Small Grains and Grain Sorghum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Grain Grading Primer
Marketing and Regulatory Programs Grain Agricultural Marketing Service Grading Federal Grain Inspection Service Washington, D.C. Primer October 2016 United States Department of Agriculture Agricultural Marketing Service Federal Grain Inspection Service Informational Reference October 2016 Grain Grading Primer Foreword The effectiveness of the U.S. grain inspection system depends largely on an inspector’s ability to sample, inspect, grade, and certify the various grains for which standards have been established under the United States Grain Standards Act, as amended. This publication is designed primarily to provide information and instruction for producers, grain handlers, and students on how grain is graded. It is not designed for Official grain inspectors for they must necessarily use more detailed instruction than that provided herein. In view of this fact, the Federal Grain Inspection Service, published the Grain Inspection Handbook, Book II, Grain Grading Procedures, which documents the step-by-step procedures needed to effectively and efficiently inspect grain in accordance with the Official United States Standards for Grain. The mention of firm names or trade products does not imply that they are endorsed or recommended by the United States Department of Agriculture over other firms or similar approved products not mentioned. Foreword Table of Contents The U.S. Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternate means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). -
KAMUT® Brand Khorasan Wheat Whole Grain US Senator For
The Ancient Grain for Modern Life—Our mission is to promote organic agriculture and support organic farmers, to increase diversity of crops and diets and to protect the heritage of a high quality, delicious an- January 2013 cient grain for the benefit of this and future generations. Eat the Whole Thing: KAMUT® Brand Khorasan Wheat Whole Grain UPCOMING Whole grains are an important and tasty way of including complex carbohydrates in a healthy EVENTS diet. Depending on your age, health, weight, and activity level, the USDA recommends that Americans consume at least three portions, from 1.5 ounces (young children) to 8 ounces (older 20 – 22 January boys and young adult men) of grains a day, and that more than half of those grains should be 2013* - National As- whole grains. The US Food and Drug Administration (FDA) defines “whole grain to include cere- sociation for the Spe- al grains that consist of the intact, ground, cracked or flaked fruit of the grains whose principal cialty Food Trade, components -- the starchy endosperm, germ and bran -- are present in the same relative propor- Fancy Food Show, San tions as they exist in the intact grain.” Francisco, CA, USA Each part of the grain is healthful, but consuming them “whole” provides all of the benefits work- ing together. The FDA recognizes that whole grains provide energy and provide reduced risk for 25 January 2013 – disease including bowl disorders, cancer, heart disease and high cholesterol, stroke, high blood Annual KAMUT® Grower’s Dinner, Re- pressure, obesity and Type 2 diabetes. gina, SK, Canada In order to help you find good whole grain products, a lot of packaging includes the helpful term “whole grain” on the front or even better includes Whole Grains Council stamps. -
The U.S. Oats Industry (AER-573)
C. in îtates U-- '^— ^ nentof >^^ Agriculture The U.S. Economic Research Service Oats Industry Agricultural EcofKmriic Report Linwood A. Hoffman Number 573 Janet Livezey Additional copies of this report... can be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Ask for The U.S. Oats Industry (AER-573). Write to the above address for price and ordering instructioas. For faster service, call the GPO order desk at 202-783-3238 and charge your purchase to your Visa, MasterCard, Choice, or GPO Deposit Account. A 25-percent bulk discount is available on orders of 100 or more copies shipped to a single address. Please add 25 percent extra for postage for shipments to foreign addresses. Microfiche copies (Í6.50 for each report plus Í3 for processing) can be purchased from the order desk. National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Enclose check or money order, payable to NTIS. For faster service, call NTIS at 703-487-4650 and charge your purchase to your Visa, MasterCard, American Express, or NTIS Deposit Account. NTIS will ship rush orders within 24 hours for an extra Í10; charge your rush order by calling 800-336-4700. The Economic Research Service has no copies for free mailing. The U.S. OATS INDUSTRY, by Linwood A. Hoffman and Janet Livezey. Commodity Economics Division, Economic Research Service, U.S. Department of Agriculture. Agricultural Economic Report No. 573. ABSTRACT U.S. farmers produced about 16 percent of the total world oats production during 1980-85, down from more than 29 percent during 1960-64 when the United States was the largest producer. -
