Relationship of Negative Contrast to Animal Models of Fear and Anxiety

Total Page:16

File Type:pdf, Size:1020Kb

Relationship of Negative Contrast to Animal Models of Fear and Anxiety Animal Learning & Behavior /998,26 (4),397-407 Relationship ofnegative contrast to animal models offear and anxiety CHARLES F,FLAHERTY, ANNAGREENWOOD, JOSEPH MARTIN, and MARY LESZCZUK Rutgers University, Piscataway, New Jersey The relatedness of behavior elicited by reward reduction (successive negative contrast procedure) and behaviors produced by three animal models of anxiety (open-field emergence, elevated plus-maze, and context-shock fear conditioning) was examined by correlational and factor analytic procedures, Factor analysis (oblique rotation) indicated substantial independence among the tests: Trials 1 and 2 of the plus-maze loaded on two different factors unaccompanied by any other test; open-field emer­ gence and context-shock fear loaded on the same factor; and negative contrast loaded on a fourth fac­ tor. However, negative contrast proved to be a dynamic process, with factor loadings changing across a 4-day postshift period-moving from an independent loading on the 1st postshift day to being clus­ tered with context-shock fear and open-field emergence on the 2nd and 3rd postshift days to being clustered with just context-shock fear on the last postshift day. These latter datasupport a multistage theory ofsuccessive negative contrast. Rats shifted from a preferred reward to a less preferred We have recently proposed a multistage theory ofSNC reward show an abrupt decrement in goal-directed behav­ that suggests that perceptual and cognitive stages (detec­ ior and an increase in exploratory behavior (e.g., Crespi, tion that the new reward is different from the memory of 1942, 1944; Elliott, 1928; Flaherty, 1996). The goal­ the preshift reward; hedonic evaluation ofthe new reward; directed performance of the shifted rats decreases to a search for the "missing" reward if the new reward is of level below that of unshifted control animals given the lesser value) precede the activation of an emotional re­ same level of reward-an outcome termed a successive sponse to reward reduction (Flaherty, 1996). In the present negative contrast (SNC) effect. paper, we are concerned with an investigation ofthis hy­ One enduring interpretation of successive negative pothesis, and we compare daily postshift performance of contrast is that it is caused by an emotional reaction to the rats downshifted in reward with their performance in three reward reduction. Terms such as anger, depression, dis­ procedures frequently used to assess anxiety or fear in rats: appointment, andfrustration have often been used in re­ the elevated plus-maze, context-shock fear conditioning, ferring to a rat's or a monkey's reaction to reduced reward and emergence from the home cage to an open field. ie.g., Amsel, 1992; Crespi, 1942, 1944; Flaherty, Krauss, Correlational and factor analytic approaches to animal Rowan, & Grigson, 1994; Gray, 1982, 1987; Spence, models ofanxiety have been used in a number of recent 1956), Evidence supporting the involvement of some papers. Belzung and Le Pape (1994) examined the cor­ form ofstress in negative contrast includes the success of relations in behavior among five different novelty related antianxiety agents (e.g., benzodiazepines, ethanol, bar­ tests: light/dark choice, elevated plus-maze, holeboard, biturates, and morphine) in alleviating aspects ofcontrast free exposure to a novel space, and confrontation with a (Becker & Flaherty, 1982; Flaherty, 1991b, 1996), the el­ novel object. The authors concluded the five different tests evation ofcorticosteroids as a consequence ofreward re­ ofnovelty induced anxiety were not measuring the same duction (Flaherty, Becker, & Pohorecky, 1985; Goldman, psychological state. In a factor analytic study ofdefensive Coover, & Levine, 1973; Mitchell & Flaherty, 1998), co­ behaviors in mice, Griebel, Blanchard, and Blanchard variation of contrast and other forms ofemotional reac­ (1996) concluded that there were five different aspects of tivity in rats selectively bred for performance in avoid­ anxiety measured by their 17 variables. Other studies have ance learning (Flaherty & Rowan, 1989), and the role of also raised the issue that different tasks or test procedures amygdala lesions in reducing contrast (Becker, Jarvis, may be measuring different aspects ofanxiety (File, 1991, Wagner, & Flaherty, 1984). 