TRITICALE in California

Total Page:16

File Type:pdf, Size:1020Kb

TRITICALE in California TRITICALE in California J. P. GUSTAFSON C. 0. QUALSET J. D. PRATO Comparison of tall triticale (left) and rhort- Y. P. PURI W. H. ISOM W. F. LEHMAN statured wheat (center) at the Tulelake Field Station in northern California (see cover also). Triticale (a wheat-rye hybrid) must compete for acreage mainly with barley and wheat. Assuming no price differential among the cereal feed grains, the yields and production costs for triticale must be equivalent or more favorable before a substantial triticale production can be anticipated in California. The results pre- sented here indicate that, under most conditions, triticale does not yield better than other feed grains. Production costs are expected to be similar for triticale, barley, and wheat except in areas where more irrigations are required for late maturing triticale varieties. RITICALE has received considerable tests reported in CALIFORNIA AGRICUL- genetic sensitivity to day length. The attention as a new feed grain in Cal- TURE, September, 1969. These varieties long days required for heading are not ifornia.T Since 1968 the potential for us- proved unadapted for production in Cal- reached in California before high tem- ing triticale in grain production has ifornia. The grain yields obtained were peratures and inadequate moisture be- been investigated in several of the major about 50% of the yields of adapted come factors limiting production. How- feed grain production areas. The vari- wheat varieties. Similar results are ob- ever, additional factors affected the per- eties studied have spring growth habits tained when wheat varieties from north- formance of triticale, including genetic and were grown under conditions known ern latitudes of the U. S. and Canada instability for seed production resulting to be favorable for barley or wheat pro- are grown in California. in a high degree of sterility (empty duction. The first triticales studied in A major factor leading to the poor florets) in the spikes and partially 1968 were developed at the University of performance of the first triticale vari- shrunken grains. The shrunken grains Manitoba. Rosner, the first triticale vari- eties tested and of the northern wheats contributed to low test weight-about 50 ety released in Canada, was included in is late maturity, resulting mainly from lbs per bushel-compared with 58 to Single copies of there publications-oxcept Manuals CALIFORNIA AGRICULTURE and book-r a catalog of Agricultural Publications Progress Reports of Agricultural Research published monthly by the University of Cali: may be obtained without charge from the local office fomia Division of Agricultural Sciences. of the Form Advisor or by addressing a request to: New Agricultural Publications, University Hall, University William W. Paul . .Manager of California, Berkeley, California 94720. When order- Agricultural Publications ing sale items, pleass enclose payment. Make checks Jerry Lester . .Editor orUniversity money oforders California. payable to The Regents of the Eleanore Browning . .Aasbtant Editor I California Agriculture Publications Articles published herein may be republished or reprinted provided no advertisement for a OPERATIONAL AND COMPARI- orchard conditions. Although this publi- commercial product is implied or imprinted. ECONOMIC Please credit: University of California SON OF FORKLIFT AND TRAILER PALLET- cation is particularly concerned with Division of Agriqltural Sciences. UaZiforni4 ApricvZturC will be sent free upon BIN SYSTEMS WITH THE FIELD-BOX SYS- problems involving a lower-yield harvest, request addressed to: Editor Ualifornia AQrkUltUre, Agricultural Publi~ationsUni- TEM IN LEMON