Grain Crop Drying, Handling and Storage
363 Chapter 16 Grain crop drying, handling and storage INTRODUCTION within the crop, inhibiting air movement and adding Although in many parts of Africa certain crops can be to any possible spoilage problems. The crop must produced throughout the year, the major food crops therefore be clean. such as cereal grains and tubers, including potatoes, One of the most critical physiological factors in are normally seasonal crops. Consequently the food successful grain storage is the moisture content of the produced in one harvest period, which may last for only crop. High moisture content leads to storage problems a few weeks, must be stored for gradual consumption because it encourages fungal and insect problems, until the next harvest, and seed must be held for the respiration and germination. However, moisture next season’s crop. content in the growing crop is naturally high and only In addition, in a market that is not controlled, the value starts to decrease as the crop reaches maturity and the of any surplus crop tends to rise during the off-season grains are drying. In their natural state, the seeds would period, provided that it is in a marketable condition. have a period of dormancy and then germinate either Therefore the principal aim of any storage system must when re-wetted by rain or as a result of a naturally be to maintain the crop in prime condition for as long adequate moisture content. as possible. The storage and handling methods should Another major factor influencing spoilage is minimize losses, but must also be appropriate in relation temperature. -
Updating Barley and Rye Management in Kentucky, Year 2
UPDATING BARLEY AND RYE MANAGEMENT IN KENTUCKY, YEAR 2 Chad Lee, Carrie Knott, James Dollarhide, Kathleen Russell and Katherine McLachlan, University of Kentucky, Department of Plant & Soil Sciences PH: (859) 257-7874; E-mail: [email protected] The boom in distilleries and growing public received 30 lb N/A in the fall, consistent with our interest in locally grown foods has combined to recommendations when following excellent corn generate much interest in barley and rye for yields. For the nitrogen rate studies, all small Kentucky. These crops have not been studied grains were seeded at 1.25 million per acre. In extensively since intensive wheat management 2015-2016, the studies were conducted only at was developed in Kentucky. Spindletop Farm near Lexington, KY. For 2016- 2017, studies were conducted at Spindletop and In 2016-2017, we investigated seeding rates and at the Research and Education Center at nitrogen (N) rates on barley, malting barley and Princeton, KY. hybrid rye. Seeding rates were 0.5, 0.75, 1.0, 1.25 and 1.5 million seeds per acre. For the Six-Row Barley (Feed Barley) seeding rate studies, N rate was set at 90 lb N/A Seed Rates with 30 lb applied at Feekes 3 and 60 applied at Feekes 5. In the winter nitrogen rate study, rates Seed rates did not affect yield of feed barley at of 0, 30, 60, 90 and 120 lb N per acre were split- any tie. Yield averaged over 85 bushels per acre. applied at Feekes 3 and 5. In addition, all plots 6-Row Barley: Seed rate effect on yield at Lexington 2016, Lexington 2017 and Princeton 2017. -
Grain Sorghum GRAIN SORGHUM
68 Grain Sorghum GRAIN SORGHUM See page 22 for PRECAUTIONS on use of atrazine containing products near ground and surface water. See comments in the corn section for detailed information on each of the herbicides listed below such as application methods and crop rotation restrictions. Preemergence ATRAZINE 4L 1.6 to 2 qt/A or (atrazine 1.6 to 2 lb ai/A) AATREX NINE-O 1.8 to 2.2 lb/A Weeds Controlled: Black nightshade, cocklebur, common ragweed, giant ragweed, jimsonweed, lambsquarters, morningglories, pigweeds, prickly sida, smartweed, velvetleaf. Remarks: Apply at-planting prior to sorghum emergence or before sorghum exceeds 12 inches in height as a postemergence treatment. In case of crop failure, sorghum may be replanted into soil previously treated with ATRAZINE. Do not make a second ATRAZINE application or injury may occur. CALLISTO 6.0 to 6.4 fl. oz/A (mesotrione 0.18 to 0.20 lb ai/A) Weeds Controlled: Black nightshade, cocklebur, jimsonweed, lambsquarters, pigweeds, smartweed, velvetleaf. Remarks: Except for grain sorghum and sweet sorghum do not use CALLISTO in the production of other types of sorghums such as forage sorghums or sudangrass. Can be applied preemergence or as a pre- plant non-incorporated treatment up to 21 days before planting sorghum. Applying CALLISTO more than 7 days (but not more than 21 days) prior to planting will reduce the risk of crop injury. If emerged weeds are present at the time of the preemergence application, use a nonionic surfactant (NIS) at 0.25% v/v or crop oil concentrate (COC) at 1% v/v (UAN or AMS can also be added to the spray solution). -