1995; Handley, McBlane, Critchley, & Njung'e, 1993; Rodgers, Cole, Aboualfa, & Stephenson, 1995). In some cases, a single test may measure multiple components of This research was funded by NIH Grant MH48835 and by funds from anxiety. Exposure ofmice to a single 5-min trial in an el­ the Dean of Arts and SCIencesat Rutgers to the first author, The assis­ evated plus-maze may yield from two to six factors, de­ tance of Cynthia Coppotelli and Matthew Kelsey is greatly appreciated, pending on the number and nature ofdependent variables Correspondence should be addressed to C. F.Flaherty, Psychology De­ partment, New Brunswick campus, Rutgers University. 152 Freling­ scored (Rodgers & Johnson, 1995). However, the sub­ huysen Rd., Piscataway, NJ 08854-8020 (e-mail: tlaherty@psycho-b. stantial effectiveness ofthe benzodiazepine tranquilizers rutgers.edu). in many animal models ofanxiety suggests that there must 397 Copyright 1998 Psychonomic Society, Inc, 398 FLAHERTY, GREENWOOD, MARTIN, AND LESZCZUK also be some degree ofcommonality (Davis, 1991; Fla­ suppress open-arm entries (Handley et al., 1993; Pellow herty, 1991a, 1991b; Howard & Pollard, 1991; Lister, & File, 1986; Rodgers et aI., 1995). 1991). Behavior in a second trial in the elevated plus-maze In comparing negative contrast with other models of differs from that seen on the first trial. Benzodiazepines anxiety, we used a negative contrast procedure that in­ have been found to be ineffective in the second trial, re­ volved the consumption of sugar solutions. Rats were gardless of whether they were administered on the first given access to a 32% sucrose solution for 5 min a day trial, leading to the suggestion that the second trial mea­ for 10 days, and, on the 11th day, shifted to a 4% sucrose sures a different type ofanxiety than the first trial (File, solution. Typically, the "shifted" rats lick substantially 1990). This has been supported by factor analytic stud­ less ofthe 4% solution than do "unshifted" controls, but ies that found that the measures ofTrial 1 load on a dif­ the shifted rats recover from contrast after approximately ferent factor from those ofTrial 2 (e.g., Fernandes & File, 4 days of access to the new solution (Flaherty, Krauss, 1996; File, Zangrossi, Viana, & Graeff, 1993). Rowan, & Grigson, 1994). The involvement ofsome as­ Context-shock fear conditioning differs from the above pect ofanxiety or stress in negative contrast is indicated models in that it involves a physically aversive event. by the fact that corticosterone levels are elevated after Corticosterone levels have been shown to be elevated after the 2nd, but not the 1st, postshift day (Flaherty et aI., 1985; exposure to the context in which shocks had been given Mitchell & Flaherty, 1998) and that chlordiazepoxide (Urban, Van de Kar, Lorens, & Bethea, 1986), and benzo­ and ethanol reduce contrast when administered acutely diazepines disrupt conditioned fear (Fanselow & Helm­ on the 2nd postshift day, although they are not effective stetter, 1988; Sanger & Joly, 1985), whereas anxiogenics on the 1st postshift day (Flaherty, 1996; Flaherty, Grig­ enhance conditioned fear (Fanselow, Helmstetter, & Cal­ son, & Lind, 1990). cagnetti, 1991). The test battery selected for comparison with contrast The principal purpose of this experiment was to de­ in the present experiment included a measure ofnovelty­ termine whether behavior at different stages ofthe con­ induced anxiety (emergence from the home cage to an trast recovery cycle was differentially correlated with open field), conditioned fear (context-shock pairings), these tests. A secondary purpose was to determine the and a test that involved both generalized anxiety and a relatedness ofthe other three tests themselves. specific fear ofopen places (elevated plus-maze). Previ­ ous studies have investigated novelty-induced anxiety by METHOD measuring latency to emerge from a familiar area to an unfamiliar area (Corey, 1978; Hughes, 1968; Maren, Subjects Patel, Thompson, & Mitchell, 1993), such as from the Sixty male Sprague-Dawley rats purchased from Harlan were animal's cage to a table top (Henck, Mattsson, Rezabek, used as subjects. The rats were approximately 90 days old, weigh­ Carlson, & Rech, 1994), runway (King, 1968), or open ing 300-350 g at the beginning ofthe experiment. The animals were field (Jellestad, Markowska, Bakke, & Walther, 1986). individually housed under 14:lO-h light:dark conditions. The rats were given free access to water and were maintained at 82% oftheir The evidence that exposure to novel context induces anx­ free-fed weight by once-daily feedings. The deprivation regimen is iety in laboratory animals includes increased heart rate, standard for negative contrast experiments. increased defecation, and increased corticosterone release The rats were run in two consecutive groups of30 each, approx­ (Blanchard, Kelley, & Blanchard, 1974; Crawley, 1985; imately I h months apart. Thirty ofthe subjects were subsequently Misslin & Cigrang, 1986). In these tests, antianxiety drugs used in an anticipatory contrast study and then underwent fear con­ increase ambulation (Treit, 1985), increase exploration ditioning. The fear conditioning, but not the anticipatory contrast, data
