Genomic Designation: New Kinds of People at the Intersection of Genetics, Medicine and Social Action

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Designation: New Kinds of People at the Intersection of Genetics, Medicine and Social Action Genomic Designation: New kinds of people at the intersection of genetics, medicine and social action Daniel Navon Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 © 2013 Daniel Navon All rights reserved ABSTRACT Genomic Designation: New kinds of people at the intersection of genetics, medicine and social action Daniel Navon Genetics can do more than predict, explain or help treat medical conditions – it can create new ones. The social sciences have assumed that genetics must work in and through existing categories of human difference in order to inform clinical practice or social mobilization. By contrast, I go beyond the specter of reductionism and examine the emergence of new kinds of people at the intersection of genetics research, clinical practice and social action. For over fifty years, conditions like the XXX, Edwards, Fragile X and 22q11.2 Deletion Syndromes have been discovered, delineated and diagnosed strictly according to abnormalities in the genome, even in the absence of phenotypic coherence – a practice which I call ‘genomic designation’. This dissertation uses comparative historical methods, fieldwork and citation analysis to examine the history of genomic designation, its variable impact on practice and its implications for our understanding of the biosciences, medicine and social mobilization. I argue that genomic designation represents an important and growing practice that extends and challenges existing formulations of key concepts like ‘biosociality’, geneticization and the rise of a ‘molecular gaze’ in contemporary medicine. Furthermore, I show how it offers an opportunity to develop a typology of ways in which genetics can radically reconfigure medical classification. However, over the course of its fifty-year history, genomic designation has varied enormously as a clinical and social phenomenon and therefore in the way it impacts lived experience. I show how, during the first few decades after genomically designated syndromes began to be delineated in the human genetics literature in 1959, they gave rise to very little by way of clinical protocols, practices or specialist centers and virtually no social or advocacy organizations. And yet, in recent decades, genomically designated conditions have emerged as bona fide categories of clinical practice and social mobilization. Drawing on Fleck, Foucault and Haydu, I propose a framework of ‘reiterative facticity’ that aims to combine work from the sociology of science and medicine with a comparative-historical approach by analyzing the way that the very same genetic mutations take on divergent meanings and implications according to contrasting conditions of possibility, repertoires of collective action and the networks of research and advocacy organized around genomically designated conditions. I discuss the way that genomically designated syndromes are often ‘leveraged’ as models in biomedical research, and how this can turn them into privileged sites of knowledge production, commercial investment and social mobilization. In particular, I analyze the intersection of genetic disorders and autism in order to understand the nosological conditions for genomic designation and the ‘trading zones’ in which genetic and psychiatric systems of classification can achieve a productive interface. Finally, I use historical and fieldwork material to examine the conditions and repertoires of collective action through which a complex network has been assembled around 22q11.2 Deletion Syndrome, turning it into what Hacking would call a new kind of person that can realign clinical judgment, treatment and care. In this way, a comparative study of genomic designation shows how biological abnormality must be mediated by historical conditions and prevailing modes of understanding and acting on human difference, but also mobilized by heterogeneous networks of actors working to interface with but also transform existing structures. By way of conclusion, I discuss the possible impact of new non-invasive prenatal genetic testing on genomic designation, summarize my findings and suggest fruitful lines of future research. ! Table of Contents List of tables and figures ii Acknowledgements iv Introduction 1 Part I 1. From mutations to new medical conditions 21 2. The varieties of genomic designation: 52 Multiple pathways and an ideal-typical typology of syndromes Part II Introduction 85 3. Immobile mutations: 106 Nowhere to go in the 1960s and 70s and the exception that proves the rule 4. Of elves, warriors and autistics: 162 Leveraging abnormality in genetics research and advocacy 5. The trading zone of autism genetics: 217 Looping and the intersection of genomic and psychiatric classification 6. Assembling a new kind of person: 277 Mobilizing mutations and realigning illness Conclusion 362 References 395 ! i! ! List of tables and figures Introduction Figure 1: FISH test indicating a 22q11.2 microdeletion 2 Chapter 1 Figure 1: Clinical Syndrome Referent 44 Figure 2: Genomically-Designated Syndrome Referent 44 Table 1: Genotype-phenotype relations in four medical conditions 45 Table 2: Preliminary list of genomically designated conditions 47 Chapter 2 Figure 1: Modularity analysis of research literature 65 Figure 2: Modularity analysis with and