Analysis of Plant Material in Roadside Landscapes: the Trabzon Case Yol Peyzajlarında Bitkisel Materyalin Incelenmesi: Trabzon Örneği

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Plant Material in Roadside Landscapes: the Trabzon Case Yol Peyzajlarında Bitkisel Materyalin Incelenmesi: Trabzon Örneği DOI: 10.5152/forestist.2020.19027 Forestist 2020, 70(1): 28-35 Original Article Analysis of plant material in roadside landscapes: The Trabzon case Yol peyzajlarında bitkisel materyalin incelenmesi: Trabzon örneği Emine Tarakçı Eren , Tuğba Düzenli , Elif Merve Alpak Department of Landscape Architecture, Karadeniz Technical University, Faculty of Forestry, Trabzon, Turkey ABSTRACT The aim of this study was to determine the species used in road planting in Trabzon, Turkey, and to reveal the opinion of the city population on this subject. The research method was designed in two stages. During the first stage, the three most important routes in the city of Trabzon were examined, and the plant species used in roadside spaces and traffic islands were determined. In the second stage, a survey was conducted with the users to reveal their opinions about roadside landscapes. A total of 109 plant taxa/76 genera in the first route, 83 plant taxa/64 genera in the second route, and 73 plant taxa/56 genera in the third route were identified. Consequently, a total of 118 plant taxa/81 genera were determined in all three areas. In the survey, a total of 18 questions were asked, and the degree of their implementation in these areas was investigated. In conclusion, the analysis of the required benefits for the three routes demonstrated that there were no significant differences between them. It can be said that the focus of the study was to deter- mine whether there were significant differences between the identified three routes based on the planting design benefits they offer. Keywords: Planting design, roadside planting, plant taxa, Trabzon, Turkey ÖZ Bu çalışmada amaç Trabzon kenti yol bitkilendirmesinde kullanılan türleri belirlemek ve bu konudaki kul- lanıcı görüşlerini ortaya çıkarmaktır. Bu çalışmanın araştırma yöntemi iki aşamalı kurgulanmıştır. Birinci kısımda Trabzon kentinde en önemli üç güzergah incelenerek, bu güzergahlardaki yol kenarı, orta refüj, adalar ve kavşaklarda kullanılan bitki türleri tespit edilmiş ve elde edilen veriler doğrultusunda baskın bitki türleri ortaya koyulmuştur. İkinci aşamada ise kullanıcıların yol peyzajları hakkındaki görüşlerini belirlemek için anket yapılarak anket sonuçları istatistik programı yardımıyla değerlendirilmiştir. 1. rotada 76 tür ve 109 bitki taksonu, 2. rotada 64 tür ve 83 bitki taksonu ve 3. rotada 56 tür 73 bitki taksonu tespit edildi. Sonuç olarak 3 alanda toplam, 81 tür ve 118 bitki taksonu belirlenmiştir. Ankette ise katılımcılara 18 soru sorularak Cite this paper as: (N=390) ve bu alanlardaki uygulamalarının derecesi araştırılmıştır. Sonuç olarak, Trabzon kentinde incelenen Tarakçı Eren, E., Düzenli, güzergâhlardaki bitkilendirme tasarımlarının sağlaması gereken faydaların üç güzergâh için değerlendiril- T., Alpak, E.M., 2020. mesi sonucunda üç yol arasında anlamlı bir farklılık olmadığı tespit edilmiştir. Çalışmanın vurgusunun, Analysis of Plant Material belirlenen üç rota arasındaki, dikim tasarım faydalarına dayanarak önemli farklılıklar olup olmadığını tespit in Roadside Landscapes: etmek olduğu söylenebilir. The Trabzon Case. Forestist 70(1): 28-35. Anahtar Kelimeler: Bitkilendirme tasarımı, yol peyzajı, bitki taksonu, Trabzon, Türkiye Corresponding author: INTRODUCTION Tuğba Düzenli e-mail: [email protected] Certain urban design theorists identified roads as one of the most important components of ur- Received Date: ban spaces (Dingcheng, 2006; Dunnett and Hitchmough, 2004; Li et al., 2007). In addition to pro- 02.08.2019 viding a means for pedestrian and vehicle traffic, roads also function as urban open green spaces. Accepted Date: 05.10.2019 Currently, due to the increasing building mass in urban areas, the areas occupied by open green Content of this journal is licensed under a Creative Commons Attribution- spaces have shrunk. Thus, thanks to planting in