SRP472 3 Comparison of Rye and Triticale As Forages for Grazing
Selected Articles from 1985 Report of Agricultural Research Southeast Branch Experiment Station Agricultural Experiment Station Kansas State University 16 Comparison of Rye and Triticale as Forages for Grazing Stocker Cattle Winter annual small grains are frequently grazed during late fall and early spring in southeastern Kansas. Wheat is often the crop of choice, especially if grain production is the primary objective. If pasture is the main consideration, there are probably other small grains that will yield more forage and produce a greater quantity of beef cattle weight gain per acre than wheat. Research has been conducted at the Southeast Kansas Experiment Station to determine which winter annual small grains will result in maximum forage and beef production in a graze-out program. A study conducted in 1981-82 revealed that triticale produced nearly twice as much beef liveweight gain per acre as Newton wheat. Results from a 1982-83 study indicated that a mixture of 2/3 rye and 1/3 wheat produced over three times as much beef liveweight per acre as triticale. The following study was conducted to compare rye and triticale with respect to performance of grazing stocker cattle. Procedure: On September 19, 1983, two 5-acre fields were seeded with winter annuals. One field was seeded with 105 lb of triticale per acre and the other was seeded with 89 lb of Bonel rye per acre. At seeding time, 25-65-70 lb of N-P2O5-K2O per acre was applied and on November 14, 1984, 50 lb of N per acre was applied to each pasture. -
Plant-Based Recipes
A collection of 100% PLANT-BASED RECIPES Breakfasts and smoothies p.02 Starters p.05 Mains p.06 Sweet treats p.12 Break- fasts and smooth- ies: Overnight Oats with Shiro Miso serves 1 The miso gives these oats their pleasant ‘umami’ taste (the ‘new’ fifth taste sensation). If you need to eat breakfast away from home, make this in an empty jam jar, and give your taste buds a treat! Nutrition Information: (Approximate nutrition information per serving with fresh fruit/ berries, nuts and maple syrup) Energy (kcals) 349 Fat (g) 12.6 Saturates (g) 1.3 Carbs (g) 47.1 Sugar (g) 5.5 Fibre (g) 6.7 Protein (g) 8.5 INGREDIENTS: METHOD: ½ cup (45 g) of porridge oats ¾ cup (180 mls) of Oatly Oat Drink 1. Mix all of the ingredients except the (preferably Whole/Barista Edition) topping in a bowl (or jam jar), cover and ½ tbsp white Shiro Miso paste leave in ‘fridge for at least 3 hours, but ideally overnight. Topping - your choice from maple 2. Remove from the ‘fridge and, if you syrup, fresh fruit/berries and wish, add more oat drink, until you get roasted nuts the desired consistency. 3. Top with your chosen toppings and enjoy! 02 Avocado & Strawberry smoothie INGREDIENTS: serves 2 This creamy smoothie is quick to make 300 ml Oatly Oat Drink and refreshing at any time of day. 150 g frozen strawberries ½ ripe avocado, peeled Nutrition Information: Juice of ½ lemon (Approximate nutrition information per serving) 1 tbsp maple or agave syrup 2 tsp chia seeds Energy (kcals) 182 Fat (g) 7.8 Saturates (g) 1.1 Carbs (g) 23.9 METHOD: Sugar (g) 13.6 Fibre (g) 4.9 1. -
Torrefaction of Oat Straw to Use As Solid Biofuel, an Additive to Organic Fertilizers for Agriculture Purposes and Activated Carbon – TGA Analysis, Kinetics
E3S Web of Conferences 154, 02004 (2020) https://doi.org/10.1051/e3sconf/202015402004 ICoRES 2019 Torrefaction of oat straw to use as solid biofuel, an additive to organic fertilizers for agriculture purposes and activated carbon – TGA analysis, kinetics Szymon Szufa1, Maciej Dzikuć2 ,Łukasz Adrian3, Piotr Piersa4, Zdzisława Romanowska- Duda5, Wiktoria Lewandowska 6, Marta Marcza7, Artur Błaszczuk8, Arkadiusz Piwowar9 1 Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 90-924 Lodz,, Poland, [email protected] 2 University of Zielona Góra, Faculty of Economics and Management, ul. Licealna 9, 65-246 Zielona Góra, Poland, [email protected] 3 University of Kardynal Stefan Wyszyński, Faculty of Biology and Environmental Science, Dewajtis 5, 01-815 Warszawa, Poland, [email protected] 4 Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 90-924 Lodz,, Poland, [email protected] 5 Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha str. 12/16, 90-131 Łódź, Poland, [email protected] 6 University of Lodz, Chemical Faculty, Tamka 13, 91-403 Łódź, Poland, [email protected] 7 AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30- 059 Krakow, Poland, [email protected] 8 Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dabrowskiego 73, 42-200, Czestochowa, Poland, [email protected] 9 Wroclaw University of Economics, Faculty of Engineering and Economics, Komandorska 118/120 , 53-345 Wrocław, Poland, [email protected] Abstract. -
Coverage for Specialty Types of Barley and Soybeans Beginning with the 2010 Crop Year