without 22q11-related papers 66 Figure 3: Citation networks for four key moments 68 Figure 4: Citation network and communities in 1992-1995 71 excluding articles about 22q11. Figure 5: Citation networks and communities in 1998-2002 and 2003-2009 73 Figure 6: Frequency of syndrome names in paper titles, 1996-2012 74 Chapter 3 Figure 1: The standardization of human chromosome numbers 107 agreed upon in Denver, 1960 Figure 2: New York Times, April 21 1968, p. 1 126 Figure 3: Articles published by year with XYY in their titles 141 Figure 4: KS&A Brochure from XYY Syndrome 157 ! ii! ! Chapter 4 Table 1: Leveraging, alliances and resources in 207 MAOA, Williams and Fragile X Syndrome research Chapter 5 Table 1: Disease genes reported in people diagnosed with 232 autism spectrum disorders Table 2: Recurrent genomic disorders/chromosomal abnormalities 232 associated with autism Figure 1: Articles on chromosomal disorders associated with autism 239 and rates of MR and ASD keywords, 1991-2002 Figure 2: Articles on chromosomal disorders associated with autism 240 and rates of ASD and Fragile X keywords, 1991-2012 Figure 3: Papers on chromosomal disorders associated with autism 241 and ASD, Fragile X titles by year, 1982-2012 Table 3: Histories of autism association in 10 genomically designated conditions 243 ! iii! ! Acknowledgements The first note of thanks has to go to all the families, advocates and biomedical experts who have taken the time to talk to a sociologist prying into their research, practice and lives. I look forward to more over the coming years. The Binational Science Foundation, Mellon Foundation and Columbia’s Lindt and Lazarsfeld Fellowships, its Institute for Social and Economic Research and Policy and the Department of Sociology all provided crucial support while I was formulating, researching and writing the dissertation. A number of scholars at Columbia and elsewhere have taken the time to read and comment on my work and provide sage advice over the last few years. I am especially grateful to Sarah Franklin, Herbert Gans, Dani Lainer-Vos, Shamus Khan, Bill McAllister, Aaron Panofsky, Nikolas Rose, Chuck Tilly, Stefan Timmermans and Diane Vaughan. Special thanks are due to John Chalcraft and Laleh Khalili, who generously took a disenchanted philosophy student under their wings in Edinburgh and helped him make the transition to the social sciences and humanities. Brendan Hart, Anne Montgomery, Roz Redd, Aurora Fredriksen, Mattias Smångs, Hrag Balian, Jen Kondo, Des Fitzgerald, Nancy Davenport and Onur Ozgode blurred the lines between friend and colleague in a way that made the whole experience more interesting and more fun. Matt Spooner and Dan Herbert were simply incredible friends throughout. Sara Shostak and Alberto Cambrosio embraced me as a colleague as I took my first steps in a new subfield and wound up being fabulous external committee members. Uri Shwed has been a wonderful friend, colleague and collaborator over the last few years, and ! iv! ! Chapter 2 of this dissertation can be traced back one of many cherished nights spent drinking beer in his Riverside Drive apartment. I had already completed my graduate coursework when I decided to write my dissertation about genetics, medicine and advocacy, and Nadia Abu El-Haj’s ‘Science and Society’ course was an invaluable introduction to my new field. More importantly, her expertise in science studies and genetics as well as her sage advice about my work as well as some of the trickier decisions of the last few years were invaluable. Peter Bearman helped a recovering philosophy undergraduate to begin to think like a sociologist, if an unconventional one. I try to not hold that against him. In his workshops and in our meetings he always helped me think though innovative research designs, including ones focused on the outliers and oddities, which could get at big questions. He helped me navigate grad school, the transition out of it and made a spirited case for the move towards this dissertation topic, for which I am very grateful. I owe a truly extraordinary debt of gratitude to my advisor, Gil Eyal. Beginning with the two classes I took in my first year at Columbia,
Recommended publications
  • Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders
    Psychology Faculty Publications Psychology 4-28-2018 Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders Rachel Ali Rodriguez University of Nevada, Las Vegas Christina Joya University of Nevada, Las Vegas Rochelle M. Hines University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/psychology_fac_articles Part of the Neurosciences Commons Repository Citation Rodriguez, R. A., Joya, C., Hines, R. M. (2018). Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders. Frontiers in Molecular Neuroscience, 11 1-23. http://dx.doi.org/10.3389/fnmol.2018.00132 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Article has been accepted for inclusion in Psychology Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. fnmol-11-00132 April 21, 2018 Time: 12:35 # 1 REVIEW published: 24 April 2018 doi: 10.3389/fnmol.2018.00132 Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders Rachel Ali Rodriguez, Christina Joya and Rochelle M. Hines* Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States The term neurodevelopmental disorder (NDD) is an umbrella term used to group together a heterogeneous class of disorders characterized by disruption in cognition, emotion, and behavior, early in the developmental timescale.
