Visual Perception

Total Page:16

File Type:pdf, Size:1020Kb

Visual Perception Overview Vision & Visuals Human Visual Systems Visual Perceptions 3D Depth Cues 3D Stereographics Terminology Stereo Approximation 3D Displays & Auto-Stereoscopic Displays 029515 Desiggpyn Issues for VR Visual Displays 2010년 봄학기 3/29/2010 박경신 Human Visual System Human Eyes Light is focused by the cornea and the lens onto the retina Light passing through the center of the cornea and thlhe lens hi hihfts the fovea (or Macu l)la) Iris permits the eye to adapt to varying light levels, contro lling the amoun t o f lig ht en ter ing the eye. Retina is optically receptive layer like a film in a camera Retina translate light into nerve signals. Retina has photoreceptors (rods & cones) and inter- neurons. Photoreceptors (Rods & Cones) Rods & Cones Distribution Rods Rods & Cones Distribution Operate at lower illumination levels Fovea Luminance-only only cone receptors with The most sensitive to light very hihigh h dens itity At night where the cones cannot detect the light, the rods provide us with a black and white view of the world no rods The rods are also more sensitive to the blue end of the no S-cones (blue cones) spectrum responsible for high visual Cones acuity operate at higher illumination levels Blind Spot provide better spatial resolution and contrast sensitivity no receptors provide color vision (currently believed there are 3 types of Axons o f a ll gangli lion ce lls cones in human eye, one attuned to red, one to green and pass through the blind spot one to blue) [Young-Helmholtz Theory] on the way to the brain provide visual acuity Visual Spectrum Color Perception We perceive electromagnetic There are three types of energy having wavelengths cones, referred to as S, M, in the range 400 nm ~ 700 and L. They are roughly nm as visible light. equivalent to blue, green, ~450nm : violet and red sensors. Their peak 458nm ~ 480nm : blue sensitivities are located at 420 nm, 534 nm, 564 nm. 510nm ~ 550nm : green Color ppperception results 570nm ~ 590nm : ye llow Spectral Sensitivity of Cones from the simultaneous 590nm ~ 630nm : orange stimulation of the 3 cone 630nm ~ : re d types. Colorblindness results from a deficiency of one cone type. Chromatic Color Visual Perception Hue Visual Acuity distinguishes between colors Visual acuity is measured as the angle subtended by the human eye. Saturation Snellen fraction 20/X where the viewer sees at 20 feet detail how far is the color from a that the average person can see at X feet gray of equal intensity The standard definition of normal visual acuity (20/20 vision) vivid colors (red, blue) are is the ability to resolve a spatial pattern separated by an angle highly saturated, further from of 1 arc min gray A resolution of about 1 arc min is necessary to get to the pastltel co lors (ik(pink, s kky bl)blue) region of peak sensitivity are lightly saturated, closer to gray Brightness CIE (Commission Internationale perceived the intensity of a lum inous o bjec t d’Eclairage) Chromaticity Diagram 20/20 CRT 20/40 HMD 20/425 BOOM 20/85 CAVE 20/110 Visual Perception Visual Perception Temporal Resolution Color The real world doesn’t flicker. CRTs do flicker because the Most visual perceptual processes are driven by intensity not image is constantly being refreshed. color. We perceive flickering if the image on CRT isn’t refreshed fast Motion system is color blind, depth perception is color blind, enough. object recognition is color blind Most people stop perceiving the flicker between 15 Hz (for But uniquely colored objects are easy to find dark image) and 50 Hz (for bright images). Field of view (FOV) Some people can perceive flicking even at 60 Hz for a bright Each eye has a horizontal fov of 150° (60° towards the nose display with a large field of view. and90d 90° to the s ide ) an d a ver tica l fov o f 120° (50° up and70d 70° Very large display may require up to 85 Hz. down). Luminance Most HMDs have a FOV of about 40 to 60. The eye has a dynamic range of 7 orders of magnitude. Motion The eye is sensitive to ratios of intensities rather than to Motion of the visual field causes a sense of motion even abltdiffbsolute differences. BihtBrightness = Lum inance ^033^0.33. without physical motion. Studies have shown that a low To make something appear n times brighter the luminance resolution peripheral image contributes strongly to the effect must be increased by n^3. Visual Depth Cues Visual 3D Depth Cues - Pii“dh”ihPerceiving “depth” with one eye c ldlosed Linear perspective Objec ts ge t sma ller the fur ther away they are an d para lle l line converge in distance. Size of known objects We expect certain object to be smaller than others. Detail (texture gradient) Close objects appear in more detail, distant objects less. Occlusion (hidden surfaces) An object that blocks another is assumed to be in the foreground. Lighting and Shadows Closer objects are brighter, distant ones dimmer. Shadow is a ffliform of occlusion. Relative motion (motion parallax due to head motion) Objjyects further away seem to move more slowl yjy than objects in the foreground. 