roadside and traffic islands, urban green spaces NonCommercial 4.0 International Licence. are connected. One of the most important functions of roadside planting for urban aesthetics is 28 Tarakçı Eren et al. Plant material in roadsides Forestist 2020, 70(1): 28-35 the connection function (Coffin, 2007; Qiao-ling, 2002; Tarakci trees as living organisms to fulfill the functions expected from Eren and Acar, 2017; Tarakci Eren and Özbilen, 2017). them in spaces where they were planted (Jing and Zhicheng, 2009). To fulfill the expected functions and objectives, plan- The main function of wide boulevards and the roads that deter- ning and design principles for these trees should be observed mine the direction of urban development and define the urban to minimize the disadvantages in the growth environment. skeleton is to provide comfortable, reliable, and easy utilization The present study aimed to investigate the planting activities by the pedestrians and vehicles. Especially in planned cities, the in the Trabzon city on three arteries with the most intense traf- roads fulfill the task of connecting various urban occupancy forms fic based on urban roadside planting and the plant species (Söğüt, 2005; Tarakci Eren et al., 2018). Roadside plants play import- used in these spaces. Furthermore, the study aimed to de- ant roles in achieving certain standards. Trees and other plants on termine whether there were significant differences between the roads, which are used by the drivers only to pass through, are these three routes based on the planting design benefits they also effective in locating places due to the perception of their offer. functions and size that underlines and guides the routes. For pe- destrians, the roads also serve as business, shopping, and recre- MATERIALS AND METHODS ational spaces (Jing and Zhicheng, 2009; Qiao-ling, 2002). The study investigated the main transportation arteries in the The tree-lined urban roads and squares and the other green urban center of the Trabzon province in Turkey. In this con- elements that accompany the former constitute the open and text, (1) The Coast Road, (2) Trabzon–Akçaabat Highway, and green urban spaces (Tunay et al., 2008; Yılmaz and Aksoy, 2009). (3) Yavuz Selim Boulevard were investigated. In the first stage, The open and green spaces that the working urban people the study methods included on-site observations, analysis and could benefit during the day are limited. On the other hand, photographing the plants, and a survey was conducted in the streets, boulevards, and traffic islands are the most important second stage. In the first stage, the identified routes were visit- open and green spaces that urbanites could use or benefit from ed; the plants in traffic islands, intersections, and roadside spac- in daily life (Küçük and Gül, 2005). es were examined; and the plant species were determined. In the second stage, a questionnaire that included 18 statements Today, the most important reason for the failure of urban road- (Table 1) was developed and applied to 130 occupants in each side planting is not being familiar with the requirements of route. There was a total of 390 occupants. Table 1. Benefits Expected From Roadside Planting (Aklıbaşında and Erdoğan, 2016; Söğüt, 2005; Tarakci Eren et al., 2018) The Benefits of Roadside Planting Code Description Traffic safety f1 Signalization of the road f2 Prevention of light reflections f3 Separation of pedestrian and vehicle spaces f4 Facilitation of pedestrian activities Visual values f5 Removal of urban monotony by underlining main and auxiliary design elements using color, form, and texture and creation of space and balance Improvement of the psychology of urban population f6 Providing contact between the urbanites and nature f7 Reduction of stress f8 Providing energy of life and happiness f9 Creating a sense of safety in pedestrians Regulation of urban climate f10 Shading and reduction of high temperatures f11 Balancing the relative humidity f12 Preventing the wind corridor effect Reduction of environmental pollution f13 Screening visual pollution f14 Removal of traffic-induced pollution (Pb, NOx, Cd, Ni, etc.) f15 