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0020892 A1 Thompson Et Al
    US 20170020892A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0020892 A1 Thompson et al. (43) Pub. Date: Jan. 26, 2017 (54) USE OF NEGATIVE MODULATORS OF Related U.S. Application Data GABA RECEPTORS CONTAINING ALPHAS SUBUNITS AS FAST ACTING (60) Provisional application No. 61/972,446, filed on Mar. ANTDEPRESSANTS 31, 2014. (71) Applicant: University of Maryland, Baltimore, Publication Classification Baltimore, MD (US) (51) Int. Cl. A 6LX 3/557 (2006.01) (72) Inventors: Scott Thompson, Baltimore, MD (US); A6II 3/53 (2006.01) Mark D. Kvarta, Ellicott City, MD A6II 45/06 (2006.01) (US); Adam Van Dyke, Baltimore, MD (52) U.S. Cl. (US) CPC ........... A61 K3I/55.17 (2013.01); A61K 45/06 (2013.01); A61 K3I/53 (2013.01) (73) Assignee: University of Maryland, Baltimore, Baltimore, MD (US) (57) ABSTRACT Embodiments of the disclosure include methods and com (21) Appl. No.: 15/300,984 positions related to treatment of one or more medical conditions with one or more negative modulators of GABA (22) PCT Filed: Mar. 31, 2015 receptors. In specific embodiments, depression and/or Sui cidability is treated or ameliorated or prevented with one or (86) PCT No.: PCT/US2O15/023667 more negative modulators of GABA receptors, such as a S 371 (c)(1), partial inverse agonist of a GABA receptor comprising an (2) Date: Sep. 30, 2016 alpha5 subunit. Patent Application Publication Jan. 26, 2017. Sheet 1 of 12 US 2017/002O892 A1 ×1/ /|\ Patent Application Publication Jan. 26, 2017. Sheet 3 of 12 US 2017/002O892 A1 & Patent Application Publication Jan.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures
    Hindawi Publishing Corporation ISRN Neurology Volume 2013, Article ID 875834, 48 pages http://dx.doi.org/10.1155/2013/875834 Review Article Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures A. S. Bazyan1 and G. van Luijtelaar2 1 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia 2 Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands Correspondence should be addressed to G. van Luijtelaar; [email protected] Received 21 January 2013; Accepted 6 February 2013 Academic Editors: R. L. Macdonald, Y. Wang, and E. M. Wassermann Copyright © 2013 A. S. Bazyan and G. van Luijtelaar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be dueto an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic Ih pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes.
    [Show full text]
  • Ethanol Acts Directly on Extrasynaptic Subtypes of GABAA Receptors to Increase Tonic Inhibition Vijayalakshmi Santhakumara, Martin Wallnerb, Thomas S
    Alcohol 41 (2007) 211e221 Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition Vijayalakshmi Santhakumara, Martin Wallnerb, Thomas S. Otisc,* aDepartment of Neurology, David Geffen School of Medicine, University of California, Box 951763, 63-314 CHS, Los Angeles, CA 90095-1763, USA bDepartment of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Box 951763, 63-314 CHS, Los Angeles, CA 90095-1763, USA cDepartment of Neurobiology, David Geffen School of Medicine, University of California, Box 951763, 63-314 CHS, Los Angeles, CA 90095-1763, USA Received 5 February 2007; received in revised form 20 April 2007; accepted 20 April 2007 Abstract Based on the similarity of ethanol intoxication to the behavioral effects of drugs known to target g-aminobutyric acid type A (GABAA) receptors (GABARs), it has been suspected for decades that ethanol facilitates the activity of GABA. Even so, it has been surprisingly dif- ficult to identify molecular targets of ethanol. Research conducted over the past several years suggests that a subclass of GABARs (those containing d subunits) responds in a relevant concentration range to ethanol. Although d subunit-containing GABARs are not ubiquitously expressed at inhibitory synapses like their g subunit-containing, synaptic counterparts, they are found in many neurons in extrasynaptic locations. Here, they give rise to a tonic form of inhibition that can potently suppress neuronal excitability. Studies have shown that both recombinant and native d subunit-containing GABARs (1) are modulated by behaviorally relevant (i.e., low millimolar) concentrations of ethanol, (2) directly bind ethanol over the same concentration range, (3) show altered function upon single amino substitutions linked to changes in behavioral responsiveness to ethanol, and (4) are a site of action of Ro15-4513, a competitive antagonist of ethanol binding and a drug which prevents many of the behavioral aspects of ethanol intoxication.