    [Show full text]
  • A Case Study of Distinctive Phenotypes Arising from Emanuel Syndrome in Two Karyotypically Identical Patients Mot Yee Yik1, Rabiatul Basria S.M.N
    Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346) CASE REPORT A Case Study of Distinctive Phenotypes Arising From Emanuel Syndrome in Two Karyotypically Identical Patients Mot Yee Yik1, Rabiatul Basria S.M.N. Mydin2, Emmanuel Jairaj Moses1, Shahrul Hafiz Mohd Zaini2,3, Abdul Rahman Azhari4, Narazah Mohd Yusoff1 1 Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang Malaysia 2 Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang Malaysia, 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur. 4 Human Genetics Unit, Advanced Diagnostic Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia ABSTRACT Emanuel syndrome, also referred to as supernumerary der(22) or t(11;22) syndrome, is a rare genomic syndrome. Patients are normally presented with multiple congenital anomalies and severe developmental disabilities. Affected newborns usually carry a derivative chromosome 22 inherited from either parent, which stems from a balanced translocation between chromosomes 11 and 22. Unfortunately, identification of Emanuel syndrome carriers is diffi- cult as balanced translocations do not typically present symptoms. We identified two patients diagnosed as Emanuel syndrome with identical chromosomal aberration: 47,XX,+der(22)t(11;22)(q24;q12.1)mat karyotype but presenting variable phenotypic features. Emanuel syndrome patients present variable phenotypes and karyotypes have also been inconsistent albeit the existence of a derivative chromosome 22. Our data suggests that there may exist ac- companying genetic aberrations which influence the outcome of Emanuel syndrome phenotypes but it should be cautioned that more patient observations, diagnostic data and research is required before conclusions can be drawn on definitive karyotypic-phenotypic correlations.
    [Show full text]
  • 18 (2), 2015 77-82 a Case with Emanuel Syndrome
    18 (2), 2015 l 77-82 DOI: 10.1515/bjmg-2015-0089 CASE REPORT A CASE WITH EMANUEL SYNDROME: EXTRA DERIVATIVE 22 CHROMOSOME INHERITED FROM THE MOTHER İkbal Atli E*, Gürkan H, Vatansever Ü, Ulusal S, Tozkir H *Corresponding Author: Emine İkbal Atli, Ph.D., Department of Medical Genetics, Faculty of Medicine, Trakya University, Campus Of Balkan, D100 Street, Edirne 22030, Turkey. Tel: +90-554-253-4030. Fax: +90- 284-223-4201. E-mail: [email protected] ABSTRACT INTRODUCTION Emanuel syndrome (ES) is a rare chromosomal Emanuel syndrome (ES) is an unbalanced disorder that is characterized by multiple congenital translocation syndrome, usually arising through a anomalies and developmental disabilities. Affected 3:1 meiosis I malsegregation during gametogenesis children are usually identified in the newborn period in a phenotypically balanced translocation normal as the offspring of balanced (11;22) translocation carrier. While the true mortality rate in Emanuel syn- carriers. Carriers of this balanced translocation usu- drome is unknown, long-term survival is possible [1]. ally have no clinical symptoms and are often identi- Emanuel syndrome is also referred to as derivative fied after the birth of offspring with an unbalanced 22 syndrome, derivative 11;22 syndrome, partial tri- form of the translocation, the supernumerary der(22) somy 11;22, or supernumerary der(22)t(11;22) syn- t(11;22) syndrome. We report a 3-year-old boy with drome [2]. In this partial duplication, 11(q23-qter) the t(11;22)(q23;q11) chromosome, transmitted in and 22(pter-q11) complex, congenital diaphragmatic an unbalanced fashion from his mother.
