National Coastal Condition Assessment 2015 Quality Assurance Project Plan Version 2.1 May 2016 Page 1 of 134

Total Page:16

File Type:pdf, Size:1020Kb

National Coastal Condition Assessment 2015 Quality Assurance Project Plan Version 2.1 May 2016 Page 1 of 134 National Coastal Condition Assessment 2015 Quality Assurance Project Plan Version 2.1 May 2016 Page 1 of 134 United States Environmental Protection Agency Office of Water Office of Environmental Information Washington, DC EPA No. 841-R-14-005 National Coastal Condition Assessment 2015 Quality Assurance Project Plan Version 2.1 May 2016 National Coastal Condition Assessment 2015 Quality Assurance Project Plan Version 2.1 May 2016 Page 2 of 134 National Coastal Condition Assessment 2015 Quality Assurance Project Plan Version 2.1 May 2016 Page 3 of 134 QUALITY ASSURANCE PROJECT PLAN REVIEW & DISTRIBUTION ACKNOWLEDGMENT AND COMMITMENT TO IMPLEMENT for National Coastal Condition Assessment 2015 I/We have read the QAPP and the methods manuals for the National Coastal Condition Assessment listed below. Our agency/organization agrees to abide by its requirements for work performed under the National Coastal Condition Assessment. Please check the appropriate documents. Quality Assurance Project Plan □ Field Operations Manual □ Site Evaluation Guidelines □ Laboratory Methods Manual □ Field Crew leads: I also certify that I attended an NCCA 2015 training and that all members of my crew have received training in NCCA protocols □ Print Name Title (Cooperator’s Principal Investigator) Organization Signature Date Field Crews: Please return the signed original to the Logistics Contractor. The Logistics Contractor will ensure all parties have signed the QA forms, compile them and submit to the EPA Project QA Coordinator. Send your forms to: Chris Turner, Great Lakes Environmental Center, Inc.; 739 Hastings Street; Traverse City, MI 49686. [email protected] Labs and others: Please return the signed original to Kendra Forde who will ensure all parties have signed the QA forms, compile them, and submit them to the EPA QA Coordinator. Send your forms to: Kendra Forde, US EPA; 1200 Pennsylvania Ave, NW (4503T); Washington, DC 20460. [email protected] Retain a copy for your files. National Coastal Condition Assessment 2015 Quality Assurance Project Plan Version 2.1 May 2016 Page 4 of 134 Notices The National Coastal Condition Assessment (NCCA) 2015 Quality Assurance Project Plan (QAPP) and related documents are based on the previous Environmental Monitoring and Assessment Program’s (EMAP) National Coastal Assessment (NCA) conducted in 2001 – 2004 as well as the National Coastal Condtion Assessment 2010. The complete documentation of overall NCCA project management, design, methods, and standards is contained in four companion documents, including: • National Coastal Condition Assessment: Quality Assurance Project Plan (EPA 841-R-14-005) • National Coastal Condition Assessment: Field Operations Manual (EPA 841-R-14-007) • National Coastal Condition Assessment: Laboratory Methods Manual (EPA 841-R-14-008) • National Coastal Condition Assessment: Site Evaluation Guidelines (EPA 841-R-14-006) This document (QAPP) contains elements of the overall project management, data quality objectives, measurement and data acquisition, and information management for the NCCA 2015. Methods described in this document are to be used specifically in work relating to the NCCA 2015 and related projects. All Project Cooperators should follow these guidelines. Mention of trade names or commercial products in this document does not constitute endorsement or recommendation for use. More details on specific methods for site evaluation, field sampling, and laboratory processing can be found in the appropriate companion document(s). The citation for this document is: U.S. EPA. National Coastal Condition Assessment Quality Assurance Project Plan. United States Environmental Protection Agency, Office of Water, Office of Wetlands, Oceans and Watersheds. Washington, D.C. EPA 841-R-14-005. 2014. National Coastal Condition Assessment 2015 Quality Assurance Project Plan Version 2.1 May 2016 Page 6 of 134 Table of Contents Notices ........................................................................................................................... 4 Approval Page ............................................................................................................... 5 Table of Contents .......................................................................................................... 6 Acronyms ..................................................................................................................... 15 NCCA Executive Summary ......................................................................................... 17 Distribution List ........................................................................................................... 20 Project Planning and Management ............................................................................ 22 1.1 Introduction ........................................................................................................22 1.2 Scope of the Quality Assurance Project Plan .....................................................23 1.3 Project Organization ..........................................................................................23 1.4 Project Design ...................................................................................................28 1.5 Project Schedule ................................................................................................30 1.6 Overview of Field Operations .............................................................................30 1.7 Overview of Laboratory Operations ....................................................................34 1.8 Data Analysis .....................................................................................................36 1.9 Peer Review ......................................................................................................36 2.0 Data Quality Objectives ................................................................................... 