Kourtidis Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Kourtidis Et Al Table S1. ShRNA sequences used in the present study* shRNA mature sequence ERBB2 CCCTGGCCGTGCTAGACAA NR1D1 GGCATGGTGTTACTGTGTA PBP CCGAGTTCCTCTTATCCTA MAP2K6 CAGATGACCTGGAGCCTAT SPINT1 CTGTGTAGTTTGTGCTGTA PFN2 AGCATTACGCCAATAGAAA MKI67 GCTACAAACTCCTAAGGAA TPD52 CTGTGAGATTCCTACCTTT BNIP3L AGCAGCAATGGCAATGATA LASP1 GGACCAGATCAGTAATATA CA9 CTTTGAATGGGCGAGTGAT FADS2 CCCATAGGGAGCTGATCGT ERBB3 CTACCAGTTGGAACACTTA GRB7 CTCGCCATCTGCATCCATC STARD3 AGGAGATCATCCAGTACAA FASN CTGGCCCAGGCTGAAGTTT ACLY GGGAGGAAGCTGATGAATA ACACA CACATGACCTTAAGATTAT MDH1 CGAGCTAAAGCTAAATTG ME1 GGCTTTATCCTCCTTTGAA *all shRNA sequences used in the present study can be retrieved in http://codex.cshl.edu Table S2. Primer pairs used for qRT-PCR in the present study gene forward primer reverse primer ERBB2 5’-AGACACGTTTGAGTCCATGCC-3’ 5’-ATCCCACGTCCGTAGAAAGGT-3’ NR1D1 5’-CCGTGACCTTTCTCAGCATGA-3’ 5’-CACTGTCTGGTCCTTCACGTTG-3’ PBP 5’-GGCAACAACCCAATGAGTGGT-3’ 5’-ATGCCGATCTTTGATGCTCATG-3’ FASN 5’-GAACTCCTTGGCGGAAGAGAA-3’ 5’-GCGAGAAGTCAACACGAGCTT-3’ ACLY 5’-AAGATCTCGTGGCCAATGGA-3’ 5’-AGGTTTGCGGATCAAACCAA-3’ ACACA 5’-CTTTGTGCCCACGGTTATCA-3’ 5’-AGTGGTCCCTGTTTGTCTCCA-3’ MDH1 5’-TGCAAGGAAAGGAAGTTGGTG-3’ 5’-TTCGAGCCTTGATGACAGCAG-3’ FADS2 5’ TGGTCATTGACCGCAAGGTT-3’ 5’-AGGCATCCGTTGCATCTTCTC-3’ ME1 5’-GCCATTGTGGTGACTGATGGA-3’ 5’-TCATCCCTCCGCAAGCTGTAT-3’ aP2 5’-GCATGGCCAAACCTAACATGAT-3’ 5’-CCTGGCCCAGTATGAAGGAAA-3’ -actin 5’-CTGTCCACCTTCCAGCAGATGT-3’ 5’-CCTGGCCCAGTATGAAGGAAA-3’ Table S3. The RNAi screen on genes overexpressed in ERBB2-positive breast cancer Accession # Symbol Description Reference shRNA-1* shRNA-2 shRNA-3 % control** ***s.d. z-score % control s.d. z-score % control s.d. z-score NM_006408 AGR2 anterior gradient homolog 2 (Xenopus laevis) 6 65.11 24.59 -1.09 NM_003220 AP2A Transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha) 56 63.64 25.82 -1.15 NM_003222 AP-2 transcription factor AP-2 gamma (activating enhancer binding protein 2 gamma) 56 120.44 13.24 1.43 NM_024320 ATAD4 ATPase family, AAA domain containing 4 6 80.99 10.22 -0.36 NM_005765 ATP6AP2 ATPase, H+ transporting, lysosomal accessory protein 2 6 101.38 20.56 0.56 111.66 45.63 1.03 NM_004888 ATP6V1G1 ATPase, H+ transporting, lysosomal (vacuolar proton pump), member J 6 79.34 8.16 -0.44 88.00 8.47 -0.05 91.86 17.35 0.13 NM_004281 BAG3 BCL2-associated athanogene 3 6 123.59 50.76 1.57 NM_004331 BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like 6 54.62 9.66 -1.61 NM_032937 C9orf37 Chromosome 9 open reading frame 37 6 73.97 14.26 -0.68 75.96 4.18 -0.59 NM_001216 CA9 carbonic anhydrase CA IX 57 54.00 15.87 -1.59 113.45 21.59 1.11 NM_053056 CCND1 cyclin D1 CCND1 58 103.82 36.74 0.67 111.71 17.78 1.03 112.12 12.80 1.05 NM_013230 CD24 CD24 6 95.47 31.12 0.29 NM_004933 CDH15 cadherin 15, M-cadherin (myotubule) CDH15 7 76.98 7.42 -0.55 NM_001793 CDH3 cadherin 3, type 1, P-cadherin (placental) 6 117.26 22.75 1.28 NM_003159 CDLK5 cyclin-dependent kinase-like 5 (CDKL5) 7 79.47 17.01 -0.43 100.02 2.94 0.50 100.25 3.83 0.51 NM_001803 CDW52 CDW52 (CAMPATH-1 antigen) 6 108.56 18.74 0.89 NM_001408 CELSR2 cadherin, EGF LAG seven-pass G-type receptor 2 CELSR2 7 67.39 28.09 -0.98 99.12 9.85 0.46 NM_003909 CPNE3 Copine III 6 68.27 8.09 -0.94 97.32 24.84 0.38 101.69 3.20 0.58 NM_001311 CRIP1 Cysteine-rich protein 1, intestinal 6 109.82 4.13 0.95 NM_024223 CRIP2 cysteine-rich protein 2 6 89.35 24.35 0.02 NM_003651 CSDA Cold shock domain protein A 6 58.04 20.17 -1.41 89.02 3.76 0.00 104.97 13.45 0.73 NM_005213 CSTA cystatin A (stefin A) CSTA 7 72.87 30.71 -0.73 86.53 4.23 -0.11 88.76 3.12 -0.01 NM_005930 CTAGE5 CTAGE family, member 5 (CTAGE5), transcript variant 1 6 107.75 11.03 0.85 NM_001903 CTNNA1 1-Catenin 6 70.10 7.78 -0.86 NM_015462 DKFZP586L0724 DKFZP586L0724 protein 59 97.09 13.30 0.37 99.84 5.44 0.49 100.78 2.70 0.54 NM_004747 DLG5 Discs (Drosophila), large homolog 5 6 97.94 25.44 0.41 NM_005494 DNAJB6 DnaJ (Hsp40) homolog, subfamily B, member 6 6 106.38 6.13 0.79 NM_022365 DNAJC1 DnaJ (Hsp40) homolog, subfamily C, member 1 6 101.86 12.65 0.58 NM_021800 DNAJC12 DnaJ (Hsp40) homolog, subfamily C, member 12 6 87.18 6.46 -0.08 106.17 15.44 0.78 114.95 14.81 1.18 NM_001405 EFNA2 ETS-related transcription factor Elf-1/ephrin-A2 (EFNA2) 60 98.62 19.66 0.44 NM_005228 EGFR epidermal growth factor receptor EGFR 61 67.06 3.17 -1.00 71.46 24.89 -0.80 98.80 20.91 0.45 NM_024757 EHMT1 euchromatic histone-lysine N-methyltransferase 1 (EHMT1) 6 95.40 17.28 0.29 109.08 17.33 0.91 NM_012843 EMP1 epithelial membrane protein 1 6 95.63 37.20 0.30 NM_004901 ENTPD4 ectonucleoside triphosphate diphosphohydrolase 4 (ENTPD4) 6 98.04 2.46 0.41 NM_001429 EP300 ER81 coactivator p300 62 73.43 1.30 -0.71 NM_004448 ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (avian) 5,6,7 27.03 6.30 -2.82 42.18 6.62 -2.13 48.74 8.93 -1.83 NM_001006600 ERBB2IP erbb2 interacting protein 5 94.51 20.92 0.25 120.82 19.67 1.45 BC082992 ERBB3 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian) 65 69.33 16.86 -0.89 72.18 20.51 -0.76 72.34 0.93 -0.76 NM_000125 ESR1 estrogen receptor 1 ESR1 5, 7 62.29 23.24 -1.21 88.15 15.99 -0.04 91.71 19.06 0.12 NM_004956 ETV1 ETS transcription factor ER81/ets variant gene 1 (ETV1) 62 73.96 4.61 -0.68 92.26 11.39 0.15 105.00 9.21 0.73 NM_178516 EXOC3L exocyst complex component 3-like (loc283849) 7 80.71 1.90 -0.38 81.61 4.20 -0.34 97.27 2.06 0.38 NM_004265 FADS2 fatty acid desaturase 2 FADS2 7 63.55 27.33 -1.16 78.63 4.92 -0.47 86.03 4.08 -0.13 NM_004104 FASN fatty acid synthase FAS 66 75.41 4.15 -0.62 92.39 31.86 0.15 101.57 16.69 0.57 NM_002014 FKBP4 FK506-binding protein 4 6 54.62 4.51 -1.56 91.47 3.12 0.11 106.06 18.86 0.78 NM_004496 FOXA1 Homo sapiens forkhead box A1 (FOXA1) (Hepatocyte nuclear factor 3a) 5 82.08 29.60 -0.31 91.33 1.08 0.11 100.23 22.37 0.51 