Reduction of air particles Contribution to urban development f16 Providing an urban infrastructure f17 Connectivity between urban spaces f18 Continuity between green spaces in particular 29 Tarakçı Eren et al. Plant material in roadsides Forestist 2020, 70(1): 28-35 RESULTS surrounded by building blocks. Seventy-three plant taxa in 56 genera were determined (Figure 3). Analysis of Plant Material The Coast Road is part of the Trabzon coastal development, lo- The roads analyzed in the study (Table 2) are important, both cated between the Kanuni Park (Turkish–Hungarian Friendship for the city of Trabzon, its residents, and intercity passengers. Park) and the Beşirli district in urban center. It is 9 km long with These roads also determine the direction of urban develop- an average width of 250 m, and it runs parallel to the Samsun– ment and physical growth. Thus, the planting designs in these Sarp highway. The Trabzon coastal development, which is a roads, which constitute the visible urban image, were analyzed reclaimed land to improve the coastal urban occupation, was built in 2007. The road has three lanes in each direction. The northern section of the road is limited by the Black Sea and hik- ing and bike trails and green spaces, and the south is limited by green spaces, residences, and commercial buildings. A total of 109 plant taxa in 76 genera were identified (Figure 1). The Trabzon–Akçaabat Highway is the oldest street in the city that provides both urban and intercity transportation. Only one section of this road was studied in the present study. This road has also been a reference for the physical development of the Trabzon city. The road connects the urban center of Trabzon and Akçaabat, and the distance between these settlements is 45 km. The line width varies between 4 m and 8 m, and there are two lanes on each direction. The highway runs in the east–west di- rection, and is surrounded by several functional spaces. A total of 83 plant taxa in 64 genera were identified (Figure 2). The road runs parallel to the Black Sea in southern Trabzon, and it is located between the Beşirli neigborhood Efendi Street and the Değirmendere Liman neighborhood.
Recommended publications
  • Antimicrobial and Antioxidant Activity of the Leaves, Bark and Stems of Liquidambar Styraciflua L
    Int.J.Curr.Microbiol.App.Sci (2016) 5(1): 306-317 ISSN: 2319-7706 Volume 5 Number 1(2016) pp. 306-317 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.501.029 Antimicrobial and Antioxidant Activity of the Leaves, Bark and Stems of Liquidambar styraciflua L. (Altingiaceae) Graziele Francine Franco Mancarz1*, Ana Carolina Pareja Lobo1, Mariah Brandalise Baril1, Francisco de Assis Franco2 and Tomoe Nakashima1 1Pharmaceutical ScienceDepartment, Universidade Federal do Paraná, Curitiba, PR, Brazil 2Coodetec Desenvolvimento, Produção e Comercialização Agrícola Ltda, Cascavel, PR, Brazil *Corresponding author A B S T R A C T K e y w o r d s The genus Liquidambar L. is the best-known genus of the Altingiaceae Horan family, and species of this genus have long been used for the Liquidambar treatment of various diseases. Liquidambar styraciflua L., which is styraciflua, popularly known as sweet gum or alligator tree, is an aromatic deciduous antioxidant tree with leaves with 5-7 acute lobes and branched stems. In the present activity, study, we investigated the antimicrobial and antioxidant activity of aerial antimicrobial parts of L.styraciflua. Antimicrobial activity was evaluated using the activity, microdilution methodology. The DPPH and phosphomolybdenum methods microdilution method, were used to assess the antioxidant capacity of the samples. The extracts DPPH assay showed moderate or weak antimicrobial activity. The essential oil had the lowest MIC values and exhibited bactericidal action against Escherichia Article Info coli, Enterobacter aerogenes and Staphylococcus aureus. The ethyl acetate fraction and the butanol fraction from the bark and stem showed the best Accepted: antioxidant activity.
    [Show full text]
  • What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
    Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit.