13 Perspective Size The observance that parallel lines converge at a single Compare the size of objects with our memory of similar vanihiishing po int. objec ts to approx ima te how far away the o bjec t is from Relies on the assumption that the object being viewed is us. construc te d o f para lle l lines, suc h as mos t bu ildings. Comparing the size of objects with respect to other objects of the same type to determine the relative distance between objects. Detail Occlusion Our eyes cannot discern as much detail of a texture at a An object occludes our view of another distance as compare d w it h up c lose. The strongest depth cue Atmospheric effects, such as haze and fog, cause more dis tan t o bjec ts to be v isua lly less dis tinc t. Liggghting and Shadow Motion Parallax Brighter objects are perceived as being closer. As an observer moves, nearby objects appear to move rapidly while far objects appear to move slowly. With one source of light, all shadows lie in same Come from the parallax created by the changing relative direction. ppjgosition between the head and the object being The object covered by the shadow is perceived to be observed. further away than the object in the light. Generally more important than stereoscopy for VR. A form o f s ha ding tha t in dica te the pos itiona l relationship between two objects. Visual Depth Cues Stereoscopy - UiUsing bo th eyes Binocular vision occurs when Binocular cues: binocular disparity (stereopsis) two eyyges look at the same thing This is the difference in the images projected onto the back of at a slightly different angle, the eye (and then onto the visual cortex) because the eyes are resulting in two slightly different seppyyarated horizontally by the interocular distance. images. Oculomotor cues: accommodation & convergence The brain must match points Based on information from muscles in the eye between the two separate Accommodation (focus) images seen by the two eyes. left right This is the muscle tension needed to change the focal length of the The slight difference between eye lens in order to focus at a particular depth. the v iewpo in ts o f your two eyes Convergence is called binocular disparity This is the muscle tension required to rotate each eye so that it is fifacing t hfhe foca l po int. Stereopsis is depth perception Accommodation and Convergence work together (when eyes due to binocular disparity converggye to a certain distance, automatically accommodates and Possiblyypp 12% of people have no vice versa) stereo vision or some problem with stereo vision. Accommodation (()focus) Convergence Some Terminology Homologous Points Horizontal Parallax (Binocular Disparity) When the re tina l images o f an o bjec t fa ll on dispara te po in ts on the two retinas, these points differ only in their horizontal position. Thlhe value gi ibven by R – L Stereo Window (Stereo Plane) The point at which there is no difference in parallax between the two eye views Usually at the same depth as the monitor screen or the projection surface. Scan line Homologous Points Points which correspppyond to each other in the separate eye views. Vertical Displacement Vertical parallax between homologous points relative to the line Stereo Plane that the two eyes form. Some Terminology Some Terminology Interocular Distance Positive Parallax The distance between the left and right eyes, usually about The point lies behind the stereo window (On the opposite side 2.5 inches (i.e., 6.5 cm) from the observer) Hypostereo/Giantism Negative Parallax Decreasing the distance between the left and right eyes to The point lies in front of the stereo window (On the same side as show stereoscopic detail on small items the observer) Hyperstereo/Lilliputism Zero Parallax Increasing the distance between the left and right eyes to The point is at the same depth as the stereo window (Both eyes shidililhow stereoscopic detail in large scenes see thi)he same image) Interocular Crosstalk (Ghosting) Each eye should only see it’ s view but sometimes it can see part of the other eye view as well. This is distracting and causes eye fatigue. Positive Parallax Negative Parallax AdtiAccommodation-convergence mithismatch AdtiAccommodation-convergence mithismatch R L R L Iffff Objects are too close in front of the projection plane, negative parallax will increase.