37 2.1 Data Quality Objectives for the National Coastal Condition Assessment ............38 2.2 Measurement Quality Objectives .......................................................................38 2.2.1 Method Detection Limits (Laboratory Reporting Level (Sensitivity)) ...........38 2.2.2 Sampling Precision and Bias .....................................................................39 2.2.3 Sampling Accuracy ...................................................................................41 2.2.4 Taxonomic Precision and Accuracy ..........................................................42 2.2.5 Completeness ...........................................................................................43 2.2.6 Comparability ............................................................................................43 2.2.7 Representativeness ..................................................................................44 3. Site Selection Design ....................................................................................... 44 3.1. Probability Based Sampling Design and Site Selection ......................................44 3.2. Survey Design for the Marine Waters .................................................................45 3.3. Survey Design for the Great Lakes ....................................................................45 3.4 Revisit Sites .............................................................................................................46 National Coastal Condition Assessment 2015 Quality Assurance Project Plan Version 2.1 May 2016 Page 7 of 134 4.0 Information Management ................................................................................. 46 4.1 Roles and Responsibilities .................................................................................46 4.2 State-Based Data Management .........................................................................49 4.3 Overview of System Structure ............................................................................50 4.3.1 Data Flow Conceptual Model .................................................................51 4.3.2 Simplified Data Flow Description ...........................................................51 4.4 Core Information Management Standards .........................................................53 4.5 Data Formats .....................................................................................................53 Public Accessibility .............................................................................................54 4.6 Data Transfer Protocols .....................................................................................55 4.7 Data Quality and Results Validation ...................................................................56 4.7.1 Data Entry, Scanned, or Transferred Data .............................................56 4.7.2 Analytical Results Validation ..................................................................57 4.7.3 Database Changes ...................................................................................58 4.8 Metadata ............................................................................................................58 4.9 Information Management Operations .................................................................58 4.9.1 Computing Infrastructure .......................................................................58 4.9.2 Data Security and Accessibility .................................................................58 4.9.3 Life Cycle ..................................................................................................59
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Cyanobacterial Peptide Toxins
    CYANOBACTERIAL PEPTIDE TOXINS CYANOBACTERIAL PEPTIDE TOXINS 1. Exposure data 1.1 Introduction Cyanobacteria, also known as blue-green algae, are widely distributed in fresh, brackish and marine environments, in soil and on moist surfaces. They are an ancient group of prokaryotic organisms that are found all over the world in environments as diverse as Antarctic soils and volcanic hot springs, often where no other vegetation can exist (Knoll, 2008). Cyanobacteria are considered to be the organisms responsible for the early accumulation of oxygen in the earth’s atmosphere (Knoll, 2008). The name ‘blue- green’ algae derives from the fact that these organisms contain a specific pigment, phycocyanin, which gives many species a slightly blue-green appearance. Cyanobacterial metabolites can be lethally toxic to wildlife, domestic livestock and even humans. Cyanotoxins fall into three broad groups of chemical structure: cyclic peptides, alkaloids and lipopolysaccharides. Table 1.1 gives an overview of the specific toxic substances within these broad groups that are produced by different genera of cyanobacteria together, with their primary target organs in mammals. However, not all cyanobacterial blooms are toxic and neither are all strains within one species. Toxic and non-toxic strains show no predictable difference in appearance and, therefore, physicochemical, biochemical and biological methods are essential for the detection of cyanobacterial toxins. The most frequently reported cyanobacterial toxins are cyclic heptapeptide toxins known as microcystins which can be isolated from several species of the freshwater genera Microcystis , Planktothrix ( Oscillatoria ), Anabaena and Nostoc . More than 70 structural variants of microcystins are known. A structurally very similar class of cyanobacterial toxins is nodularins ( < 10 structural variants), which are cyclic pentapeptide hepatotoxins that are found in the brackish-water cyanobacterium Nodularia .