NM_004483 GCSH glycine cleavage system protein H (aminomethyl carrier) (GCSH) 6 87.16 1.40 -0.08 91.24 23.76 0.10 NM_005310 GRB7 growth factor receptor-bound protein 7 GRB7 5, 59 71.41 0.77 -0.80 76.58 9.95 -0.56 NM_004893 H2AFY H2A histone family, member Y 6 50.47 3.18 -1.75 68.85 19.60 -0.92 NM_005324 H3F3B H3 histone family, 3B 6 70.57 28.50 -0.84 100.91 3.12 0.54 106.72 1.61 0.81 NM_017802 HEATR2 HEAT repeat containing 2 (FLJ20397) 6 62.61 16.34 -1.20 NM_005345 HSPA1A heat shock 70kDa protein 1A 6 75.68 0.97 -0.61 101.02 6.07 0.55 110.94 10.28 1.00 NM_005346 HSPA1B heat shock 70kDa protein 1B 6 107.16 6.13 0.83 NM_005527 HSPA1L heat shock 70kDa protein 1-like 6 95.13 10.70 0.28 NM_002155 HSPA6 heat shock 70kDa protein 6 (HSP70B') (HSPA6) 6 48.23 5.95 -1.85 68.85 22.11 -0.92 70.58 10.38 -0.84 NM_024610 HSPBAP1 HSPB (heat shock 27kDa) associated protein 1 6 87.43 4.73 -0.07 113.28 6.85 1.10 135.30 6.72 2.10 NM_001017963 HSPCA heat shock protein 90kDa alpha (cytosolic), class A member 1 67 94.55 5.29 0.25 NM_007355 HSPCB heat shock protein 90kDa alpha (cytosolic), class B member 1 67 75.67 4.15 -0.61 89.26 1.29 0.01 92.41 5.85 0.16 NM_002203 ITGA2 integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) ITGA2 7 65.74 31.78 -1.06 80.44 13.43 -0.39 99.28 2.97 0.47 NM_000419 ITGA2B integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex, antigen CD41B) 7 91.97 11.60 0.13 NM_000212 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) ITGB3 7 89.68 10.76 0.03 93.79 14.41 0.22 102.73 24.09 0.62 NM_015202 KIAA0556 KIAA0556 protein 6 79.85 13.40 -0.42 114.45 4.26 1.16 NM_002266 KPNA2 karyopherin alpha 2 (RAG cohort 1, importin alpha 1) 6 78.63 6.77 -0.47 88.94 12.43 0.00 NM_000224 KRT18 Keratin 18 6 89.42 4.25 0.02 126.94 6.36 1.72 NM_005556 KRT7 Keratin 7 5 68.17 2.54 -0.95 NM_006148 LASP1 LIM and SH3 protein 1 59 37.54 15.30 -2.34 43.28 19.44 -2.08 NM_006498 LGALS1 lectin, galactoside-binding, soluble, 2 6 78.79 4.66 -0.46 NM_005570 LMAN1 lectin, mannose-binding, 1 6 86.64 16.09 -0.11 88.32 5.16 -0.03 100.50 6.82 0.52 NM_005574 LMO2 LIM domain only 2 66 67.25 4.93 -0.99 92.05 4.51 0.14 92.99 20.68 0.18 NM_006769 LMO4 LIM domain only 4 LMO4 66 91.97 1.74 0.13 111.19 5.08 1.01 121.30 21.70 1.47 NM_002317 LOX lysyl oxidase LOX 7 77.60 30.62 -0.52 88.35 8.63 -0.03 NM_006726 LRBA LPS-responsive vesicle trafficking, beach and anchor containing LRBA 67 90.99 3.94 0.09 NM_052886 MAL2 T-cell differentiation protein 2 (MAL2) 6 80.80 2.03 -0.37 NM_002758 MAP2K6 mitogen-activated protein kinase kinase 6 MAP2K6 7 37.23 11.97 -2.35 57.00 22.55 -1.45 68.63 3.69 -0.93 NM_005885 MARCH6 membrane-associated ring finger (C3HC4) 6 (MARCH6) 6 54.36 11.40 -1.57 71.29 6.58 -0.80 79.82 4.62 -0.42 NM_032315 MGC4399 Mitochondrial carrier protein 6 99.60 9.64 0.48 96.02 12.64 0.32 NM_033418 MGC9084 chromosome 1 open reading frame 156 (C1orf156) - MGC9084 6 85.82 9.36 -0.14 NM_020300 MGST1 Microsomal glutathione