Recommended publications
  • The Perfect Mix Getting Engaged in College
    05 07 10 | reportermag.com GETTING ENGAGED IN COLLEGE The other kind of RIT Rings. THE PERFECT MIX Remember: intro, rising action, climax, denouement and conclusion. ROADTRIP TO THE FUTURE Four men. Four cities. One mission. EDITOR’S NOTE TABLE OF CONTENTS 05 07 10 | VOLUME 59 | ISSUE 29 EDITOR IN CHIEF Madeleine Villavicencio | [email protected] My Innovative Mixtape MANAGING EDITOR Emily Mohlmann Every few weeks or so, I abandon the “shuffle play all” function on my MP3 player, turn off Genius on | [email protected] iTunes, and make a playlist. I spend hours listening to track after track, trimming down the set list and COPY EDITOR Laura Mandanas attempting to get the transitions just right. Sometimes, it just comes together; other times, I just can’t | [email protected] quite get it right. But one thing’s for certain: each mix is a reflection of who I am at the time of its creation. NEWS EDITOR Emily Bogle And if it’s good enough and means something, I’ll share it with someone special. | [email protected] LEISURE EDITOR Alex Rogala It crossed my mind to share a complete and perfected mix, but I decided that would take away from its | [email protected] original value. Instead, I’ve decided to share something unfinished and challenge you to help me find the FEATURES EDITOR John Howard perfect mix. Add or cut tracks as you please, and jumble them up as you see fit. And when you think you’ve | [email protected] got it, send that final track list my way.
    [Show full text]
  • Virtual Reality and Visual Perception by Jared Bendis
    Virtual Reality and Visual Perception by Jared Bendis Introduction Goldstein (2002) defines perception as a “conscious sensory experience” (p. 6) and as scientists investigate how the human perceptual system works they also find themselves investigating how the human perceptual system doesn’t work and how that system can be fooled, exploited, and even circumvented. The pioneers in the ability to control the human perceptual system have been in the field of Virtual Realty. In Simulated and Virtual Realities – Elements of Perception, Carr (1995) defines Virtual Reality as “…the stimulation of human perceptual experience to create an impression of something which is not really there” (p. 5). Heilig (2001) refers to this form of “realism” as “experience” and in his 1955 article about “The Cinema of the Future” where he addresses the need to look carefully at perception and breaks down the precedence of perceptual attention as: Sight 70% Hearing 20% Smell 5% Touch 4% Taste 1% (p. 247) Not surprisingly sight is considered the most important of the senses as Leonardo da Vinci observed: “They eye deludes itself less than any of the other senses, because it sees by none other than the straight lines which compose a pyramid, the base of which is the object, and the lines conduct the object to the eye… But the ear is strongly subject to delusions about the location and distance of its objects because the images [of sound] do not reach it in straight lines, like those of the eye, but by tortuous and reflexive lines. … The sense of smells is even less able to locate the source of an odour.