HARVESTING. Bul. 857. it should be valuable for improving har- versity of Cahfornia, Berkeley, Caliiornia vest efficiency of any tree erop. 94720. This bulletin analyzes the forklift and To simplify the information in Ualifornia Agriculturs it 18 sometimes necessary to use trailer pallet-bin systems and the conven- 1972 CROP WEED CONTROL RECOMMENDA- trade names Of products or equipment. No endorsement of named products is intended tional field-box system and compares their TIONS. University of California recom- nor is criticism jmplied of similar producta which are not mentioned, efficiency and economic feasibility. It pre- mendations for weed control in different sents criteria for getting the most effective crops. Includes application and safety 141 use from these systems under various suggestions. CALIFORNIA AGRICULTURE, FEBRUARY, 1972 3 lbs per bushel commonly found with Badger, and T-lines) . The evaluations tions. Mean yields for two experiments at wheat. Grain loss due to shattering was were conducted at University of Califor- Tulelake in 1969 and 1970 showed yields also noted. nia research facilities at Tulelake near exceeding 6,000 lbs per acre, approach- Through intensive research in plant the Oregon border (elevation 4,000 ft), ing the yield of the highest yielding breeding various public and private in- the Agronomy Farm at Davis in the Sac- wheat varieties. Wocus barley, widely stitutions have developed improved triti- ramento VaIley, the West Side Field Sta- grown for feed in the Tulelake Basin, cale varieties and made them available tion near Five Points in the San Joaquin produced higher yields than varieties of for wide-scale evaluation. These varieties, Valley, the Moreno Farm near River- common or durum wheat and triticale. along with Rosner and several other lines side, and at the Imperial Valley Field Average triticale yields at Five Points from Manitoba, have been included in Station, El Centro, near the Mexican were lower in comparison with wheat California regional performance nur- border. The tests were planted at Tule- than at other locations. This result was series for the three-year period, 1969-71. lake in April and in the winter at the obtained each year and may be due to All of the varieties tested are hexaploid other locations. The experiments were triticale’s susceptibility to the barley yel- types, recently given the scientific name replicated three to five times using plots low dwarf virus, or various root rot dis- Triticale hexaploide Lart. Hexaploid triti- 32 to 96 sq ft and standard field plot eases. cales are obtained by hybridizing tetra- techniques. The wheat varieties INIA 66, A severe frost occurred on April 29, ploid wheat with diploid rye followed by Siete Cerros 66, and Oviachic 65 (dur- 1970 at Riverside when some varieties doubling the chromosome number of the um) were included in all tests and Leeds were heading. Early-maturing varieties hybrid plants. Various triticales derived (durum) and Wocus barley were in- such as INIA 66 wheat and T-1324 triti- in this way have been intercrossed or cluded in 1969 and 1970 at Tulelake. cale, were the most severely damaged crossed with common (hexaploid) wheat. and grain yields were greatly reduced. Several generations of selection then re- Regional performance In most areas of California it is very sulted in some new varieties which were Grain yields obtained at each location dry and occasionally windy at harvest evaluated. in 1970 and 1971 are given in tables 1 time. These conditions can result in se- The triticale varieties tested were from and 2. The 1969 tests included mainly vere losses of grain by shattering. Three the University of Manitoba (UM-lines Manitoba lines and confirmed the obser- types of shattering have been