    [Show full text]
  • Updates on Myopia
    Updates on Myopia A Clinical Perspective Marcus Ang Tien Y. Wong Editors Updates on Myopia Marcus Ang • Tien Y. Wong Editors Updates on Myopia A Clinical Perspective Editors Marcus Ang Tien Y. Wong Singapore National Eye Center Singapore National Eye Center Duke-NUS Medical School Duke-NUS Medical School National University of Singapore National University of Singapore Singapore Singapore This book is an open access publication. ISBN 978-981-13-8490-5 ISBN 978-981-13-8491-2 (eBook) https://doi.org/10.1007/978-981-13-8491-2 © The Editor(s) (if applicable) and The Author(s) 2020, corrected publication 2020 Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifc statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Research Institute Annual Report 2005
    Research Annual Report 2005 The Joseph Stokes Jr. Research Institute of The Children’s Hospital of Philadelphia Embarking on a New Era ely to children is founded b xclusiv y Dr. F ted e ranc dica is W de . Le ital wi sp s, w ho it st h fir H ’s ew n so tio n na B ac he h T e an — d 5 5 R 8 .A 1 .F . P e n r o s e “... very large numbers of specialties moved towards the solution of each individual patient’s problem through highly diversified laboratory and clinical research.” - Joseph Stokes Jr., M.D., 1967 CONTENTS PURSUING RESEARCH PREEMINENCE 2 PROGRESS NOTES 30 SUPPORTING RESEARCH - STOKES CORE FACILITIES 40 INNOVATION FUELING PROGRESS 46 BUILDING THE INTELLECTUAL COMMUNITY 52 ADMINISTRATIVE ENHANCEMENTS 80 FINANCIAL/AWARD INFORMATION 84 WHO'S WHO AT STOKES 87 It is with great enthusiasm that we introduce the premier annual report for the Joseph Stokes Jr. Research Institute of The Children’s Hospital of Philadelphia. Stokes Institute has a rich and distinguished “bench to bedside” research history. The Institute serves as the home for more than 250 world-class investigators conducting innovative research in the laboratories and clinics across our campus. And, as you will see within the pages of this report, our investigators continue to advance the basic understanding of pediatric diseases and to develop new therapies that will benefit our patients and their families for generations to come. We’ve witnessed substantial growth in the Hospital’s research program over the last decade.
    [Show full text]
  • Optical Genome Mapping As a Next-Generation
    medRxiv preprint doi: https://doi.org/10.1101/2021.02.19.21251714; this version posted February 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . Optical genome mapping as a next-generation cytogenomic tool for detection of structural and copy number variations for prenatal genomic analyses Nikhil Shri Sahajpal1#, Hayk Barseghyan2,3,4#, Ravindra Kolhe1, Alex Hastie4, Alka Chaubey1,4* 1Department of Pathology, Augusta University, Augusta, GA, USA 2Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA 3Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University Washington, DC, USA 4Bionano Genomics Inc., San Diego, CA, USA # Equal contribution authors * Corresponding author: Alka Chaubey, PhD, FACMG Chief Medical Officer Bionano Genomics, Inc. 9540 Towne Centre Drive, Suite 100 San Diego, CA 92121 E: [email protected] C: (858) 337-2120 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.02.19.21251714; this version posted February 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . Abstract Global medical associations (ACOG, ISUOG, ACMG) recommend diagnostic prenatal testing for the detection and prevention of genetic disorders.