    [Show full text]
  • Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews
    Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews With contributions from Anne Boscawen (UK), John Bulmer (UK), Koen Camelbeke (Belgium), John Gammon (UK), Hugh Glen (South Africa), Philippe de Spoelberch (Belgium), Dick van Hoey Smith (The Netherlands), Robert Vernon (UK) and Ulrich Würth (Germany). Affinities, generic distribution and fossil record Liquidambar L. has close taxonomic affinities with Altingia Noronha since these two genera share gum ducts associated with vascular bundles, terminal buds enclosed within numerous bud scales, spirally arranged stipulate leaves, poly- porate (with several pore-like apertures) pollen grains, condensed bisexual inflorescences, perfect or imperfect flowers, and winged seeds. Not surpris- ingly, Liquidambar, Altingia and Semiliquidambar H.T. Chang have now been placed in the Altingiaceae, as originally treated (Blume 1828, Wilson 1905, Chang 1964, Melikan 1973, Li et al. 1988, Zhou & Jiang 1990, Wang 1992, Qui et al. 1998, APG 1998, Judd et al. 1999, Shi et al. 2001 and V. Savolainen pers. comm.). These three genera were placed in the subfamily Altingioideae in Hamamelidaceae (Reinsch 1890, Chang 1979, Cronquist 1981, Bogle 1986, Endress 1989) or the Liquidambaroideae (Harms 1930). Shi et al. (2001) noted that Altingia species are evergreen with entire, unlobed leaves; Liquidambar is deciduous with 3-5 or 7-lobed leaves; while Semiliquidambar is evergreen or deciduous, with trilobed, simple or one-lobed leaves. Cytological studies have indicated that the chromosome number of Liquidambar is 2n = 30, 32 (Anderson & Sax 1935, Pizzolongo 1958, Santamour 1972, Goldblatt & Endress 1977). Ferguson (1989) stated that this chromosome number distinguished Liquidambar from the rest of the Hamamelidaceae with their chromosome numbers of 2n = 16, 24, 36, 48, 64 and 72.
    [Show full text]
  • Phylogeographical Structure of Liquidambar Formosana Hance Revealed by Chloroplast Phylogeography and Species Distribution Models
    Article Phylogeographical Structure of Liquidambar formosana Hance Revealed by Chloroplast Phylogeography and Species Distribution Models 1,2, 1, 1 2 1 1, Rongxi Sun y , Furong Lin y, Ping Huang , Xuemin Ye , Jiuxin Lai and Yongqi Zheng * 1 State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; [email protected] (R.S.); [email protected] (F.L.); [email protected] (P.H.); [email protected] (J.L.) 2 Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6288-8565 These authors contributed equally to this work. y Received: 2 September 2019; Accepted: 29 September 2019; Published: 1 October 2019 Abstract: To understand the origin and evolutionary history, and the geographical and historical causes for the formation of the current distribution pattern of Lquidambar formosana Hance, we investigated the phylogeography by using chloroplasts DNA (cpDNA) non-coding sequences and species distribution models (SDM). Four cpDNA intergenic spacer regions were amplified and sequenced for 251 individuals from 25 populations covering most of its geographical range in China. A total of 20 haplotypes were recovered. The species had a high level of chloroplast genetic variation (Ht = 0.909 0.0192) and a significant phylogeographical structure (genetic differentiation takes into ± account distances among haplotypes (Nst) = 0.730 > population differentiation that does not consider distances among haplotypes (Gst) = 0.645; p < 0.05), whereas the genetic variation within populations (Hs = 0.323 0.0553) was low.