    [Show full text]
  • COMS W4172 Perception, Displays, and Devices 3
    COMS W4172 Perception, Displays, and Devices 3 Steven Feiner Department of Computer Science Columbia University New York, NY 10027 www.cs.columbia.edu/graphics/courses/csw4172 February 16, 2021 1 Stereoscopic Viewing Wheatstone, 1838 Passive . Spatial multiplexing . “Free viewing” http://www.luminous-lint.com/app/image/06751152706639519425853376/ . Stereoscope . Presents each eye with its own view Brewster, 1839 Holmes, 1861 http://www.gilai.com/product_763/Holms-Wood-Stereoscope-with-Green-Velvet-Lining-and-Stereocard. 2 Feiner, COMS W4172, Spring 2021 Stereoscopic Viewing Passive . Spatial multiplexing . “Free viewing” . Stereoscope presents each eye with its own view 3 What’s wrong with these pictures? 4 Feiner, COMS W4172, Spring 2021 Commercial versions (w/o camera support): • www.amazon.com/Hasbro-Viewer-touch- Stereoscopic Viewing iPhone-Black/dp/B004T7VI2Y • www.samsung.com/global/galaxy/gear-vr For commodity • arvr.google.com/cardboard • arvr.google.com/daydream/smartphonevr Passive mobile devices • holokit.io/ (optical see-through) . Spatial multiplexing . VR: Stereoscopic viewer for smartphone/tablet . AR: 1. Cheat: Separate left/right stereoscopic views of virtual objects combined with L–R shifted copies of a monoscopic camera view 2. Full video see-through stereo using additional camera lens (e.g., www.kula3d.com/kula-bebe) Stereo viewer used with Columbia’s Goblin XNA and Nokia Lumia 800 3. Optical see-through stereo using 2012 additional optics (e.g., holokit.io) Google Cardboard, 2014 https://arvr.google.com/cardboard/ Stereo viewer for Nokia Lumia 800 courtesy of USC ICT MxR Lab, 2012 https://web.archive.org/web/20190314093037/http://projects.ict.usc.edu/mxr/diy/fov2go-viewer/ 5 Autostereoscopic Viewing Passive .
    [Show full text]
  • Chromostereo.Pdf
    ChromoStereoscopic Rendering for Trichromatic Displays Le¨ıla Schemali1;2 Elmar Eisemann3 1Telecom ParisTech CNRS LTCI 2XtremViz 3Delft University of Technology Figure 1: ChromaDepth R glasses act like a prism that disperses incoming light and induces a differing depth perception for different light wavelengths. As most displays are limited to mixing three primaries (RGB), the depth effect can be significantly reduced, when using the usual mapping of depth to hue. Our red to white to blue mapping and shading cues achieve a significant improvement. Abstract The chromostereopsis phenomenom leads to a differing depth per- ception of different color hues, e.g., red is perceived slightly in front of blue. In chromostereoscopic rendering 2D images are produced that encode depth in color. While the natural chromostereopsis of our human visual system is rather low, it can be enhanced via ChromaDepth R glasses, which induce chromatic aberrations in one Figure 2: Chromostereopsis can be due to: (a) longitunal chro- eye by refracting light of different wavelengths differently, hereby matic aberration, focus of blue shifts forward with respect to red, offsetting the projected position slightly in one eye. Although, it or (b) transverse chromatic aberration, blue shifts further toward might seem natural to map depth linearly to hue, which was also the the nasal part of the retina than red. (c) Shift in position leads to a basis of previous solutions, we demonstrate that such a mapping re- depth impression. duces the stereoscopic effect when using standard trichromatic dis- plays or printing systems. We propose an algorithm, which enables an improved stereoscopic experience with reduced artifacts.