S-transferase 1 6 88.54 0.84 -0.02 110.86 19.34 0.99 NM_002417 MKI67 antigen identified by monoclonal antibody Ki-67 MKI67 7 32.99 5.78 -2.55 61.34 23.85 -1.26 NM_024101 MLPH melanophilin (MLPH) 6 70.55 9.71 -0.84 NM_002421 MMP1 matrix metallopeptidase 1 68 75.25 2.90 -0.62 80.41 8.00 -0.39 NM_033546 MRLC2 Myosin, light polypeptide, regulatory, non-sarcomeric MRLC2 6 81.66 27.47 -0.33 117.07 8.72 1.28 NM_018728 MYO5C myosin VC (MYO5C) 6 84.59 6.56 -0.20 NM_007067 MYST2 MYST histone acetyltransferase 2 (MYST2) 6 99.22 6.64 0.46 103.09 7.75 0.64 120.04 24.70 1.41 NM_000662 NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase) NAT1 7 138.19 23.72 2.24 NM_001135242 NDRG1 N-myc downstream regulated 1 6 53.95 8.69 -1.59 NM_005005 NDUFB9 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa (NDUFB9) 6 71.44
Recommended publications
  • New CDH3 Mutation in the First Spanish Case of Hypotrichosis with Juvenile Macular Dystrophy, a Case Report
    Blanco-Kelly et al. BMC Medical Genetics (2017) 18:1 DOI 10.1186/s12881-016-0364-5 CASEREPORT Open Access New CDH3 mutation in the first Spanish case of hypotrichosis with juvenile macular dystrophy, a case report Fiona Blanco-Kelly1,2, Luciana Rodrigues-Jacy da Silva1, Iker Sanchez-Navarro1, Rosa Riveiro-Alvarez1,2, Miguel Angel Lopez-Martinez1, Marta Corton1,2 and Carmen Ayuso1,2,3* Abstract Background: CDH3 on 16q22.1 is responsible for two rare autosomal recessive disorders with hypotrichosis and progressive macular dystrophy: Hypotrichosis with Juvenile Macular Dystrophy and Ectodermal Dysplasia, Ectrodactyly and Macular Dystrophy. We present a new case of Hypotrichosis with Juvenile Macular Dystrophy. Case presentation: A Spanish male born in 1998 from non-consanguineous healthy parents with a suspected diagnosis of Keratosis Follicularis Spinulosa Decalvans and Retinitis Pigmentosa Inversa referred to our Genetics Department (IIS-Fundación Jiménez Díaz). Molecular study of ABCA4 was performed, and a heterozygous missense p.Val2050Leu variant in ABCA4 was found. Clinical revision reclassified this patient as Hypotrichosis with Juvenile Macular Dystrophy. Therefore, further CDH3 sequencing was performed showing a novel maternal missense change p.Val205Met (probably pathogenic by in silico analysis), and a previously reported paternal frameshift c.830del;p.Gly277Alafs*20, thus supporting the clinical diagnosis.. Conclusions: This is not only the first Spanish case with this clinical and molecular diagnosis, but a new mutation has been described in CDH3. Moreover, this work reflects the importance of joint assessment of clinical signs and evaluation of pedigree for a correct genetic study approach and diagnostic. Keywords: Macular dystrophy, CDH3, Hypotrichosis, Syndromic retinal dystrophy, Case report Background Dysplasia, Ectrodactyly and Macular Dystrophy (EEM, The CDH3 gene, on16q22.1, encodes for P-cadherin, OMIM: 225280) [18].
