraft aluminum body with non-slip » Multi-function On/Off push-button tail switch lets you rubberized comfort grip choose three lighting modes and strobe » High/medium/low/strobe modes » Lithium ion battery is rechargeable up to 1000 times; » 3-cell, 3.6 Volt NiMH sub-C battery, rechargeable fully recharges in 3 hrs. up to 1000 times » LED technology, impervious to shock with a 50,000 » IPX4 water-resistant; 1m impact resistance tested hour lifetime » Serialized for positive identification » IPX4 water-resistant; 2 meter impact resistance tested » Multi-function On/Off push-button switch » Anti-roll head prevents the light from rolling away » Limited lifetime warranty when you set it down » Assembled in USA » Serialized for positive identification ITEM # ORDER # DESCRIPTION UOM ITEM # ORDER # DESCRIPTION UOM 75713 342300131 Rechargeable LED Flashlight EA 74751 342300391 Rechargeable LED Flashlight EA Headlamps Enduro® Pro Headlamp » Sleek, Multi-Function LED Headlamp with 200 Lumens » Spot for distance lighting » Flood for area illumination for tasks at arm’s length » 45° tilting head and elastic headstrap » Powered by 3 “AAA” alkaline batteries (included) ITEM # ORDER # DESCRIPTION UOM 61422 61422 342300211 LED Headlamp EA 231 Headlamps Bandit® Rechargeable LED Headlamp » Produces bright, even light with less shadow than spot beams
    [Show full text]
  • HALO Twist & Pull Mini Lanterns
    R HALO Twist and Pull Mini Lantern Operating Instructions 2 HALO Twist and Pull Mini Lantern Features 3. After replacing all three AAA batteries, insert the battery How do you get service? Extendable Lantern holder into the battery chamber, negative end rst. To obtain service under this Limited Warranty, you must (1) To use the extendable lantern feature of your HALO Twist and 4. Screw on bottom of your HALO Twist and Pull Mini Lantern. within ninety (90) days of the purchase of the product, 1 3 Pull Mini Lantern simply grab the body of the ashlight with register you product at www.halo2cloud.com, (2) obtain a one hand and the ashlight handle with the other hand and Limited Warranty return materials authorization number (RMA) by contacting twist counterclockwise, pulling the extension out to the What does this limited warranty cover and how long is the HALO at (888) 907-6274, and (3) return the product to HALO desired level. You can use all three ashlight modes while coverage? at 148 Eastern Boulevard, Glastonbury, Connecticut 06033, using the extendable lantern. Halo2Cloud, LLC (“HALO”) warrants its products to be free Attention: Returns Department, together with your RMA and 1. Power Button from defects in materials and workmanship under normal use the sales receipt or similar proof of sale showing the original 2. Magnetic End 5 Magnet Feature and service for a period of one (1) year beginning on the date date of purchase of the product and the seller’s name and The bottom end of your HALO Twist and Pull Mini Lantern has you purchase the product.
    [Show full text]
  • Light-Emitting Diodes (Leds): Implications for Safety
    INTERNATIONAL COMMISSION ON NON-IONIZING RADIATION PROTECTION ICNIRP STATEMENT LIGHT-EMITTING DIODES (LEDS): IMPLICATIONS FOR SAFETY PUBLISHED IN: HEALTH PHYS 118(5):549–561; 2020 ICNIRP PUBLICATION – 2020 Special Submission LIGHT-EMITTING DIODES (LEDS): IMPLICATIONS FOR SAFETY International Commission on Non-Ionizing Radiation Protection (ICNIRP)1 Key words: International Commission on Non Ionizing Radiation Abstract—Since the original ICNIRP Statement was published in Protection; health effects; safety standards; radiation, non-ionizing 2000, there have been significant improvements in the efficiency and radiance (i.e., optical radiation emission) of LEDs. The most important improvement is the development of ‘white’ LEDs that INTRODUCTION can be used as general lighting sources, which are more efficient than traditional lighting sources. LEDs emitting in the ultraviolet THE ORIGINAL ICNIRP Statement on light-emitting di- wavelength region have also become available and have made odes (LEDs) and laser diodes (ICNIRP 2000) focused on their way into consumer products. All these changes have led to distinguishing between these two types of diode sources. a rise in concern for the safety of the optical radiation emissions It is now well-established that the potential hazards from from LEDs. Several in vitro and animal studies have been con- ducted, which indicate that blue and white LEDs can potentially LEDs are more similar to those from conventional lamps cause retinal cell damage under high irradiance and lengthy expo- than they are from lasers. Since the publication of the sure conditions. However, these studies cannot be directly extrapolated ICNIRP Statement on LEDs and laser diodes in 2000 to normal exposure conditions for humans, and equivalent effects (ICNIRP 2000), there have been significant changes in can also be caused by the optical radiation from other light sources under extreme exposure conditions.