    [Show full text]
  • Identification of the Toxic Pentapeptide Nodularin in A
    A tica nal eu yt c ic a a m A r a c t h a P Pacheco et al., Pharm Anal Acta 2016, 7:5 Pharmaceutica Analytica Acta DOI: 10.4172/2153-2435.1000479 ISSN: 2153-2435 Research Article Open Access Identification of the Toxic Pentapeptide Nodularin in a Cyanobacterial Bloom in a Shrimp Farm in South American Atlantic Coast Pacheco LA1,3, Kunrath N1, Costa CM1,4, Costa LDF1, Foes GK2, Wasielesky W2 and Yunes JS1* 1Laboratory of Cyanobacteria and Phycotoxins, Institute of Oceanography, Federal University of Rio Grande, RS, Brazil 2Aquaculture Marine Station (EMA), Institute of Oceanography, Federal University of Rio Grande, RS, Brazil 3Post Graduate Program in Physical, Chemical and Geological Oceanography , Institute of Oceanography, Federal University of Rio Grande, RS, Brazil 4Post Graduate Program in Aquaculture, Institute of Oceanography, Federal University of Rio Grande, RS, Brazil *Corresponding author: Yunes JS, Laboratório de Cianobactérias e Ficotoxinas, IOFURG, Universidade Federal do Rio Grande, 96.203-270 - Rio Grande, RS, Brazil, Tel: +55 53 32336737; E-mail: [email protected] Received date: Apr 28, 2016; Accepted date: May 23, 2016; Published date: May 25, 2016 Copyright: © 2016 Pacheco LA et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Since 2010, blooms of the brackish cyanobacteria Nodularia spumigena are recurrent in the shrimp growth tanks of the Marine Aquaculture Station during summer in Southern Brazil. Cyanobacterial growth led to a decrease in the white shrimp Litopenaeus vannamei productivity.
    [Show full text]
  • Cyanobacteria 101 (And Why You Need to Know More)
    Cyanobacteria 101 (and why you need to know more) Barry H. Rosen, Ph. D. Office of the Southeast Regional Director (CFLWSC) Orlando, FL [email protected] 407-803-5508 algae algae 32 million cyanobacteria cyanobacteria 2.9 million HABs 372 K HABs microcystin 314 K saxitoxin 195 K microcystin paralytic 143 K amnesic 56 K saxitoxin cyanotoxins 48 K *paralytic shellfish poisoning (PSP) amnesic shellfish poisoning (ASP) cyanotoxins *coastal & marine Cyanobacteria (aka blue- green algae; cyanoHABs) •gram negative bacteria •pigments in thylakoids WhereWhere are cyanobacteriaare they a problem? a problem? Lakes, reservoirs, rivers, streams, wetlands Estuaries and coastal systems Marine systems CyanoHABs NOAA, OSU, SeaGrant Why are we concerned about cyanoHABs? Toxicity Hypoxia Taste and odors Aesthetics So why do we care about them? Some produce cyanobacteria toxins Cyanotoxins Hepatotoxins Disrupt proteins that keep microcystin (90+ variants) the liver functioning, may nodularin act slowly (days to weeks) cylindrospermopsin Neurotoxins anatoxin -a Cause rapid paralysis of anatoxin -a (s) skeletal and respiratory saxitoxin muscles (minutes) neosaxitoxin Dermatotoxins lyngbyatoxin Produce rashes and other skin reactions, usually within a day (hours) b-N-methylamino-L-alanine BMAA Neurological: linked to ALS Cyanotoxins are highly potent Compounds & LD50 (ug/kg) Saxitoxin 9 Ricin 0.02 Anatoxin-a(s) 20 Cobra toxin 20 Microcystin LR 50 Curare 500 Anatoxin-a 200-250 Strychnine 2000 Nodularin 50 Cylindrospermopsins 200 How common are toxic blooms?