    [Show full text]
  • Atlas Antibodies in Breast Cancer Research Table of Contents
    ATLAS ANTIBODIES IN BREAST CANCER RESEARCH TABLE OF CONTENTS The Human Protein Atlas, Triple A Polyclonals and PrecisA Monoclonals (4-5) Clinical markers (6) Antibodies used in breast cancer research (7-13) Antibodies against MammaPrint and other gene expression test proteins (14-16) Antibodies identified in the Human Protein Atlas (17-14) Finding cancer biomarkers, as exemplified by RBM3, granulin and anillin (19-22) Co-Development program (23) Contact (24) Page 2 (24) Page 3 (24) The Human Protein Atlas: a map of the Human Proteome The Human Protein Atlas (HPA) is a The Human Protein Atlas consortium cell types. All the IHC images for Swedish-based program initiated in is mainly funded by the Knut and Alice the normal tissue have undergone 2003 with the aim to map all the human Wallenberg Foundation. pathology-based annotation of proteins in cells, tissues and organs expression levels. using integration of various omics The Human Protein Atlas consists of technologies, including antibody- six separate parts, each focusing on References based imaging, mass spectrometry- a particular aspect of the genome- 1. Sjöstedt E, et al. (2020) An atlas of the based proteomics, transcriptomics wide analysis of the human proteins: protein-coding genes in the human, pig, and and systems biology. mouse brain. Science 367(6482) 2. Thul PJ, et al. (2017) A subcellular map of • The Tissue Atlas shows the the human proteome. Science. 356(6340): All the data in the knowledge resource distribution of proteins across all eaal3321 is open access to allow scientists both major tissues and organs in the 3.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • PROTEOMIC ANALYSIS of HUMAN URINARY EXOSOMES. Patricia
    ABSTRACT Title of Document: PROTEOMIC ANALYSIS OF HUMAN URINARY EXOSOMES. Patricia Amalia Gonzales Mancilla, Ph.D., 2009 Directed By: Associate Professor Nam Sun Wang, Department of Chemical and Biomolecular Engineering Exosomes originate as the internal vesicles of multivesicular bodies (MVBs) in cells. These small vesicles (40-100 nm) have been shown to be secreted by most cell types throughout the body. In the kidney, urinary exosomes are released to the urine by fusion of the outer membrane of the MVBs with the apical plasma membrane of renal tubular epithelia. Exosomes contain apical membrane and cytosolic proteins and can be isolated using differential centrifugation. The analysis of urinary exosomes provides a non- invasive means of acquiring information about the physiological or pathophysiological state of renal cells. The overall objective of this research was to develop methods and knowledge infrastructure for urinary proteomics. We proposed to conduct a proteomic analysis of human urinary exosomes. The first objective was to profile the proteome of human urinary exosomes using liquid chromatography-tandem spectrometry (LC- MS/MS) and specialized software for identification of peptide sequences from fragmentation spectra. We unambiguously identified 1132 proteins. In addition, the phosphoproteome of human urinary exosomes was profiled using the neutral loss scanning acquisition mode of LC-MS/MS. The phosphoproteomic profiling identified 19 phosphorylation sites corresponding to 14 phosphoproteins. The second objective was to analyze urinary exosomes samples isolated from patients with genetic mutations. Polyclonal antibodies were generated to recognize epitopes on the gene products of these genetic mutations, NKCC2 and MRP4. The potential usefulness of urinary exosome analysis was demonstrated using the well-defined renal tubulopathy, Bartter syndrome type I and using the single nucleotide polymorphism in the ABCC4 gene.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Urothelial Cell Line Urotsa Transformed by Arsenite and Cadmium Display Basal Characteristics Associated with Muscle Invasive Urothelial Cancers
    University of North Dakota UND Scholarly Commons Pathology Faculty Publications Department of Pathology 12-14-2018 The Urothelial Cell Line UROtsa Transformed by Arsenite and Cadmium Display Basal Characteristics Associated with Muscle Invasive Urothelial Cancers Zachary E. Hoggarth Danyelle B. Osowski Brooke A. Freeberg Scott H. Garrett University of North Dakota, [email protected] Mary Ann Sens University of North Dakota, [email protected] See next page for additional authors Follow this and additional works at: https://commons.und.edu/path-fac Recommended Citation Hoggarth, Zachary E.; Osowski, Danyelle B.; Freeberg, Brooke A.; Garrett, Scott H.; Sens, Mary Ann; Zhou, Xudong; Zhang, Ke K.; and Somji, Seema, "The Urothelial Cell Line UROtsa Transformed by Arsenite and Cadmium Display Basal Characteristics Associated with Muscle Invasive Urothelial Cancers" (2018). Pathology Faculty Publications. 1. https://commons.und.edu/path-fac/1 This Article is brought to you for free and open access by the Department of Pathology at UND Scholarly Commons. It has been accepted for inclusion in Pathology Faculty Publications by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. Authors Zachary E. Hoggarth, Danyelle B. Osowski, Brooke A. Freeberg, Scott H. Garrett, Mary Ann Sens, Xudong Zhou, Ke K. Zhang, and Seema Somji This article is available at UND Scholarly Commons: https://commons.und.edu/path-fac/1 RESEARCH ARTICLE The urothelial cell line UROtsa transformed by arsenite and cadmium display basal characteristics associated with muscle invasive urothelial cancers Zachary E. Hoggarth, Danyelle B. Osowski, Brooke A. Freeberg, Scott H. Garrett, Donald A.