observed and Rosner) , Jenkins Foundation for vations made in 1968 that yields were with triticale : loss of individual grains Research (JFR lines), International much lower than with the standard wheat from the head, breakage of the head Grains, Inc. (Graze Grain 70), and varieties. (brittle rachis) , and loss of whole heads CIMMYT, The International Maize and Triticale has performed relatively bet- (head snapping) . Those varieties having Wheat Improvement Center (Armadillo, ter at Tulelake than at the other loca- brittle rachis as observed in 1971 at TABLE 1. GRAIN YIELDS OF WHEAT AND TRlTlCALE AT FIVE TABLE 2. GRAIN YIELDS OF WHEAT, TRITICALE, AND RYE AT FIVE LOCATIONS LOCATIONS IN CALIFORNIA IN 1970 IN CALIFORNIA IN 1971 Variety Tulelake Davis Five Points Riverside El Centro Mean Variety Tulelake Davis css Riverside El Centro Mean Ibr per acre TRITICALE Ibr per acre TRlTlCALE JFR 6TA-204 7400 4940 3300 3130 3350 4420 JFR 6TA-419 5210 3710 4460 2590 5390 4270 JFR 6TA-204-33 7880 4880 2490 3030 3070 4270 JFR 6TA-204 5230 3970 3730 2320 5720 4190 JFR 6TA-418 7550 4380 2440 2730 2950 4010 JFR 6TA-205-21 5470 3960 3760 2290 5300 4160 JFR 6TA-209 6780 3430 2200 2180 41 00 3740 JFR 6TA-418 5270 3740 3450 1980 4620 3810 1-1324 4990 4660 3340 1010 3940 3590 JFR 6TA454 4780 3430 3840 2240 3180 3490 JFR 6TA-454 5350 4690 1320 3160 2930 3490 T-122 5400 3720 1660 2590 3320 3340 2240 2320 3990 3150 T-1501 4580 4700 3400 1570 3160 3480 Armadillo 1524 4150 3060 2310 2280 3440 3090 T-1524 7-1239 3890 3540 4350 4600 3620 1650 2840 3410 1-1324 4310 3360 2160 2980 2180 3000 1-1239 4560 4370 2760 1790 3500 3400 Armadillo 133 4720 3210 1790 1760 3420 2980 T-1247 4360 3360 2380 1500 2530 2830 T- 1524 4530 3230 2010 2210 2910 2980 T-1303 2900 3510 2080 1440 2200 2430 T-115 4490 2500 1420 2280 4050 2950 Rorner 5080 1990 1260 1180 1190 2140 Brcnco 90 4240 3400 2060 2350 2680 2950 T-1312 3270 2900 1430 1300 1680 2120 Rosner 3940 1800 1590 1190 3560 2400 T-1312 2880 2550 1710 1780 3090 2400 Badger 46 - 3650 3480 WHEAT Graze Grain 70 4510 - - Siete Cerror 66 7410 41 70 5390 3020 3050 4610 WHEAT INlA 66 6260 5930 6180 910 3250 4510
Recommended publications
  • SRP472 3 Comparison of Rye and Triticale As Forages for Grazing
    Selected Articles from 1985 Report of Agricultural Research Southeast Branch Experiment Station Agricultural Experiment Station Kansas State University 16 Comparison of Rye and Triticale as Forages for Grazing Stocker Cattle Winter annual small grains are frequently grazed during late fall and early spring in southeastern Kansas. Wheat is often the crop of choice, especially if grain production is the primary objective. If pasture is the main consideration, there are probably other small grains that will yield more forage and produce a greater quantity of beef cattle weight gain per acre than wheat. Research has been conducted at the Southeast Kansas Experiment Station to determine which winter annual small grains will result in maximum forage and beef production in a graze-out program. A study conducted in 1981-82 revealed that triticale produced nearly twice as much beef liveweight gain per acre as Newton wheat. Results from a 1982-83 study indicated that a mixture of 2/3 rye and 1/3 wheat produced over three times as much beef liveweight per acre as triticale. The following study was conducted to compare rye and triticale with respect to performance of grazing stocker cattle. Procedure: On September 19, 1983, two 5-acre fields were seeded with winter annuals. One field was seeded with 105 lb of triticale per acre and the other was seeded with 89 lb of Bonel rye per acre. At seeding time, 25-65-70 lb of N-P2O5-K2O per acre was applied and on November 14, 1984, 50 lb of N per acre was applied to each pasture.