    [Show full text]
  • The Neurotoxin Β-N-Methylamino-L-Alanine (BMAA)
    The neurotoxin β-N-methylamino-L-alanine (BMAA) Sources, bioaccumulation and extraction procedures Sandra Ferreira Lage ©Sandra Ferreira Lage, Stockholm University 2016 Cover image: Cyanobacteria, diatoms and dinoflagellates microscopic pictures taken by Sandra Ferreira Lage ISBN 978-91-7649-455-4 Printed in Sweden by Holmbergs, Malmö 2016 Distributor: Department of Ecology, Environment and Plant Sciences, Stockholm University “Sinto mais longe o passado, sinto a saudade mais perto.” Fernando Pessoa, 1914. Abstract β-methylamino-L-alanine (BMAA) is a neurotoxin linked to neurodegeneration, which is manifested in the devastating human diseases amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s disease. This neurotoxin is known to be produced by almost all tested species within the cyanobacterial phylum including free living as well as the symbiotic strains. The global distribution of the BMAA producers ranges from a terrestrial ecosystem on the Island of Guam in the Pacific Ocean to an aquatic ecosystem in Northern Europe, the Baltic Sea, where annually massive surface blooms occur. BMAA had been shown to accumulate in the Baltic Sea food web, with highest levels in the bottom dwelling fish-species as well as in mollusks. One of the aims of this thesis was to test the bottom-dwelling bioaccumulation hy- pothesis by using a larger number of samples allowing a statistical evaluation. Hence, a large set of fish individuals from the lake Finjasjön, were caught and the BMAA concentrations in different tissues were related to the season of catching, fish gender, total weight and species. The results reveal that fish total weight and fish species were positively correlated with BMAA concentration in the fish brain.
    [Show full text]
  • Occurrence of a Cyanobacterial Neurotoxin, Anatoxin-A, in New
    OCCURRENCE OF THE CYANOBACTERIAL NEUROTOXIN, ANATOXIN-A, IN NEW YORK STATE WATERS by Xingye Yang A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree State University of New York College of Environmental Science and Forestry Syracuse, New York January 2007 Approved: Faculty of Chemistry ---------------------------------------------- ------------------------------------------------ Gregory L. Boyer, Major Professor William Shields, Chairperson, Examination Committee ------------------------------------------------ ------------------------------------------------- John P. Hassett, Faculty Chair Dudley J. Raynal, Dean, Instruction and Graduate Studies UMI Number: 3290535 Copyright 2008 by Yang, Xingye All rights reserved. UMI Microform 3290535 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 Acknowledgements I would like to express my sincerest gratitude to Dr. Gregory L. Boyer, my major professor and academic advisor for his guidance, support, and assistance over the past years. He has provided me with invaluable knowledge and skills. I thank Dr. David J. Kieber for his advice and instrument support. I acknowledge Dr. John P. Hassett for his support on both my research and my career. I appreciate Dr. Francis X. Webster for his help on chemical characterization. I thank Dr. James P. Nakas for advice on my career development. Thanks are also due to Dr. William Shields for serving as chairman of this examination committee. I appreciate critical reviews and comments on the thesis from all the examiners on this committee. I would like to thank Dr. Israel Cabasso and Dr.
    [Show full text]
  • Diversity of Peptides Produced by Nodularia Spumigena from Various Geographical Regions
    Mar. Drugs 2013, 11, 1-19; doi:10.3390/md11010001 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Diversity of Peptides Produced by Nodularia spumigena from Various Geographical Regions Hanna Mazur-Marzec 1,*, Monika J. Kaczkowska 1, Agata Blaszczyk 1, Reyhan Akcaalan 2, Lisa Spoof 3 and Jussi Meriluoto 3 1 Department of Marine Biology and Ecology, University of Gdansk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland; E-Mails: [email protected] (M.J.K.); [email protected] (A.B.) 2 Faculty of Fisheries, Istanbul University, Ordu Cad. No. 200, 34470 Laleli, Istanbul, Turkey; E-Mail: [email protected] 3 Department of Biosciences, Abo Akademi University, Tykistök atu 6A, Turku 20520, Finland; E-Mails: [email protected] (L.S.); [email protected] (J.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-58-523-6621; Fax: +48-58-523-6712. Received: 12 October 2012; in revised form: 13 November 2012 / Accepted: 11 December 2012 / Published: 21 December 2012 Abstract: Cyanobacteria produce a great variety of non-ribosomal peptides. Among these compounds, both acute toxins and potential drug candidates have been reported. The profile of the peptides, as a stable and specific feature of an individual strain, can be used to discriminate cyanobacteria at sub-population levels. In our work, liquid chromatography-tandem mass spectrometry was used to elucidate the structures of non-ribosomal peptides produced by Nodularia spumigena from the Baltic Sea, the coastal waters of southern Australia and Lake Iznik in Turkey.