    [Show full text]
  • Autism Spectrum Disorders—A Genetics Review Judith H
    GENETEST REVIEW Genetics in Medicine Autism spectrum disorders—A genetics review Judith H. Miles, MD, PhD TABLE OF CONTENTS Prevalence .........................................................................................................279 Adenylosuccinate lyase deficiency ............................................................285 Clinical features................................................................................................279 Creatine deficiency syndromes..................................................................285 Core autism symptoms...................................................................................279 Smith-Lemli-Opitz syndrome.....................................................................285 Diagnostic criteria and tools..........................................................................280 Other single-gene disorders.......................................................................285 Neurologic and medical symptoms .............................................................281 Developmental syndromes of undetermined etiology..............................286 Genetics of autism...........................................................................................281 Moebius syndrome or sequence...............................................................286 Chromosomal disorders and CNVS..............................................................282 Landau-Kleffner syndrome .........................................................................286 Single-gene
    [Show full text]
  • 2015-2020 Consolidated Plan for Washington County and the Cities of Beaverton and Hillsboro
    Volume 2 2015-2020 Consolidated Plan for Washington County and the Cities of Beaverton and Hillsboro Cover photos of 2010-2015 CDBG and HOME projects: (Clockwise from the top left): City of North Plains Claxtar St. Waterline, Street and Sidewalk Improvements City of Hillsboro Walnut Park Improvements Northwest Housing Alternatives Alma Gardens Apartments, Hillsboro City of Hillsboro Dairy Creek Park Picnic Shelters and Accessibility Improvements WaCo LUT SW 173rd Sidewalk Improvements, Aloha City of Tualatin’s Juanita Pohl Center Centro Cultural de Washington County, Cornelius Bienestar, Inc.’s Juniper Gardens Apartments, Forest Grove Public Service activities funded by the City of Beaverton Home assisted by WaCo Office of Community Development’s Housing Rehabilitation Program Boys and Girls Aid Transitional Living Program, Beaverton Sequoia Mental Health Services Clinical Office Building (adjacent to Spruce Place Apartments) Copies of this document may be accessed online at: http://www.co.washington.or.us/CommunityDevelopment/Planning/2015-2020-consolidated-plan.cfm Approved by Washington County Board of Commissioners May 5, 2015 Minute Order #15-127 2015-2020 Consolidated Plan Volume 2 Washington County Consortium Washington County and The Cities of Beaverton and Hillsboro Oregon Prepared by Washington County Office of Community Development In collaboration with City of Beaverton Community Development Division and City of Hillsboro Planning Department Washington County 2015-2020 Consolidated Plan Volume 2 TABLE OF CONTENTS APPENDIX A: Supplementary Information for Introduction A.1 2010-2015 Consolidated Plan Objectives, Goals and Accomplishments ............................ 1 APPENDIX B: Supplementary Information for Chapter 2 Introductory Materials B.1 Citizen Participation Plan .................................................................................................... 3 B.2 Overview of the Con Plan Work Group ...........................................................................
    [Show full text]
  • BMC Genetics Biomed Central
    BMC Genetics BioMed Central Research article Open Access Multiple forms of atypical rearrangements generating supernumerary derivative chromosome 15 Nicholas J Wang1, Alexander S Parokonny2, Karen N Thatcher3, Jennette Driscoll2, Barbara M Malone2, Naghmeh Dorrani1, Marian Sigman4, Janine M LaSalle3 and N Carolyn Schanen*2,5,6 Address: 1Department of Human Genetics, UCLA Geffen School of Medicine, Los Angeles, California, 90095, USA, 2Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, 19803, USA, 3Dept. of Medical Microbiology and Immunology, University of California, Davis, California, 95616, USA, 4Neuropsychiatric Institute, UCLA Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA, 5Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA and 6Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA Email: Nicholas J Wang - [email protected]; Alexander S Parokonny - [email protected]; Karen N Thatcher - [email protected]; Jennette Driscoll - [email protected]; Barbara M Malone - [email protected]; Naghmeh Dorrani - [email protected]; Marian Sigman - [email protected]; Janine M LaSalle - [email protected]; N Carolyn Schanen* - [email protected] * Corresponding author Published: 4 January 2008 Received: 27 August 2007 Accepted: 4 January 2008 BMC Genetics 2008, 9:2 doi:10.1186/1471-2156-9-2 This article is available from: http://www.biomedcentral.com/1471-2156/9/2 © 2008 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Prenatal Diagnosis of Chromosomal Disorders – Molecular Aspects
    A. Stavljenić-Rukavina Prenatal diagnosis of chromosomal disorders – molecular aspects 1. PRENATAL DIAGNOSIS OF CHROMOSOMAL DISORDERS - molecular aspects Ana Stavljenić-Rukavina Zagreb University School of Medicine, Croatia The standard measures for population health outcomes is based on maternal, infant and under five mortality rates. Health care of mother and unborn child is the most important part of population health. Therefore the care for mother and child health during pregnancy and delivery, assessment of all risks during pregnancy is of utmost importance of any health care system. It is known that perinatal mortality is caused in 20-25 percent of cases by inhaerited anomalies of fetuses and many of theese might be explained by genetic disorders. In general genetic disorder is a condition caused by abnormalities in genes or chromosomes. Chromosomes are complex bodies in cell nucleus as carriers of genes. While some diseases are due to genetic abnormalities acquired in a few cells during life, the term "genetic disease" most commonly refers to diseases present in all cells of the body and present since conception. Some genetic disorders are caused by chromosomal abnormalities due to errors in meiosis, the process which produces reproductive cells such as sperm and eggs. Examples include Down syndrome (extra chromosome 21), Turner Syndrome (45X0) and Klinefelter's syndrome (a male with 2 X chromosomes). Other genetic changes may occur during the production of germ cells by the parent. One example is the triplet expansion repeat mutations which can cause fragile X syndrome or Huntington's disease. Defective genes may also be inherited intact from the parents.