    [Show full text]
  • Article on Genetic Markers for Bunt Resistance From
    Let’s make grain great again Click here to sign up for the newsletter The Landrace Newsletter no. 5 May 2021 A new growing season is ahead of us, and I greet the spring with news from both future and past from the organic grain sector. I wish you joyfull reading Anders Borgen Content in this newsletter Open field day and general assembly in Landsorten, Tuesday 22. June..............................................2 But now then, is it Landsorten or Agrologica, selling organic seed in future?...................................2 Mobile stone mill for local production................................................................................................3 Nordic grain festival 28th-30th October 2021 in Norway.....................................................................4 News from Agrologica science lab......................................................................................................4 Genetic markers for bunt resistance - news from LIVESEED-, Økosort-II and bunt projects......4 Acid rain and gluten-index..............................................................................................................4 Zanduri, Macha, and the hailstorm in Georgia...............................................................................6 Colchic emmer (Triticum paleochochicum)...............................................................................6 Emmer........................................................................................................................................7 Durum........................................................................................................................................7
    [Show full text]
  • 78 the Effects of Replacing Maize Silage by Triticale Whole Crop Silage
    The effects of replacing maize silage by triticale whole crop silage in a roughage mixture with grass silage on feed intake and milk production by dairy cows G. van Duinkerken1, R.L.G. Zom1 and E.J.B. Bleumer2 1Research Station for Cattle, Sheep and Horse Husbandry, PO Box 2176, 8203 AD, Lelystad, Netherlands 2Cranendonck, Experimental Farm, Cranendonck 11, 6027 RK, Soerendonk, Netherlands Introduction In the Netherlands, grass and forage maize are the most important fodder crops. However, on drought prone sandy soils, and in years with insufficient rainfall the yield of maize is very low (7 to 8 tons DM/ha). Therefore, sprinkle irrigation is often applied to overcome problems with drought. However, in some regions sprinkle irrigation is not possible because of a lack of suitable water or due to legislative restrictions on the use of water for irrigation. In situations where water is a limiting factor for growing maize, triticale may be an alternative fodder crop. Triticale grows mainly during the early spring when there usually is a precipitation surplus and so, water is not a limiting factor for growth. When triticale is harvested as triticale whole crop silage the DM yield ranges between 9 and 11 ton of dry matter per hectare. Therefore, under water limiting conditions it may be attractive to replace forage maize by triticale whole crop silage. The objective of this study is to obtain information about the effects of replacing maize silage by triticale whole crop silage on feed intake and milk production by dairy cows Materials and methods Two similar feeding trials were conducted in the winter season of 1996/1997 and 1997/1998 respectively.
    [Show full text]
  • Feeding Rye Or Triticale to Dairy Cattle
    Feeding Rye or Triticale to Dairy Cattle Liz Binversie | Agriculture Educator | Extension Brown County Matt Akins | Assistant Scientist and Extension Specialist | Marshfield Agriculture Research Station Kevin Shelley |Extension NPM Specialist | UW-Madison Dept. of Horticulture Randy Shaver | Emeritis professor | UW-Madison Dept. of Dairy Science Introduction Use of cereal grain forages, such as rye and triticale gains. However, some farms may not raise (hybrid of rye and wheat), has become an increasingly youngstock on site and will need to consider if they important topic, and is especially relevant during should incorporate cereal forages in the dry or years when feed inventory is short. However, it is not lactating cow diets, and if so, how much to feed. The without challenges. Timing can conflict with higher farm should assess its current feed inventory to priority tasks on the farm such as alfalfa harvest and determine cereal forage needs, which may be helpful corn planting in spring, and corn silage harvest and in determining the acreage that should be planted manure application in the fall. Therefore establishing and harvested. Estimated yield is about 1 to 2 tons of and harvesting rye or triticale can be a challenge. dry matter per acre, if harvested at boot stage for Achieving optimal quality for lactating cows can be optimal quality to feed to lactating cows. Some farms another issue because quality declines can happen may only want to grow enough to feed for part of the quickly. Farmers, and their nutritionists, have shared year, while others may prefer to have enough ryelage that they need data and guidance to make good inventory to feed all year round.
    [Show full text]
  • Exploiting the Genetic Diversity of Wild Ancestors and Relatives of Wheat for Its Improvement Jagdeep Singh Sidhu South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2018 Exploiting the Genetic Diversity of Wild Ancestors and Relatives of Wheat for its Improvement Jagdeep Singh Sidhu South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Plant Breeding and Genetics Commons Recommended Citation Sidhu, Jagdeep Singh, "Exploiting the Genetic Diversity of Wild Ancestors and Relatives of Wheat for its Improvement" (2018). Electronic Theses and Dissertations. 2641. https://openprairie.sdstate.edu/etd/2641 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. EXPLOITING THE GENETIC DIVERSITY OF WILD ANCESTORS AND RELATIVES OF WHEAT FOR ITS IMPROVEMENT BY JAGDEEP SINGH SIDHU A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2018 iii This thesis is dedicated to my respected father Mr. Amrik Singh Sidhu, mother Mrs. Harjit Kaur, my dear sister Sukhdeep Kaur and cute niece Samreet. iv ACKNOWLEDGEMENTS First of all, I am grateful to Dr. Sunish Sehgal for giving me an opportunity work in his winter breeding program. My master’s work would not have been possible without his love, help, support and encouragement. I truly respect Dr.