    [Show full text]
  • Product Update Price List Winter 2014 / Spring 2015 (£)
    Product update Price list winter 2014 / Spring 2015 (£) Say to affordable and trusted life science tools! • Agonists & antagonists • Fluorescent tools • Dyes & stains • Activators & inhibitors • Peptides & proteins • Antibodies hellobio•com Contents G protein coupled receptors 3 Glutamate 3 Group I (mGlu1, mGlu5) receptors 3 Group II (mGlu2, mGlu3) receptors 3 Group I & II receptors 3 Group III (mGlu4, mGlu6, mGlu7, mGlu8) receptors 4 mGlu – non-selective 4 GABAB 4 Adrenoceptors 4 Other receptors 5 Ligand Gated ion channels 5 Ionotropic glutamate receptors 5 NMDA 5 AMPA 6 Kainate 7 Glutamate – non-selective 7 GABAA 7 Voltage-gated ion channels 8 Calcium Channels 8 Potassium Channels 9 Sodium Channels 10 TRP 11 Other Ion channels 12 Transporters 12 GABA 12 Glutamate 12 Other 12 Enzymes 13 Kinase 13 Phosphatase 14 Hydrolase 14 Synthase 14 Other 14 Signaling pathways & processes 15 Proteins 15 Dyes & stains 15 G protein coupled receptors Cat no. Product name Overview Purity Pack sizes and prices Glutamate: Group I (mGlu1, mGlu5) receptors Agonists & activators HB0048 (S)-3-Hydroxyphenylglycine mGlu1 agonist >99% 10mg £112 50mg £447 HB0193 CHPG Sodium salt Water soluble, selective mGlu5 agonist >99% 10mg £59 50mg £237 HB0026 (R,S)-3,5-DHPG Selective mGlu1 / mGlu5 agonist >99% 10mg £70 50mg £282 HB0045 (S)-3,5-DHPG Selective group I mGlu receptor agonist >98% 1mg £42 5mg £83 10mg £124 HB0589 S-Sulfo-L-cysteine sodium salt mGlu1α / mGlu5a agonist 10mg £95 50mg £381 Antagonists HB0049 (S)-4-Carboxyphenylglycine Competitive, selective group 1
    [Show full text]
  • At the Gabaa Receptor
    THE EFFECTS OF CHRONIC ETHANOL INTAKE ON THE ALLOSTERIC INTERACTION BE T WEEN GABA AND BENZODIAZEPINE AT THE GABAA RECEPTOR THESIS Presented to the Graduate Council of the University of North Texas in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE By Jianping Chen, B.S., M.S. Denton, Texas May, 1992 Chen, Jianping, The Effects of Chronic Ethanol Intake on the Allsteric Interaction Between GABA and BenzodiazeDine at the GABAA Receptor. Master of Science (Biomedical Sciences/Pharmacology), May, 1992, 133 pp., 4 tables, 3.0 figures, references, 103 titles. This study examined the effects of chronic ethanol intake on the density, affinity, and allosteric modulation of rat brain GABAA receptor subtypes. In the presence of GABA, the apparent affinity for the benzodiazepine agonist flunitrazepam was increased and for the inverse agonist R015-4513 was decreased. No alteration in the capacity of GABA to modulate flunitrazepam and R015-4513 binding was observed in membranes prepared from cortex, hippocampus or cerebellum following chronic ethanol intake or withdrawal. The results also demonstrate two different binding sites for [3H]RO 15-4513 in rat cerebellum that differ in their affinities for diazepam. Chronic ethanol treatment and withdrawal did not significantly change the apparent affinity or density of these two receptor subtypes. ACKNOWLEDGEMENT I would like to express my sincere thanks to my major professor, Dr. Michael W. Martin. .I deeply appreciate his guidance and direction which initiated this study, and his kindness in sharing his laboratory facilities with me. His suggestions, patience, encouragement and support in the laboratory have contributed significantly to my understanding of the receptor mechanism of drug action.