    [Show full text]
  • Light Emitting Diodes (Led)
    LIGHT EMITTING DIODES (LED) STANDARD T-1 3/4 (5mm) Color Description CAT# 10 100 1000 RED diffused LED-1 1.00 .08 .05 RED high-brightness LED-10R 1.00 .08 .05 GREEN diffused LED-2 1.50 .12 .08 YELLOW diffused LED-3 1.50 .12 .08 AMBER diffused LED-173 1.50 .12 .08 AMBER water clear LED-275 1.00 .08 .05 ULTRA-BRIGHT T-1 3/4 (5mm) Improved brightness and color consistency. Color Description CAT# Each 100 1000 AQUA water clear in off state LED-130 .60 .45 .30 RED water clear in off state LED-257 .35 .28 .17 RED our “brightest red,” water clear in off-state LED-233 .50 .40 .25 BLUE water clear in off-state, 20º viewing angle LED-215 .60 .45 .30 BLUE water clear in off-state. Ammo-pack. LED-153 .50 .40 .30 GREEN water clear 3000 mcd LED-57 1.10 .90 .80 GREEN water clear in off-state LED-128 .75 .55 .40 WHITE water clear, 15º viewing angle LED-127 .95 .75 .60 WHITE water clear, warm-white LED-156 .65 .50 .35 WHITE water clear in off-state, 20º viewing angle LED-214 .60 .45 .30 YELLOW water clear 3000 mcd LED-72 .95 .75 .47 PURPLE (HOT PINK) water clear 1000+ mcd LED-92 1.10 .90 .75 ORANGE water clear point source LED-136 .60 .50 .35 MINIATURE T-1 (3mm) Color Description CAT# Price 100 1000 RED diffused MLED-1 10 for $1.00 .08 .07 GREEN diffused MLED-2 10 for $1.25 .10 .08 YELLOW diffused MLED-3 10 for $1.25 .10 .08 RED point source MLED-7 10 for $1.00 .08 .07 AMBER diffused MLED-12 10 for $1.25 .10 .08 BLUE point source Ultrabright LED-59 .60 .45 .35 WHITE water clear Ultrabright LED-83 .95 .80 .65 12 VDC LEDS Bright 5mm round LEDs with built-in resistors for 12Vdc, No external resistor required.
    [Show full text]
  • 18V LXT® Lithium-Ion Cordless L.E.D. Lantern/Flashlight, Tool Only Model DML806, DML807 Dual Purpose; Use As a Lantern Or Flashlight
    18V LXT® Lithium-Ion Cordless L.E.D. Lantern/Flashlight, Tool Only Model DML806, DML807 Dual Purpose; Use as a Lantern or Flashlight RUN TIME Models DML806 and DML807 provide up to 11 hours of continuous illumination in 360° lantern mode INNOVATION Model DML807 includes a built-in USB port for charging portable electronic devices COMFORT DML807 Rubberized soft grip provides increased comfort on the job DML806 CONVENIENCE Metal hang hook swivels 360° and folds away for added convenience FEATURES SPECIFICATIONS DML806 DML807 n Three L.E.D. lighting modes: 360° lantern, 180° lantern or fl ashlight Run Time*: 360° Lantern 11 hrs 11 hrs n 180°-360° lantern lighting allows the user to select between entire 180° Lantern 21 hrs 23 hrs work area or specifi c task illumination Flashlight 59 hrs 36 hrs n Metal hang hook swivels 360° and folds away for added convenience Lumens: 360° Lantern 620 610 n Compact and ergonomic design 180° Lantern 310 300 n Extreme Protection Technology (XPT) is engineered to provide Flashlight 90 150 increased dust and water resistance in harsh job site conditions USB Port No Yes (DML807 only) Bulb 12 L.E.D. 12 L.E.D. n 3-year warranty on fl ashlight Overall Length 14-3/8" 14-1/4” n Battery and charger sold separately Net Weight (with battery) 2.1 lbs. 2.2 lbs. n Only use genuine Makita batteries and chargers UPC Code 088381-699310 088381-807975 *using a 5.0Ah LXT® Battery STANDARD EQUIPMENT OPTIONAL ACCESSORIES n DML806 (Flashlight only; batteries and charger sold separately) n 18V Compact Lithium-Ion 2.0Ah Battery (BL1820B) ® n DML807 (Flashlight only; batteries and charger sold separately) n 18V LXT Lithium-Ion 3.0Ah Battery (BL1830) n 18V LXT® Lithium-Ion 4.0Ah Battery (BL1840B) n 18V LXT® Lithium-Ion 5.0Ah Battery (BL1850B) n 18V Lithium-Ion Rapid Optimum Charger (DC18RC) n 18V Lithium-Ion Dual Port Rapid Optimum Charger (DC18RD) n 18V Lithium-Ion Rapid Optimum 4-Port Charger (DC18SF) All specifi cations subject to change without prior notice.