    [Show full text]
  • Triticale Forage Productivity and Use
    Excerpt from the Triticale Manual Print copies are available from [email protected] Triticale Production and Utilization Manual 2005 Spring and Winter Triticale for Grain, Forage and Value-added Alberta Agriculture, Food and Rural Development Part 4. Triticale for Forage Part 4. TRITICALE FOR FORAGE Triticale forage productivity and use Annual cereals can provide an excellent source of In these applications, forage triticale has much to supplementary forage, offering an extended offer in helping diversify Western Canadian grazing season and diversity in crop rotations cropping systems (Briggs, 2001; The Growth (Figure 4). Due to its superior silage yield Potential of Triticale in Western Canada). potential, triticale has proven to be very competitive with other cereals for yield and For detailed information on triticale forage quality. production, refer to the AgDex ‘Triticale Forage Manual’ (2005, in press). An advantage of growing winter triticale is its extension of early spring and late fall grazing. Figure 4. Seasonal distribution of pasture yields of annuals Fall seeded winter cereal 50 Barley 40 Spring seeded winter cereal 30 % of total annual Oats yield 20 10 0 Early Mid Late Mid Mid June June July August Sept (adapted from A. Aasen, Western Forage/Beef Group, Lacombe ) - 25 - Part 4. Triticale for Forage Triticale silage Winter triticale for silage Some quick facts about triticale silage production and quality: Fall-planted winter cereals such as triticale and rye provide a valuable source of forage when Spring triticale for silage spring grazed prior to being harvested for silage or seed. Rotating winter cereals with Spring triticale for silage is competitive with barley silage crops offers breaks for disease other silage options in Western Canada and in and pest control.
    [Show full text]
  • Evaluation of Triticale Grain in High Producing Dairy Cow Rations
    AN ABSTRACT OF THE THESIS OF Robert L. Biedenbach, Jr. for the degree of Master of Science in Animal Science presented on September 29, 1989. Title: Evaluation of Triticale Grain in High Producina Dairy Cow Rations Abstract approved by:Redacted for Privacy The objective of this study was to evaluate triticale grain fed as a concentrate in the diet of high producing dairy cows. A lactation study, in vitro dry matter digestibilities and a preliminary physiological effects trial were conducted to evaluate triticale and used to make feeding recommendations. In the lactation study, thirty-two multiparous Holstein cows were divided into two groups based on days in milk and initial milk production. A switchback design was employed. Diets were isocaloric, isonitrogenous, and isofibrous total mixed rations. Triticale replaced barley in the experimental ration. Daily feedings were recorded and orts were weighed back biweekly. No significant differences were noted in five day 4% fat corrected milk weights or daily average milk weight for triticale and control diets, 385.27 and 388.47 pounds, 77.05 and 77.69 pounds, respectively, when triticale replaced barley on an equal weight basis. Triticale supported a peak production for a five day period averaging 114.25 lbs. per day and the control ration a peak five day average production of 109.30 lbs. per day. No significant difference was noted in % milk protein as treatment means were 3.14 and 3.16% for triticale and the control ration. However, five day weights for protein production were significantly higher (P<.05) for animals fed the control TMR (13.09 lbs.) than the animals fed the triticale TMR (12.45 lbs.).