United States May 27, 2010 Department of Agriculture INFORMATIONAL MEMORANDUM: PM-10-005.1 Risk Management TO: All Approved Insurance Providers Agency All Risk Management Agency Field Offices Beacon Facility – All Other Interested Parties Mail Stop 0812 P.O. Box 419205 FROM: Tim B. Witt /s/ Tim B. Witt Kansas City, MO 64141-6205 Deputy Administrator SUBJECT: Coverage for Specialty Types of Barley and Soybeans Beginning with the 2010 Crop Year BACKGROUND: On February 1, 2010, the Risk Management Agency (RMA) issued PM-10-005 regarding insurance coverage for specialty types of barley and soybeans based on contract prices effective for the 2010 crop year. Some questions have arisen pertaining to type identification, prevented planting, replanting, and quality adjustment. RMA is providing the following guidance when insuring specialty types. ACTION: 1. Identifying Specialty Types: There are six possible types specified in the Special Provisions of Insurance (SPOI): All Others (AO), and the five specialty types shown below with the requirements for each: a. Large seeded food grade – Soybeans commonly used for tofu, soymilk, and miso having a minimum seed size of 20g/100 seeds. b. Small seeded food grade – Soybeans commonly used for sprouts having a minimum seed size of 10g/100 seeds, or for natto soybeans having a minimum seed size of 8g/100 seeds. c. Low linolenic acid – Soybeans commonly used to produce soybean oil with a linolenic acid level of three percent or less. d. Low saturated fat - Soybeans containing 50 percent less saturated fat than conventional soybeans and are used to produce soybean oil with eight percent or less total saturated fats. -
Whole and Enriched Grains CACFP Reference Sheet
OSPI CNS Child and Adult Care Food Program Reference Sheet Whole and Enriched Grains Whole and enriched grains are a part of identifying Whole Grain-Rich (WGR) items. There are several methods to identify WGR items. Please view the Grain Requirements in the CACFP Reference Sheet for more information. Whole Grains: Amaranth Sprouted einkorn Amaranth flour Sprouted spelt Brown rice Sprouted whole rye Buckwheat Sprouted whole wheat Buckwheat flour Steel cut oats Buckwheat groats Teff Bulgur Teff flour Cracked wheat Triticale Graham flour Triticale flour Instant oatmeal Wheat berries Millet Wheat groats Millet flour Whole durum flour Oat groats Whole einkorn berries Old fashioned oats Whole grain corn Quick cooking oats Whole grain corn flour Quinoa Whole grain einkorn flour Rye groats Whole grain oat flour Sorghum Whole grain spelt flour Sorghum flour Whole grain wheat flakes Spelt berries Whole rye flour Sprouted brown rice Whole wheat flour Sprouted buckwheat Wild rice Whole corn Brans and Germs: Corn bran Rye bran Oat bran Wheat bran Rice bran Wheat germ Enriched Grains: Enriched bromated flour Enriched rice Enriched corn flour Enriched rice flour Enriched durum flour Enriched rye flour Enriched durum wheat Enriched wheat flour flour Enriched white flour OSPI CNS November 2018 OSPI CNS Child and Adult Care Food Program Reference Sheet Disregarded Ingredients – May be ignored (typically presented in small amounts) Corn dextrin Tapioca starch Corn starch Wheat dextrin Modified -
Article on Genetic Markers for Bunt Resistance From
Let’s make grain great again Click here to sign up for the newsletter The Landrace Newsletter no. 5 May 2021 A new growing season is ahead of us, and I greet the spring with news from both future and past from the organic grain sector. I wish you joyfull reading Anders Borgen Content in this newsletter Open field day and general assembly in Landsorten, Tuesday 22. June..............................................2 But now then, is it Landsorten or Agrologica, selling organic seed in future?...................................2 Mobile stone mill for local production................................................................................................3 Nordic grain festival 28th-30th October 2021 in Norway.....................................................................4 News from Agrologica science lab......................................................................................................4 Genetic markers for bunt resistance - news from LIVESEED-, Økosort-II and bunt projects......4 Acid rain and gluten-index..............................................................................................................4 Zanduri, Macha, and the hailstorm in Georgia...............................................................................6 Colchic emmer (Triticum paleochochicum)...............................................................................6 Emmer........................................................................................................................................7 Durum........................................................................................................................................7