    [Show full text]
  • 100301 Style RX Page Par Page.Indd
    Operating Manual Style RX 300 Style RX 600 Style RX 1200 Version 230V - 20625 Version 230V - 20626 Version 230V - 20627 120V - 20725 120V - 20726 120V - 20727 Canada 120V - 20725.1VS Canada 120V - 20726.1VS Canada 120V - 20727.1VS Elinchrom S.A Style RX 01.03.2010 ENG (73253) Printed in Switzerland English Table of contents Introduction 2 Declaration of conformity, disposal and recycling, CE marking 3 Safety notice and precaution 4 Operating instructions 5 Control Panel 6 Switch and Fuse 7 Modelling Light 8 Digital power display, Photo-cell 9 Synchronisation, Wireless Remote control and flash triggering 10 Acoustic signal 10 Troubleshooting 7, 10 Flash tube replacement 11 Technical Data 12 Elinchrom Accessories 13 Guarantee 14 P.S: Technical data subject to change. The listed values are guide values which may vary due to tolerances in components used. 1 Introduction The Elinchrom Style RX is manufactured by Elinchrom S.A. CH -1020 Renens/Switzerland Dear Photographer, Thank you for buying your Style RX compact flash unit. All Elinchrom products are manufactured using the most advanced technology. Carefully selected components are used to ensure the highest quality and the equipment is submitted to many controls both during and after manufacture. We trust that it will give you many years of reliable service. All Style RX flash units are manufactured for the studio and location use of professional photographers. Only by observance of the information given, can you secure your warranty, prevent possible damage and increase the life of this equipment. Style 300RX - 600RX - 1200RX The quality of light and exceptional performance is the result of long research, application of demanding principles, the long experience of ELINCHROM in lighting products for the studio and the utilization of the latest technology in this area.
    [Show full text]
  • Batteries & Flashlights
    BATTERIES & FLASHLIGHTS In the dark about flashlight options? We carry keychain lights, penlights, compact flashlights and headlamps from quality manufacturers such as Dorcy and Streamlight. See our wide selection of alkaline and lithium batteries to power those flashlights and more. For current prices and product availability, visit: https://paulbhardware.com/catalog-tool Flashlights & Batteries Flashlights LED Keychain Light SL73001 › Streamlight Nano LED Keychain Flashlight › Machined Aluminum Case › Durable, Weatherproof Design SKU # Output Color Power Rating Brand List Price SL73001 10 Lumen Black 4 Button Cell Batteries 8 Hour Streamlight $8.49 Coast G5 LED Keychain Flashlight Nebo POPLIT LED Light Nebo MYCRO LED Keychain Light Anodized Aircraft Aluminum Anodized Aircraft Aluminum Fixed, Mini-Flood Beam 8X Zoom, Magnetic Base 6 Light Modes, Magnetic Base Impact & Weather Resistant Flashlight, Flood Light & Lantern Modes Fully-Rechargeable Battery Output Color Power Rating Output Power Rating Output Power Rating 18 Lumen Black 4 Button 45 100/20 Lumen 3 - LR44 2.5 Hour 150/50/15 Rechargeable 1/2/5 Hour Cell Batteries Minutes Batteries Lumen SKU# C19781 $6.99 SKU# 6557 $6.99 SKU# 6714 $29.99 LED Penlight › Coast G20 LED Penlight › Fixed, Crisp Inspection Beam › Impact & Weather Resistant CTT7817CP SKU # Output Color Power Rating Brand List Price CTT7817CP Inspection Beam Black 2-AAA Batteries 10 Hour Coast $14.99 LED Penlight › Streamlight MicroStream LED Penlight › Corrosion & Water Resistant SL66318 › Machined Aluminum Case › Unbreakable
    [Show full text]
  • 1 Light-Emitting Diodes and Lighting
    j1 1 Light-Emitting Diodes and Lighting Introduction Owing to nitride semiconductors primarily, which made possible emission in the green and blue wavelengths of the visible spectrum, light-emitting diodes (LEDs) transmogrified from simple indicators to high-tech marvels with applications far and wide in every aspect of modern life. LEDs are simply p–n-junction devices constructed in direct-bandgap semiconductors and convert electrical power to generally visible optical power when biased in the forward direction. They produce light through spontaneous emission of radiation whose wavelength is determined by the bandgap of the semiconductor across which the carrier recombination takes place. Unlike semiconductor lasers, generally, the junction is not biased to and beyond transparency, although in superluminescent varieties transparency is reached. In the absence of transparency, self-absorption occurs in the medium, which is why the thickness of this region where the photons are generated is kept to a minimum, and the photons are emitted in random directions. A modern LED is generally of a double-heterojunction type with the active layer being the only absorbing layer in the entire structure inclusive of the substrate. Such LEDs have undergone a breathtaking revolution that is still continuing, since the advent of nitride-based white-light generation for solid-state lighting (SSL) applications. Essentially, LEDs have metamorphosed from being simply indicator lamps replacing nixie signs to highly efficient light sources featuring modern technology for getting as many photons as possible out of the package. In the process, packaging has changed radically in an effort to collect every photon generated within the structure.
    [Show full text]