    [Show full text]
  • Running Head: CYANOBACTERIA, Β-METHYLAMINO-L-ALANINE
    Running head: CYANOBACTERIA, b-METHYLAMINO-L-ALANINE, AND NEURODEGENERATION Cyanobacteria, β-Methylamino-L-Alanine, and Neurodegeneration Jonathan Hunyadi Lourdes University CYANOBACTERIA, b-METHYLAMINO-L-ALANINE, AND NEURODEGENERATION 2 ABSTRACT Research has found a potential link between the non-proteinogenic amino acid b-methylamino-L-alanine (BMAA) and neurodegenerative diseases. First identified on the island of Guam with a rare form of amyotrophic lateral sclerosis (ALS) commonly called “Guam disease”, the source of BMAA was identified to be cyanobacteria. Due primarily to eutrophication, cyanobacteria can form large “algal blooms” within water bodies. A major concern during cyanobacterial blooms is the production of high concentrations of cyanotoxins such as BMAA. Cyanotoxin biosynthesis is dependent on the presence of specific genes as well as environmental regulating factors. Numerous techniques are capable of analyzing cyanobacteria and cyanotoxins which include: microscopy, pigment spectroscopy, polymerase chain reaction, microarrays, enzyme-linked immunosorbent assays, and liquid chromatography. Liquid chromatography is the primary technique used to analyze BMAA, however, there has been controversy regarding its detection within nervous tissue samples. While BMAAs role in neurodegeneration is unclear, dietary intake has been demonstrated to produce both b-amyloid plaques and tau tangles within Vervet monkeys, hallmarks of both Alzheimer’s disease and Guam disease. Two of the dominant hypothesized mechanisms of BMAA neurotoxicity are glutamate excitotoxicity, by which BMAA functions as a glutamate agonist causing endoplasmic reticulum stress and initiates a cascade leading to tau hyperphosphorylation, and protein incorporation, by which BMAA enters neurons and becomes mis-incorporated within proteins, leading to misfolding and aggregation. As a result of this research, alanine supplements have entered clinical trials for both Alzheimer’s disease and ALS to compete with BMAA in protein incorporation.
    [Show full text]
  • Cyanobacteria and Cyanotoxin Analysis and Testing Services [As of 3/15/2016]
    Cyanobacteria/Cyanotoxin Testing Services List Developed by the NEIWPCC HAB Workgroup (Northeast state health and environmental agency staff). The New England Interstate Water Pollution Control Commission is a non-profit organization established through an act of Congress in 1947. NEIWPCC strives to: coordinate activities and forums that encourage cooperation among the states; educate the public about key environmental issues; support research projects, train environmental professionals, and provide overall leadership in the management and protection of water quality. Cyanobacteria and Cyanotoxin Analysis and Testing Services [As of 3/15/2016] Disclaimer: Individuals and/or companies listed below have been identified as performing services related to cyanobacteria and cyanotoxin analysis. This should not be considered an endorsement by NEIWPCC or any state agency of their qualifications. Public Water Systems considering contracting with any individual or company should verify that they have the adequate training and are competent to perform the work for which they are being considered. Prices should be viewed as guidelines of what to expect for each lab, rather than final quotes – many offer discounts, e.g., for bulk samples. Academy of Natural Sciences – Phycology Section Patrick Center for Environmental Research 1900 Benjamin Franklin Parkway Philadelphia, PA 19103 Tel: (215) 299-1080 Fax: (215) 299-1079 Email General: [email protected] Email Don Charles: [email protected] Email Frank Acker (primary soft-algae taxonomist): [email protected] Services: Identification of algae and algal measurements/biovolume, cell counts, chlorophyll Pricing: (Can give estimate based on sample, and separate the phytoplankton and periphyton in terms of how they are processed) Semiquantitative count (relative abundance, five-point scale, rare to abundant) – $150-200 Algal identification (cell count, biovolume) – $440-550 Chlorophyll (fluorometer) – Call for cost Diatom count – $300 Aquatic Services, Wayne Carmichael, Ph.D.