    [Show full text]
  • A Novel Walk-Through 3D Display
    A Novel Walk-through 3D Display Stephen DiVerdia, Ismo Rakkolainena & b, Tobias Höllerera, Alex Olwala & c a University of California at Santa Barbara, Santa Barbara, CA 93106, USA b FogScreen Inc., Tekniikantie 12, 02150 Espoo, Finland c Kungliga Tekniska Högskolan, 100 44 Stockholm, Sweden ABSTRACT We present a novel walk-through 3D display based on the patented FogScreen, an “immaterial” indoor 2D projection screen, which enables high-quality projected images in free space. We extend the basic 2D FogScreen setup in three ma- jor ways. First, we use head tracking to provide correct perspective rendering for a single user. Second, we add support for multiple types of stereoscopic imagery. Third, we present the front and back views of the graphics content on the two sides of the FogScreen, so that the viewer can cross the screen to see the content from the back. The result is a wall- sized, immaterial display that creates an engaging 3D visual. Keywords: Fog screen, display technology, walk-through, two-sided, 3D, stereoscopic, volumetric, tracking 1. INTRODUCTION Stereoscopic images have captivated a wide scientific, media and public interest for well over 100 years. The principle of stereoscopic images was invented by Wheatstone in 1838 [1]. The general public has been excited about 3D imagery since the 19th century – 3D movies and View-Master images in the 1950's, holograms in the 1960's, and 3D computer graphics and virtual reality today. Science fiction movies and books have also featured many 3D displays, including the popular Star Wars and Star Trek series. In addition to entertainment opportunities, 3D displays also have numerous ap- plications in scientific visualization, medical imaging, and telepresence.
    [Show full text]
  • Course Notes
    Siggraph ‘97 Stereo Computer Graphics for Virtual Reality Course Notes Lou Harrison David McAllister Martin Dulberg Multimedia Lab Department of Computer Science North Carolina State University ACM SIGGRAPH '97 Stereoscopic Computer Graphics for Virtual Reality David McAllister Lou Harrison Martin Dulberg MULTIMEDIA LAB COMPUTER SCIENCE DEPARTMENT NORTH CAROLINA STATE UNIVERSITY http://www.multimedia.ncsu.edu Multimedia Lab @ NC State Welcome & Overview • Introduction to depth perception & stereo graphics terminology • Methods to generate stereoscopic images • Stereo input/output techniques including head mounted displays • Algorithms in stereoscopic computer graphics Multimedia Lab @ NC State Speaker Biographies: David F. McAllister received his BS in mathematics from the University of North Carolina at Chapel Hill in 1963. Following service in the military, he attended Purdue University, where he received his MS in mathematics in 1967. He received his Ph. D. in Computer Science in 1972 from the University of North Carolina at Chapel Hill. Dr. McAllister is a professor in the Department of Computer Science at North Carolina State University. He has published many papers in the areas of 3D technology and computer graphics and has given several courses in these areas at SPIE, SPSE, Visualization and SIGGRAPH. He is the editor of a book on Stereo Computer Graphics published by Princeton University Press. Lou Harrison received his BS in Computer Science from North Carolina State University in 1987 and his MS in Computer Science, also from NCSU, in 1990. Mr. Harrison has taught courses in Operating Systems and Computer Graphics at NCSU and is currently Manager of Operations for the Department of Computer Science at NCSU while pursuing his Ph.
    [Show full text]
  • 3D-Con2017program.Pdf
    There are 500 Stories at 3D-Con: This is One of Them I would like to welcome you to 3D-Con, a combined convention for the ISU and NSA. This is my second convention that I have been chairman for and fourth Southern California one that I have attended. Incidentally the first convention I chaired was the first one that used the moniker 3D-Con as suggested by Eric Kurland. This event has been harder to plan due to the absence of two friends who were movers and shakers from the last convention, David Washburn and Ray Zone. Both passed before their time soon after the last convention. I thought about both often when planning for this convention. The old police procedural movie the Naked City starts with the quote “There are eight million stories in the naked city; this has been one of them.” The same can be said of our interest in 3D. Everyone usually has an interesting and per- sonal reason that they migrated into this unusual hobby. In Figure 1 My Dad and his sister on a keystone view 1932. a talk I did at the last convention I mentioned how I got inter- ested in 3D. I was visiting the Getty Museum in southern Cali- fornia where they had a sequential viewer with 3D Civil War stereoviews, which I found fascinating. My wife then bought me some cards and a Holmes viewer for my birthday. When my family learned that I had a stereo viewer they sent me the only surviving photographs from my fa- ther’s childhood which happened to be stereoviews tak- en in 1932 in Norwalk, Ohio by the Keystone View Com- pany.