    [Show full text]
  • Pharmacology of the Β-Carboline FG-7142, a Partial
    CNS Drug Reviews Vol. 13, No. 4, pp. 475–501 C 2007 The Authors Journal compilation C 2007 Blackwell Publishing Inc. Pharmacology of the β-Carboline FG-7142, a Partial Inverse Agonist at the Benzodiazepine Allosteric Site of the GABAA Receptor: Neurochemical, Neurophysiological, and Behavioral Effects Andrew K. Evans and Christopher A. Lowry University of Bristol, Henry Wellcome Laboratories of Integrative Neuroscience and Endocrinology, Bristol, UK Keywords: Anxiety — Benzodiazepine binding site — Carbolines — FG-7142 — GABAA receptors. ABSTRACT Given the well-established role of benzodiazepines in treating anxiety disorders, β- carbolines, spanning a spectrum from full agonists to full inverse agonists at the benzo- diazepine allosteric site for the GABAA receptor, can provide valuable insight into the neural mechanisms underlying anxiety-related physiology and behavior. FG-7142 is a par- tial inverse agonist at the benzodiazepine allosteric site with its highest affinity for the α1 subunit-containing GABAA receptor, although it is not selective. FG-7142 also has its highest efficacy for modulation of GABA-induced chloride flux mediated at the α1 subunit-containing GABAA receptor. FG-7142 activates a recognized anxiety-related neu- ral network and interacts with serotonergic, dopaminergic, cholinergic, and noradrenergic modulatory systems within that network. FG-7142 has been shown to induce anxiety- related behavioral and physiological responses in a variety of experimental paradigms across numerous mammalian and non-mammalian species, including humans. FG-7142 has proconflict actions across anxiety-related behavioral paradigms, modulates attentional processes, and increases cardioacceleratory sympathetic reactivity and neuroendocrine re- activity. Both acute and chronic FG-7142 treatment are proconvulsive, upregulate cortical adrenoreceptors, decrease subsequent actions of GABA and β-carboline agonists, and in- crease the effectiveness of subsequent GABAA receptor antagonists and β-carboline inverse Address correspondence and reprint requests to: Dr.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,636,316 B2 Cohen Et Al
    USOO9636316B2 (12) United States Patent (10) Patent No.: US 9,636,316 B2 Cohen et al. (45) Date of Patent: May 2, 2017 (54) BACLOFENAND ACAMPROSATE BASED (58) Field of Classification Search THERAPY OF NEUROLOGICAL DISORDERS CPC ... A61K 31/197; A61K 31/445; A61K 31/42: A61K 31/44; A61K 31/195; A61 K (71) Applicant: PHARNEXT, Issy les Moulineaux (FR) 31/185; A61K 31/138: A61K 31/164 (72) Inventors: Daniel Cohen, Saint Cloud (FR); Ilya USPC ................................. 514/567, 555, 568, 665 Chumakov, Vaux-le-Penil (FR); See application file for complete search history. Serguei Nabirochkin, Chatenay-Malabry (FR); Emmanuel Vial, Paris (FR); Mickael Guedj. Paris (56) References Cited (FR) U.S. PATENT DOCUMENTS (73) Assignee: PHARNEXT, Issy les Moulineaux (FR) 6,391922 B1 5/2002 Fogel 8,741,886 B2 6, 2014 Cohen et al. Notice: Subject to any disclaimer, the term of this 2001, 0004640 A1 6/2001 Inada et al. (*) 2001 OO23246 A1 9, 2001 Barritault et al. patent is extended or adjusted under 35 2004.0102525 A1 5, 2004 KOZachuk U.S.C. 154(b) by 0 days. 2008. O18851.0 A1 8, 2008 Yoshino 2009 OO69419 A1 3/2009 Jandeleit et al. (21) Appl. No.: 14/861,169 2009/O197958 A1 8/2009 Sastry et al. 2011 O230659 A1 9/2011 Tsukamoto et al. (22) Filed: Sep. 22, 2015 2012fO27083.6 A1 10, 2012 Cohen et al. (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2016/OOOO736A1 Jan. 7, 2016 EP 1 S63 846 8, 2005 EP 1837 O34 9, 2007 WO WO O1, 58.476 8, 2001 WO WO O3,OOT993 1, 2003 Related U.S.