    [Show full text]
  • Plant Biodiversity of Urban Roadside Trees in Antalya, Turkey
    Kastamonu Uni., Orman Fakültesi Dergisi, 2017,17 (1): 80-87 Research Article Kastamonu Univ., Journal of Forestry Faculty Doi: 10.17475/kastorman.296501 Plant Biodiversity of Urban Roadside Trees in Antalya, Turkey Songül SEVER MUTLU1, Ceren SELİM1*, Gülçin ÜN1 1Akdeniz University, Faculty of Agriculture, Landscape Architecture Department, Antalya, Turkey *Corresponding Author: [email protected] Received Date: 25.08.2016 Accepted Date: 23.01.2017 Abstract: Planting trees in urban areas has a number of environmental, social and ecological benefits, and roadside trees are an integral part of urban green space. Having a broad diversity of trees in urban roadsides can guard against the possibility of large-scale devastation by both native and introduced insect and disease pests. Urban foresters and municipal arborists are advised to follow guidelines for tree diversity within their areas of jurisdiction: (1) plant no more than 10% of any species, (2) no more than 20 % of any genus, and (3) no more than 30 % of any family. The aim of the study was to assess biological diversity on the five major urban roadsides (Atatürk Boulevard, Yüzüncüyıl Boulevard, Hürriyet Street, Serik Street, Palmiye Street). The species are identified and counted. Face to face interviews were carried out with landscape architects/municipal arborists to understand decision making process on selecting and deciding the species to be planted. Results showed that three species and one genus do not fit to the expected ratio. Municipals lacked an inventory list and a biodiversity scale for planning and planting in ratios necessary to keep a diverse biological environment. Based on the shortcomings, we would recommend to establish an inventory to do more informed decision first, and plan new plantings in a way that would increase biodiversity in species and genus level.
    [Show full text]
  • Coleoptera: Cerambycidae) for Anatolian Fauna from a New Host Plant, Liquidambar Orientalis Miller (Hamamelidaceae)
    _____________Mun. Ent. Zool. Vol. 5, No. 1, January 2010__________ 131 A SYNOPSIS ON THE GENUS RHAMNUSIUM LATREILLE, 1829 WITH A NEW RECORD (COLEOPTERA: CERAMBYCIDAE) FOR ANATOLIAN FAUNA FROM A NEW HOST PLANT, LIQUIDAMBAR ORIENTALIS MILLER (HAMAMELIDACEAE) Hüseyin Cebeci* and Hüseyin Özdikmen** * İstanbul Üniversity, Faculty of Forestry, Department of Forest Entomology and Protection 34473 Sarıyer, İstanbul / TURKEY. E-mail: [email protected] ** Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara / Türkiye. E- mails: [email protected] [Cebeci, H. & Özdikmen, H. 2010. A synopsis on the genus Rhamnusium Latreille, 1829 with a new record (Coleoptera: Cerambycidae) for Anatolian fauna from a new host plant, Liquidambar orientalis Miller (Hamamelidaceae). Munis Entomology & Zoology 5 (1): 131- 139] ABSTRACT: All taxa of the genus Rhamnusium Latreille, 1829 in the world and Turkey are evaluated. These taxa are also discussed in detail here with some taxonomical, faunistical, zoogeogrephical and biological remarks. A longicorn beetle, Rhamnusium bicolor (Schrank, 1781), presented for the first time for Anatolian fauna from a new host plant, Liquidambar orientalis Miller (Hamamelidaceae). A short identification key of Rhamnusium species is also given in the text. KEY WORDS: Coleoptera, Cerambycidae, Rhamnusium, Turkey, Liquidambar orientalis. First of all, the genus Rhamnusium Latreille, 1829 has a classification problem on tribal rank. Traditionally, it was placed by authors in the tribe Rhagiini Kirby, 1837. Vives (2000) separated the genera Rhamnusium Latreille, 1829 and Rhagium Fabricius, 1775 from other Rhagiini and he grouped the others in the tribe Toxotini Mulsant, 1839. However, the genus Rhamnusium was given by Althoff and Danilevsky (1997) under the tribal name Rhamnusiini Danilevsky, 1997 firstly.