    [Show full text]
  • 3D Display Techniques for Cartographic Purposes: Semiotic Aspects
    Buchroithner, Manfred 3D DISPLAY TECHNIQUES FOR CARTOGRAPHIC PURPOSES: SEMIOTIC ASPECTS Manfred F. Buchroithner*, Robert Schenkel**, Sabine Kirschenbauer*** Dresden University of Technology, Germany Institute of Cartography *[email protected], **[email protected], ***[email protected] KEY WORDS: 3D-Display Techniques, Cartographic Semiotic, Psychological Cues, Cognition ABSTRACT The variety of the cartographic 3D-visualisation is constantly increasing and thereby more and more fields of application are being developed. These facts require that the coherence of technical, perceptive-psychological and cartographic-theoretical aspects has to be subdivided and classified. Through these formulations of interdependence of the single parameters shall be pointed out. The consideration of communication-theoretical and perceptive-theoretical aspects shall lead to a purpose-oriented realisation of the 3D-visualisation techniques according to the user’s necessities. KURZFASSUNG Das thematische Gebiet “Kartographische 3D-Visualisierung”, dessen Vielfältigkeit ständig zunimmt und dem immer mehr Anwendungsbereiche erschlossen werden, erfordert, daß die Zusammenhänge von technisch- verfahrensspezifischen, wahrnehmungspsychologischen und kartographisch-theoretischen Faktoren aufgeschlüsselt und klassifiziert werden. Hierdurch sollen Ansätze einer Interdependanz der einzelnen Parameter aufgezeigt werden. Die Berücksichtigung kommunikationstheoretischer und wahrnehmungstheoretischer Aspekte soll zu einer anwendergerechten
    [Show full text]
  • 3D Frequently Asked Questions
    3D Frequently Asked Questions Compiled from the 3-D mailing list 3D Frequently Asked Questions This document was compiled from postings on the 3D electronic mail group by: Joel Alpers For additions and corrections, please contact me at: [email protected] This is Revision 1.1, January 5, 1995 The information in this document is provided free of charge. You may freely distribute this document to anyone you desire provided that it is passed on unaltered with this notice intact, and that it be provided free of charge. You may charge a reasonable fee for duplication and postage. This information is deemed accurate but is not guaranteed. 2 Table Of Contents 1 Introduction . 7 1.1 The 3D mailing list . 7 1.2 3D Basics . 7 2 Useful References . 7 3 3D Time Line . 8 4 Suppliers . 9 5 Processing / Mounting . 9 6 3D film formats . 9 7 Viewing Stereo Pairs . 11 7.1 Free Viewing - viewing stereo pairs without special equipment . 11 7.1.1 Parallel viewing . 11 7.1.2 Cross-eyed viewing . 11 7.1.3 Sample 3D images . 11 7.2 Viewing using 3D viewers . 11 7.2.1 Print viewers - no longer manufactured, available used . 11 7.2.2 Print viewers - currently manufactured . 12 7.2.3 Slide viewers - no longer manufactured, available used . 12 7.2.4 Slide viewers - currently manufactured . 12 8 Stereo Cameras . 13 8.1 Currently Manufactured . 13 8.2 Available used . 13 8.3 Custom Cameras . 13 8.4 Other Techniques . 19 8.4.1 Twin Camera . 19 8.4.2 Slide Bar .