    [Show full text]
  • GABA Receptor Gamma-Aminobutyric Acid Receptor; Γ-Aminobutyric Acid Receptor
    GABA Receptor Gamma-aminobutyric acid Receptor; γ-Aminobutyric acid Receptor GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory neurotransmitter in the vertebrate central nervous system. There are two classes of GABA receptors: GABAA and GABAB. GABAA receptors are ligand-gated ion channels (also known as ionotropic receptors), whereas GABAB receptors are G protein-coupled receptors (also known asmetabotropic receptors). It has long been recognized that the fast response of neurons to GABA that is blocked by bicuculline and picrotoxin is due to direct activation of an anion channel. This channel was subsequently termed the GABAA receptor. Fast-responding GABA receptors are members of family of Cys-loop ligand-gated ion channels. A slow response to GABA is mediated by GABAB receptors, originally defined on the basis of pharmacological properties. www.MedChemExpress.com 1 GABA Receptor Agonists, Antagonists, Inhibitors, Activators & Modulators (+)-Bicuculline (+)-Kavain (d-Bicuculline) Cat. No.: HY-N0219 Cat. No.: HY-B1671 (+)-Bicuculline is a light-sensitive competitive (+)-Kavain, a main kavalactone extracted from Piper antagonist of GABA-A receptor. methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels. Purity: 99.97% Purity: 99.98% Clinical Data: No Development Reported Clinical Data: Launched Size: 10 mM × 1 mL, 50 mg, 100 mg Size: 10 mM × 1 mL, 5 mg, 10 mg (-)-Bicuculline methobromide (-)-Bicuculline methochloride (l-Bicuculline methobromide) Cat. No.: HY-100783 (l-Bicuculline methochloride) Cat. No.: HY-100783A (-)-Bicuculline methobromide (l-Bicuculline (-)-Bicuculline methochloride (l-Bicuculline methobromide) is a potent GABAA receptor methochloride) is a potent GABAA receptor antagonist.
    [Show full text]
  • Title: “Peri-Natal Toxicity by Type-1 and Type –2 Pyrethroids”
    Medical Research Archives.Vol. 5 Issue 1.January 2017. Perinatal exposure to type I and type II pyrethroids provoke persistent behavioral effects during rat offspring development Abstract Authors: 1 Antonio Francisco Godinho *, Background: Pesticides have been 1 Fabio Anselmo , extensively used around the word but 1 Daniel França Horta concerns over their influence on environment and health is growing. Synthetic pyrethroids are potent insecticides considered to be Authors Note: 1 neurotoxicant. São Paulo State University (UNESP), Hypothesis: We hypothesize that perinatal Institute of Biosciences, Center for exposure to type I (Cypermethrin ) and type II Toxicological Assistance, Laboratory of (d-Allehtrin) pyrethroids would produce Neurobehavioral Research, Botucatu, Sao behavioral effects on offspring during Paulo, Brazil. development. Methods: Pregnant Wistar rats were exposed *Corresponding author during gestation and lactation periods, and their pups were evaluated for somatic and Address: Rua Dr. Antonio Wagner Celso sensory motor changes after weaning, and for Zanin, s/n, CEP 18618-689, Distrito de locomotor activity, motor coordination, and Rubião Junior, Botucatu, SP. Tel.: +55 14 anxiety-like behavior at post natal day 23 and 3813045; Fax: +55 14 3815 3744. 75 (PND23 and PND25). E-mail address: [email protected] (A.F. Results: Cyp and All provoked somatic and Godinho). sensory-motor reflex alterations in weaned pups. In PND23 pups both Cyp and All decreased locomotor activity and motor coordination, and provoke anxiogenic-like effect. In PND75 pups both Cyp and All decreased locomotor activity and motor coordination. Cyp but not All provoked anxiogenic-like effect. Conclusion: Perinatal exposure to selected type I (d-allethrin) and type II (cypermethrin) pyrethroids provoked physical and sensory- motor alterations in weaned pups and persistent behavioral effects during offspring development, suggesting Cyp with a major power to cause neurotoxicity through time.
    [Show full text]