    [Show full text]
  • Sweetgum in New York City
    New York City EcoFlora Liquidambar styraciflua L. American Sweetgum Description: Tree to about 35 m tall with a conical or broad crown; bark thick, dark brown, rough and platy; twigs corky. Leaves simple, alternate, deciduous, on long petioles; blades palmately 5-lobed (rarely 7-lobed), to about 15 cm wide, the margins finely serrate. Flowers monoecious, staminate inflorescences 5–10 cm long; carpellate flowers numerous in globose heads. Fruit tightly packed capsules, becoming woody, 3–4 cm diam, the two styles hard and sharp-pointed. Seeds 1–2 per capsule, winged, about 3 mm long, Where Found: Connecticut and New York, through much of the southeast to east Texas, also in the mountains of Mexico, Guatemala, Honudras and Nicaragua; bottomlands. In New York City, naturally occurring American Sweetgum often occur as colonies on rich floodplains, but may also be a pioneer species in diverse conditions. They frequently cultivated in streets, parks and gardens. The species is ranked 6 out of 10 in habitat specificity (0 being the least specific) by the New York Natural Heritage Program. Natural History: The trees are a critical resource for numerous organisms, from fungi to large mammals. American Sweetgums are a larval food source for Luna Moths and thirty-five other caterpillars; Beavers, Mice and Rabbits eat the bark; Deer browse the foliage; Squirrels, Chipmunks and at least twenty-five species of birds eat the seeds. Seed cavities inside the fruit harbor insects that are consumed by hungry birds in winter. Cultural History: Just before his death in 1804, the founding father Alexandar Hamilton planted thirteen Sweetgum trees at the Grange, his estate in Harlem, New York.
    [Show full text]
  • SıÄÿla Kitabä± Ä°Ngilizce.Indd
    ENVIRONMENTAL PROTECTION AGENCY FOR SPECIAL AREAS ANATOLIAN SWEET GUM TREE (LIQUIDAMBAR ORIENTALIS Miller) Authors Prof.Dr.Osman Ketenoðu and Assoc.Prof.Dr.Latif Kurt Univ. of Ankara, Faculty of Science, Dept. of Biology, Staff of Ecology and Environmental Biology Subdivision, Tandoðan/Ankara SCIENTIFIC COMMITTEE OF AGRICULTURAL DEVELOPMENT FOUNDATION Prof.Dr.Osman Ketenoðu Univ. of Ankara, Faculty of Science, Dept. of Biology, Staff of Ecology and Environmental Biology Subdivision Associate Professor Dr. Latif Kurt Univ. of Ankara, Faculty of Science, Dept. of Biology, Staff of Ecology and Environmental Biology Subdivision Forest Engineer (MSc) Ýrfan Reis Retired ENVIRONMENTAL PROTECTION AGENCY FOR SPECIAL AREAS Þ.Önder Kýraç President of EPASA Ahmet ÖZYANIK Vice-president of the Agency Mehmet Menengiç Head of Departments of Environmental Protection & Research Ümit Turan The Protection Branch Manager Aynur Hatipoðlu Project Coordinator Print: Pozitif Matbaa - +90 312 397 00 31 Çamlıca Mah. 12. Sk. No: 10/16 Yenimahalle / Ankara / Turkey PREFACE Environmental Protection Agency for Special Areas undertakes the task and responsibility of setting up the areas in which the nature and biological diversity can breath and diminishing the negative effects on the nature in order to provide continuity of life and biological diversity. Support and cooperation of organizations, institutions and individuals are the most important factors in performing this task and responsibility. I believe that the book is going to provide a significant contribution to expand the “Sweet Gum Conservation Action Plan” which we initiated in Köyceðiz-Dalyan, the special protected area intending to protect Anatolian Sweet Gum, the eigenvalue of our country and one of the important plant gene resource, to national scale and turn it into “National Sweet Gum Conservation Action Plan”.
    [Show full text]
  • Loaded Nanofibers by Electrospinning
    DEVELOPMENT OF NATURAL COMPOUND- LOADED NANOFIBERS BY ELECTROSPINNING A Thesis Submitted to The Graduate School of Engineering and Sciences of İzmir Institute of Technology In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Biotechnology by Ali Bora BALTA July 2010 İZMİR ACKNOWLEDGEMENTS This study was carried out at the Department of Biotechnology and Bioengineering, Izmir Institute of Technology during the years 2008-2010. First of all, I would like to express my sincere gratitude to my advisor, Assoc. Prof. Dr. Oğuz Bayraktar for his supervision, guidance, support, encouragement and endless optimism during my studies. His wide knowledge and logical way of thinking have been great value for me. I wish to give my warm and sincere thanks to my co-advisor Assist. Prof. Dr. Güldemet Başal for her suggestions and advices during my studies. Also, I would like to give my special thaks to her supports and providing me excellent facilities for the experimental setup. I warmly thank to commitee members of my thesis, Assoc. Prof Dr. Figen Korel and Assist. Prof. Dr. Ayşegül Batıgün for their suggestions and evaluations on my study. I express my special thanks to research assistant Evren Altıok for his help and suggestions in my analysis and experiments. I also thank to him for sharing the valuable informations about experimental procedures. I would like to thank my dear and sincere friend Alihan Karakaya for his unfailing encouragement, supports and friendship during my study. I also thank to him for helping me during prolonged experiments. I thank to my dear friends Ali Emrah Çetin, Duygu Altıok, Zelal Polat, Çisem Bulut and all others for their supports and friendships.