    [Show full text]
  • Genetic Variation, Heritability and Path-Analysis in Ethiopian Finger Millet [Eleusine Coracana (L.) Gaertn] Landraces
    Kasetsart J. (Nat. Sci.) 40 : 322 - 334 (2006) Genetic Variation, Heritability and Path-Analysis in Ethiopian Finger Millet [Eleusine coracana (L.) Gaertn] Landraces Kebere Bezaweletaw1, Prapa Sripichitt2*, Wasana Wongyai2 and Vipa Hongtrakul3 ABSTRACT A total of 66 finger millet accessions constituted of 64 landraces and two standard varieties were evaluated for 15 morpho-agronomic characters in randomized complete block design with three replications at Aresi-Negele Research Sub-Center in Ethiopia during 2004 main cropping season. The objectives were to assess the variability and association of characters. The mean squares of genotypes were highly significant for all characters. Relatively, grain yield per plant exhibiting the highest range (4.87-21.21g) and days to maturity showed the lowest range (143-200 days) of 336 and 40% where maximal values were greater than the corresponding minimal values, respectively. For all characters, the phenotypic and genotypic coefficients of variations varied in the orders of 8.05-31.23% and 6.52- 24.21% in both cases for days to maturity and grain yield per plant, respectively. Heritability estimates ranged from 20% for grain-filling duration to 84% for days to heading. Values of expected genetic advance varied from 6.67-44.14% for grain-filling duration and finger width, respectively. Finger width and length exhibited high heritability coupled with high genetic advance. The strongest positive association was observed between culm thickness and leaf blade width while the strongest negative association was found between 1,000-grain weight and finger number. Grain yield per plant associated positively with productive tillers, 1,000-grain weight, the number of grains per spikelet and finger number and negatively associated with days to heading and maturity.
    [Show full text]
  • Advances in Wheat Genetics: from Genome to Field Proceedings of the 12Th International Wheat Genetics Symposium Advances in Wheat Genetics: from Genome to Field
    Yasunari Ogihara · Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Advances in Wheat Genetics: From Genome to Field Yasunari Ogihara • Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Editors Yasunari Ogihara Shigeo Takumi Kihara Institute for Biological Research Graduate School of Agricultural Sciences Yokohama City University Kobe University Yokohama , Kanagawa , Japan Kobe , Hyogo , Japan Hirokazu Handa Plant Genome Research Unit National Institute of Agrobiological Sciences Tsukuba , Ibaraki , Japan ISBN 978-4-431-55674-9 ISBN 978-4-431-55675-6 (eBook) DOI 10.1007/978-4-431-55675-6 Library of Congress Control Number: 2015949398 Springer Tokyo Heidelberg New York Dordrecht London © The Editor(s) (if applicable) and the Author(s) 2015 . The book is published with open access at SpringerLink.com. Open Access This book is distributed under the terms of the Creative Commons Attribution Non- commercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Small Grain Forage Variety Testing, 2017
    Small Grain Forage Variety Testing, 2017 Wade Thomason, Extension Grains Specialist, Steve Gulick, Farm Manager, retired, Northern Piedmont Center, Brad Lael, Farm Manager, retired, Northern Piedmont Center, Elizabeth Hokanson, Research Associate, Grains Crops Testing Introduction A forage production trial of commercial barley, oats, rye, triticale, and wheat cultivars has been conducted yearly from 1994-2017 at the Northern Piedmont AREC, Orange. Results from the 2016-17 crop season are presented in this report. Management and Weather Pre-plant fertilizer of 32-60-41 was applied on October 4, 2016. Plots were planted on Oct. 06, 2016 and were seven, seven inch rows wide by 13 feet long, trimmed to 9 feet for harvest. Nitrogen as UAN at a rate of 60 lb of N per acre was applied on February, 21, 2017. All plots were targeted for harvest when each entry reached the boot (GS 45-50) stage, however the average growth stage was 53 at harvest timing due to warm weather in late winter. Two rows, the entire length of the plots, were harvested with a 12-inch Jari sickle-bar mower and weighed with an electronic hanging scale. Statewide temperatures and rainfall in fall 2016 were generally favorable wheat seeding after fields dried from the soaking from Hurricane Matthew. By mid-October, wheat planting reached 20% of intentions, compared with a five year average of 25% by this date. Continued favorable weather allowed 41% and 72% of the wheat and barley crops, respectively to be planted by October 3. By mid-November, planting progress was near the five year average for all small grains reported with 53 and 60% of barley and wheat acres reported as good or excellent.