    [Show full text]
  • Biosynthesis of Natural Products Containing Β-Amino Acids
    Natural Product Reports Biosynthesis of natural products containing β -amino acids Journal: Natural Product Reports Manuscript ID: NP-REV-01-2014-000007.R1 Article Type: Review Article Date Submitted by the Author: 21-Apr-2014 Complete List of Authors: Kudo, Fumitaka; Tokyo Institute Of Technology, Department of Chemistry Miyanaga, Akimasa; Tokyo Institute Of Technology, Department of Chemistry Eguchi, T; Tokyo Institute Of Technology, Department of Chemistry and Materials Science Page 1 of 20 Natural Product Reports NPR RSC Publishing REVIEW Biosynthesis of natural products containing βββ- amino acids Cite this: DOI: 10.1039/x0xx00000x Fumitaka Kudo, a Akimasa Miyanaga, a and Tadashi Eguchi *b Received 00th January 2014, We focus here on β-amino acids as components of complex natural products because the presence of β-amino acids Accepted 00th January 2014 produces structural diversity in natural products and provides characteristic architectures beyond that of ordinary DOI: 10.1039/x0xx00000x α-L-amino acids, thus generating significant and unique biological functions in nature. In this review, we first survey the known bioactive β-amino acid-containing natural products including nonribosomal peptides, www.rsc.org/ macrolactam polyketides, and nucleoside-β-amino acid hybrids. Next, the biosynthetic enzymes that form β-amino acids from α-amino acids and de novo synthesis of β-amino acids are summarized. Then, the mechanisms of β- amino acid incorporation into natural products are reviewed. Because it is anticipated that the rational swapping of the β-amino acid moieties with various side chains and stereochemistries by biosynthetic engineering should lead to the creation of novel architectures and bioactive compounds, the accumulation of knowledge regarding β- amino acid-containing natural product biosynthetic machinery could have a significant impact in this field.
    [Show full text]
  • Detection of Cyanotoxins, Β-N-Methylamino-L-Alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis
    Toxins 2015, 7, 322-336; doi:10.3390/toxins7020322 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Detection of Cyanotoxins, β-N-methylamino-L-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis Sandra Anne Banack 1, Tracie Caller 2,†, Patricia Henegan 3,†, James Haney 4,†, Amanda Murby 4, James S. Metcalf 1, James Powell 1, Paul Alan Cox 1 and Elijah Stommel 3,* 1 Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA; E-Mails: [email protected] (S.A.B.); [email protected] (J.S.M.); [email protected] (J.P.); [email protected] (P.A.C.) 2 Cheyenne Regional Medical Group, Cheyenne, WY 82001, USA; E-Mail: [email protected] 3 Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA; E-Mail: [email protected] 4 Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA; E-Mails: [email protected] (J.H.); [email protected] (A.M.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-603-650-8615; Fax: +1-603-650-6233. Academic Editor: Luis M. Botana Received: 19 November 2014 / Accepted: 21 January 2015 / Published: 29 January 2015 Abstract: A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam.
    [Show full text]
  • Cyanobacteria and Cyanotoxins: from Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects
    Toxins 2013, 5, 1896-1917; doi:10.3390/toxins5101896 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects Giliane Zanchett and Eduardo C. Oliveira-Filho * Universitary Center of Brasilia—UniCEUB—SEPN 707/907, Asa Norte, Brasília, CEP 70790-075, Brasília, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-61-3388-9894. Received: 11 August 2013; in revised form: 15 October 2013 / Accepted: 17 October 2013 / Published: 23 October 2013 Abstract: Cyanobacteria or blue-green algae are among the pioneer organisms of planet Earth. They developed an efficient photosynthetic capacity and played a significant role in the evolution of the early atmosphere. Essential for the development and evolution of species, they proliferate easily in aquatic environments, primarily due to human activities. Eutrophic environments are conducive to the appearance of cyanobacterial blooms that not only affect water quality, but also produce highly toxic metabolites. Poisoning and serious chronic effects in humans, such as cancer, have been described. On the other hand, many cyanobacterial genera have been studied for their toxins with anticancer potential in human cell lines, generating promising results for future research toward controlling human adenocarcinomas. This review presents the knowledge that has evolved on the topic of toxins produced by cyanobacteria, ranging from their negative impacts to their benefits. Keywords: cyanobacteria; proliferation; cyanotoxins; toxicity; cancer 1. Introduction Cyanobacteria or blue green algae are prokaryote photosynthetic organisms and feature among the pioneering organisms of planet Earth.
    [Show full text]