    [Show full text]
  • Western Taurus Wildlife Tour Report 2013 Autumn
    Western Taurus Autumn Bulbs A Greentours Tour Report 3rd– 11th November 2013 Led by Başak Gardner The following report is of a similar trip to the one we’ll run in 2020. Many of the same sites will be visited though not those in the Akseki area and we have found a number of news ones particularly in the Kas area hence the new itinerary differs significantly from the one below. Day 1 Nov 3rd Sunday To Side My guests arrived late at the Antalya Airport and we directly drove to Side and settled in to the hotel. Day 2 Nov 2st Monday Akseki Road A very nicely located restaurant right by the sea so we all enjoyed our breakfast. We drove gradually getting higher and found our first location and bulbs. Two crocus species that look similar but can easily be distinguished by their style and anthers were Crocus asumaniae (3-divided red style and yellow anthers) and Crocus cancellatus ssp. lycius (many- divided style and white anthers). You could easily spot the Biarum pyrami from the scent! Shortly after this spot we were on an old mule track looking and photographing Cyclamen cilicicum. We also examined some trees like Juniperus oxycedrus, Juniperus excelsa and fantastic huge fruited Juniperus drupacea. As we get higher the trees started to change from Pinus brutia to Pinus nigra, Cedrus libani and Abies cilicica. Having done this tour many times before I was so confident about remembering the spots but we ended up much further than where we supposed to be. It was already lunch time so we decided to have lunch and discover the area before we go back and found the locations.
    [Show full text]
  • Plants Resistant Or Susceptible to Armillaria Mellea, the Oak Root Fungus
    Plants Resistant or Susceptible to Armillaria mellea, The Oak Root Fungus Robert D. Raabe Department of Environmental Science and Management University of California , Berkeley Armillaria mellea is a common disease producing fungus found in much of California . It commonly occurs naturally in roots of oaks but does not damage them unless they are weakened by other factors. When oaks are cut down, the fungus moves through the dead wood more rapidly than through living wood and can exist in old roots for many years. It also does this in roots of other infected trees. Infection takes place by roots of susceptible plants coming in contact with roots in which the fungus is active. Some plants are naturally susceptible to being invaded by the fungus. Many plants are resistant to the fungus and though the fungus may infect them, little damage occurs. Such plants, however, if they are weakened in any way may become susceptible and the fungus may kill them. The plants listed here are divided into three groups. Those listed as resistant are rarely damaged by the fungus. Those listed as moderately resistant frequently become infected but rarely are killed by the fungus. Those listed as susceptible are severely infected and usually are killed by the fungus. The fungus is variable in its ability to infect plants and to damage them. Thus in some areas where the fungus occurs, more plant species may be killed than in areas where other strains of the fungus occur. The list is composed of two parts. In Part A, the plants were tested in two ways.
    [Show full text]
  • Systematics of the Hamamelidaceae Based on Morphological and Molecular Evidence Jianhua Li University of New Hampshire, Durham
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 1997 Systematics of the Hamamelidaceae based on morphological and molecular evidence Jianhua Li University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Li, Jianhua, "Systematics of the Hamamelidaceae based on morphological and molecular evidence" (1997). Doctoral Dissertations. 1997. https://scholars.unh.edu/dissertation/1997 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. f INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]