    [Show full text]
  • 3D Television - Wikipedia
    3D television - Wikipedia https://en.wikipedia.org/wiki/3D_television From Wikipedia, the free encyclopedia 3D television (3DTV) is television that conveys depth perception to the viewer by employing techniques such as stereoscopic display, multi-view display, 2D-plus-depth, or any other form of 3D display. Most modern 3D television sets use an active shutter 3D system or a polarized 3D system, and some are autostereoscopic without the need of glasses. According to DisplaySearch, 3D televisions shipments totaled 41.45 million units in 2012, compared with 24.14 in 2011 and 2.26 in 2010.[1] As of late 2013, the number of 3D TV viewers An example of three-dimensional television. started to decline.[2][3][4][5][6] 1 History 2 Technologies 2.1 Displaying technologies 2.2 Producing technologies 2.3 3D production 3TV sets 3.1 3D-ready TV sets 3.2 Full 3D TV sets 4 Standardization efforts 4.1 DVB 3D-TV standard 5 Broadcasts 5.1 3D Channels 5.2 List of 3D Channels 5.3 3D episodes and shows 5.3.1 1980s 5.3.2 1990s 5.3.3 2000s 5.3.4 2010s 6 World record 7 Health effects 8See also 9 References 10 Further reading The stereoscope was first invented by Sir Charles Wheatstone in 1838.[7][8] It showed that when two pictures 1 z 17 21. 11. 2016 22:13 3D television - Wikipedia https://en.wikipedia.org/wiki/3D_television are viewed stereoscopically, they are combined by the brain to produce 3D depth perception. The stereoscope was improved by Louis Jules Duboscq, and a famous picture of Queen Victoria was displayed at The Great Exhibition in 1851.
    [Show full text]
  • Anaglyph Image - Wikipedia, the Free Encyclopedia
    Anaglyph image - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Anaglyph_image Anaglyph image From Wikipedia, the free encyclopedia 1 of 11 12/28/08 6:41 PM Anaglyph image - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Anaglyph_image Stereo monochrome image anaglyphed for red (left eye) and cyan (right eye) filters. Stereogram source image for the anaglyph above. Stereoscopic effect used in Macro photography. 2 of 11 12/28/08 6:41 PM Anaglyph image - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Anaglyph_image Anaglyph images are used to provide a stereoscopic 3D effect, when viewed with 2 color glasses (each lens a chromatically opposite color, usually red and cyan). Images are made up of two color layers, superimposed, but offset with respect to each other to produce a depth effect. Usually the main subject is in the center, while the foreground and background are shifted laterally in opposite directions. The picture contains two differently filtered colored images, one for each eye. When viewed through the "color coded" "anaglyph glasses", they reveal an integrated stereoscopic image. The visual cortex of the brain fuses this into perception of a Anaglyph (3D photograph) of three dimensional scene or composition. Saguaro National Park at dusk. Anaglyph images have seen a recent resurgence due to the presentation of images and video on the internet, Blu-ray HD disks, CDs, and even in print. Low cost paper frames or plastic-framed glasses hold accurate color filters, that typically, after 2002 make use of all 3 primary colors. The current norm is red for one channel (usually the left) and a combination of both blue and green in the other filter.
    [Show full text]
  • Vision & Visuals
    Overview Vision & Visuals Human Visual Systems Visual Perceptions 3D Depth Cues 3D Stereographics Terminology Stereo Approximation 3D Displays & Auto-Stereoscopic Displays 071011-1 Design Issues for VR Visual Displays 2017년 가을학기 9/20/2017 박경신 Human Perception System Vision Obtain Information about environment through vision, Vision is one of the most important research areas in audition, haptic/touch, olfaction, gustation, HCI/VR because designers should know vestibular/kinesthetic senses. What can be seen by users Human perception capability provides HCI design What a user can see better issues. What can attract user’s attention Vision Physical reception of stimulus Processing and interpretation of stimulus No clear boundary between the two Human Visual System Human Eyes Light is focused by the cornea and the lens onto the retina Light passing through the center of the cornea and the lens hits the fovea (or Macula) Iris permits the eye to adapt to varying light levels, controlling the amount of light entering the eye. Retina is optically receptive layer like a film in a camera Retina translate light into nerve signals. Retina has photoreceptors (rods & cones) and inter- neurons. Photoreceptors Rods & Cones Distribution Rods Rods & Cones Distribution Operate at lower illumination levels Fovea Luminance-only only cone receptors with The most sensitive to light very high density At night where the cones cannot detect the light, the rods provide us with a black and white view of the world no rods The rods
    [Show full text]