    [Show full text]
  • Ikkγ Protein Is a Target of BAG3 Regulatory Activity in Human Tumor Growth
    IKKγ protein is a target of BAG3 regulatory activity in human tumor growth Massimo Ammirantea,b,1, Alessandra Rosatib,c,1, Claudio Arrac,d, Anna Basileb,c, Antonia Falcob,c, Michela Festab,c, Maria Pascaleb,c, Morena d’Aveniab,c, Liberato Marzullob,c, Maria Antonietta Belisariob, Margot De Marcob,c, Antonio Barbierid, Aldo Giudiced, Gennaro Chiappettae, Emilia Vuttarielloe, Mario Monacoe, Patrizia Bonellid, Gaetano Salvatoref, Maria Di Benedettof, Satish L. Deshmaneg, Kamel Khalilig, Maria Caterina Turcob,c,2, and Arturo Leoneb aLaboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0723; bDepartment of Pharmaceutical Sciences (DiFarma), University of Salerno, 84084 Fisciano, Italy; cBioUniverSA S.R.L., 84084 Fisciano, Italy; dAnimal Facility and eFunctional Genomic Unit National Cancer Institute, “Tumor Institute Fond. Pascale,” 80131 Naples, Italy; fPathological Anatomy, Federico II University, 80131 Naples, Italy; and gCenter For Neurovirology, Department of Neuroscience, Temple University, Philadelphia PA 19122 Edited* by Michael Karin, School of Medicine, University of California, La Jolla, CA, and approved March 17, 2010 (received for review July 10, 2009) BAG3, a member of the BAG family of heat shock protein (HSP) 70 leukemia results in a dramatic increase of basal as well as drug- cochaperones, is expressed in response to stressful stimuli in a number induced apoptosis (17, 18). Furthermore, BAG3 is overexpressed in of normal cell types and constitutively in a variety of tumors, including thyroid carcinomas, where higher levels of expression are reached in pancreas carcinomas, lymphocytic and myeloblastic leukemias, and anaplastic tumors compared with well-differentiated forms.
    [Show full text]
  • Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M
    14 The Open Dermatology Journal, 2010, 4, 14-20 Open Access Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M. Brandner1,§, Marek Haftek*,2,§ and Carien M. Niessen3,§ 1Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany 2University of Lyon, EA4169 Normal and Pathological Functions of Skin Barrier, E. Herriot Hospital, Lyon, France 3Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany Abstract: The skin is an indispensable barrier which protects the body from the uncontrolled loss of water and solutes as well as from chemical and physical assaults and the invasion of pathogens. In recent years several studies have suggested an important role of intercellular junctions for the barrier function of the epidermis. In this review we summarize our knowledge of the impact of adherens junctions, (corneo)-desmosomes and tight junctions on barrier function of the skin. Keywords: Cadherins, catenins, claudins, cell polarity, stratum corneum, skin diseases. INTRODUCTION ADHERENS JUNCTIONS The stratifying epidermis of the skin physically separates Adherens junctions are intercellular structures that couple the organism from its environment and serves as its first line intercellular adhesion to the cytoskeleton thereby creating a of structural and functional defense against dehydration, transcellular network that coordinate the behavior of a chemical substances, physical insults and micro-organisms. population of cells. Adherens junctions are dynamic entities The living cell layers of the epidermis are crucial in the and also function as signal platforms that regulate formation and maintenance of the barrier on two different cytoskeletal dynamics and cell polarity.
    [Show full text]