    [Show full text]
  • Copy Number Changes and Methylation
    Wang et al. Molecular Cytogenetics (2015) 8:97 DOI 10.1186/s13039-015-0198-4 RESEARCH Open Access Copy number changes and methylation patterns in an isodicentric and a ring chromosome of 15q11-q13: report of two cases and review of literature Qin Wang1, Weiqing Wu1,2, Zhiyong Xu1, Fuwei Luo1, Qinghua Zhou2,3, Peining Li2 and Jiansheng Xie1* Abstract Background: The low copy repeats (LCRs) in chromosome 15q11-q13 have been recognized as breakpoints (BP) for not only intrachromosomal deletions and duplications but also small supernumerary marker chromosomes 15, sSMC(15)s, in the forms of isodicentric chromosome or small ring chromosome. Further characterization of copy number changes and methylation patterns in these sSMC(15)s could lead to better understanding of their phenotypic consequences. Methods: Routine G-band karyotyping, fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assay were performed on two Chinese patients with a sSMC(15). Results: Patient 1 showed an isodicentric 15, idic(15)(q13), containing symmetrically two copies of a 7.7 Mb segment of the 15q11-q13 region by a BP3::BP3 fusion. Patient 2 showed a ring chromosome 15, r(15)(q13), with alternative one-copy and two-copy segments spanning a 12.3 Mb region. The defined methylation pattern indicated that the idic(15)(q13) and the r(15)(q13) were maternally derived. Conclusions: Results from these two cases and other reported cases from literature indicated that combined karyotyping, aCGH and MS-MLPA analyses are effective to define the copy number changes and methylation patterns for sSMC(15)s in a clinical setting.
    [Show full text]
  • CUHSLBRD M181.Pdf (7.608Mb)
    THE JOSEPH P. KENNEDY INTERNATIONAL AWARD IN MENTAL RETARDATION ·. ··· 1n all cultures, winged creatures, both animal and human, have always signi­ fied superhuman strength and power. The greatest known to antiquity are the Sera­ phim, mightiest of angels. They are the supreme symbols of knowledge and of love. The fallen angel, Lucifer, corrupted these great gifts by his pride and ambition. By contrast, Raphael, the angel of science and healing and love, finds his glory enhanced by service to mankind. It is his high office to bring hope to those whose lives are bur­ dened with sickness and infirmity. Raphael, whose name means "God Heals," is the chief of the guardian angels who protect and guide mankind. Both the Old and the New Testaments record the deeds of Raphael. He healed Abraham, the wounded patriarch. As the protecting a·ngel, Raphael was sent by God to guide the youthful Tobias on his journey. Raphael, most appropriately, is the angel whose hand stirred the waters of the pool at Bethesda. Next to this pool lay the blind, the sick, the palsied and infirm.The firstsick person to bathe in the pool, after the waters moved, was cured of his malady. It was at Raphael's touch that the waters stirred. The Joseph P. Kennedy Jr. Foundation has chosen the Seraph Raphael as the symbol for its International Prize Award because it wishes to honor great knowledge as the servant of compassion and love. It is the hope of the Foundation that all recip­ ients of the Kennedy International Prize will be people whose careers are graced by great scientific knowledge and deep love for the cause of the retarded.
    [Show full text]