    [Show full text]
  • Technical Note 67: Cover Crops for the Intermountain West
    TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho Plant Materials Technical Note No. 67 January 2017 Cover Crops for the Intermountain West Loren St. John, Team Leader, NRCS Plant Materials Center Aberdeen, Idaho (retired) Derek Tilley, Manager, NRCS Plant Materials Center Aberdeen, Idaho Terron Pickett, NRCS Plant Materials Center Aberdeen, Idaho This Technical Note provides descriptions and planting recommendations for several known cover crop species that may have applicability in Idaho. The species are divided into five functional groups: cool season grasses, cool season broadleaves, legumes, warm season broadleaves and warm season grasses. Introduction 4 Species Descriptions 6 Cool Season Grasses 6 Barley 6 Oat 6 Rye, Cereal 7 Ryegrass, Annual (Italian) 7 Triticale 8 Wheat 8 Cool Season Broadleaf 9 Arugula 9 Beet 10 Cabbage, Ethiopian 10 Flax 11 Mustard, Oriental and White 11 Phacelia 12 Radish, Forage and Oilseed 13 Rapeseed (Canola) 13 Turnip 14 Legumes 15 Alfalfa 15 Bean, Fava (Bell) 15 Clover, Crimson 16 Clover, Red 16 Clover, White 17 Cowpea 18 Lentil 18 Medic 19 Pea, Austrian Winter 20 Pea, Spring 20 Sunn Hemp 21 Sweetclover, Yellow & White 21 Vetch, Chickling 22 Vetch, Common 23 Vetch, Hairy 23 Warm Season Broadleaf 24 Buckwheat 24 Chicory 25 Flower Mix 26 Safflower 26 Sunflower 27 Warm Season Grasses 28 Corn 28 Millet, Foxtail 28 Millet, Pearl 29 Millet, Proso 30 Sorghum, Grain 31 Sudangrass 32 Teff 33 Appendix: Seeding Information for Intermountain Cover Crop Species 34 Cool Season Grasses 34 Cool Season Broadleaf 34 Legumes 35 Warm Season Broadleaf 35 Warm Season Grasses 36 2 Multi-species cover crop mix.
    [Show full text]
  • Long-Term Yield Variability of Triticale (Triticosecale Wittmack)
    agriculture Article Long-Term Yield Variability of Triticale (×Triticosecale Wittmack) Tested Using a CART Model Elzbieta˙ Wójcik-Gront * and Marcin Studnicki Department of Biometry, Institute of Agriculture, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Triticale is a promising food crop that combines the yield potential and grain quality of wheat with the disease and environmental tolerance of rye. The objective of this study was to evaluate the impact of genotype, environment and crop management on spring and winter triticale yield variability, using data from 31 locations across the whole of Poland, from 2009 to 2017, with the Classification and Regression Tree (CART) analysis. It was found that CART is able to detect differences in spring and winter triticale successful growth. The yield variability of spring triticale was more dependent on the soil quality than winter triticale because of a shorter cycle duration, which increases sensitivity to nutrient supply and weather conditions. Spring triticale also needs to be sown as soon as possible to ensure a successful establishment. A strong dependence of yield variability on the availability of water for the winter triticale was observed. When growing winter triticale in Poland, with periodic excess water especially during autumn and early spring, the use of fungicides and growth regulators should be taken into account. Keywords: cereal yield; classification and regression tree; CART; sowing date; pesticides Citation: Wójcik-Gront, E.; Studnicki, 1. Introduction M. Long-Term Yield Variability of Triticale (×Triticosecale Wittmack) is a hybrid of wheat (Triticum ssp.
    [Show full text]