Pioneering the Personal Robotics Industry Russell Nickerson
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Irobot Corporation Irobot Designs, Develops and Sells Robots That Make a Difference
iRobot Corporation iRobot designs, develops and sells robots that make a difference. iRobot invests significant resources to manufacture, promote and protect its products and related intellectual property. iRobot registered trademarks are protected under U.S. and international law; iRobot reserves the right to bring action against the infringement of legally protected trademarks and products. iRobot regularly monitors the Internet, including auction sites, in order to protect its intellectual property rights. Unauthorized reselling, marketing or auctioning using iRobot copyrighted items is illegal and can result in liability for damages, criminal penalties and termination of eBay selling privileges. iRobot notifies eBay of auction listings containing unauthorized uses of iRobot copyrights and trademarks. eBay complies with iRobot's request by taking appropriate action in accordance to its user policies. This includes the removal of auctions from the eBay website that illegally offer copyrighted terms and products. Only iRobot brand products, as supplied and distributed by iRobot Corporation, and delivered as manufactured, in the carton to the original customer purchaser, is warranted by iRobot Corporation against manufacturing defects in materials and workmanship for the qualifyinglimited warranty period. iRobot Affiliate Program If you are an online retailer and want to earn commission by selling iRobot products on your website, you may opt to participate in the iRobot Affiliate Program. iRobot selects partners based on corporate guidelines and federal law. Through the iRobot Affiliate Program, Approved Affiliates may earn cash by promoting iRobot products on their website by directing consumers from your site to the iRobot Online Store. The program is free to join and easy to use. -
A Retrospective of the AAAI Robot Competitions
AI Magazine Volume 18 Number 1 (1997) (© AAAI) Articles A Retrospective of the AAAI Robot Competitions Pete Bonasso and Thomas Dean ■ This article is the content of an invited talk given this development. We found it helpful to by the authors at the Thirteenth National Confer- draw comparisons with developments in avia- ence on Artificial Intelligence (AAAI-96). The tion. The comparisons allow us to make use- piece begins with a short history of the competi- ful parallels with regard to aspirations, moti- tion, then discusses the technical challenges and vations, successes, and failures. the political and cultural issues associated with bringing it off every year. We also cover the sci- Dreams ence and engineering involved with the robot tasks and the educational and commercial aspects Flying has always seemed like a particularly of the competition. We finish with a discussion elegant way of getting from one place to of the community formed by the organizers, par- another. The dream for would-be aviators is ticipants, and the conference attendees. The orig- to soar like a bird; for many researchers in AI, inal talk made liberal use of video clips and slide the dream is to emulate a human. There are photographs; so, we have expanded the text and many variations on these dreams, and some added photographs to make up for the lack of resulted in several fanciful manifestations. In such media. the case of aviation, some believed that it should be possible for humans to fly by sim- here have been five years of robot com- ply strapping on wings. -
Global Inventory of AUV and Glider Technology Available for Routine Marine Surveying
Appendix 1. Global Inventory of AUVs and Gliders Global Inventory of AUV and Glider Technology available for Routine Marine Surveying Project Leaders: Dr Russell Wynn (NOC) and Dr Elizabeth Linley (NERC) Report Prepared by: Dr James Hunt (NOC) Inventory correct as of September 2013 1 Return to Contents Appendix 1. Global Inventory of AUVs and Gliders Contents United Kingdom Institutes ................................................................. 16 Marine Autonomous and Robotic Systems (MARS) at National Oceanography Centre (NOC), Southampton ................................. 17 Autonomous Underwater Vehicles (AUVs) at MARS ................................... 18 Autosub3 ...................................................................................................... 18 Technical Specification for Autosub3 ......................................................... 18 Autosub6000 ................................................................................................ 19 Technical Specification .............................................................................. 19 Autosub LR ...................................................................................................... 20 Technical Specification .............................................................................. 20 Air-Launched AUVs ........................................................................................ 21 Gliders at MARS .............................................................................................. 22 Teledyne -
Understanding Domestic Robot Owners Ja-Young Sung1, Rebecca E
Housewives or Technophiles?: Understanding Domestic Robot Owners Ja-Young Sung1, Rebecca E. Grinter1, Henrik I. Christensen1, Lan Guo2 1 Center for Robotics and Intelligent Machines 2Siemens Medical Solutions Inc. Georgia Institute of Technology 51 Valley Stream Pkwy 85 5th Street, Atlanta GA 30332 USA Malvern, PA 19355 USA {jsung, beki,hic}@cc.gatech.edu [email protected] ABSTRACT Roomba users. Among other domestic robots that serve household Despite the growing body of Human-Robot Interaction (HRI) tasks, such as Scooba, Robomower and Dressman, we selected research focused on domestic robots, surprisingly little is known Roomba for three main reasons. First, Roomba have been very about the demographic profile of robot owners and their influence successful in the United States and that gave us wide accessibility on usage patterns. In this paper, we present the results of a survey to Roomba owners making it easier to recruit a large sample size. of 379 iRobot’s Roomba owners, that identified their Second, Roomba is one of the longest available domestic robots, demographic and usage trends. The outcome of the survey and we hypothesize that its adoption may have gone beyond suggests that Roomba users are equally likely to be men or “early adopters” or leading users, allowing us to capture a broader women, and they tend to be younger with high levels of education range of experiences. Third, and most importantly, Roomba is an and technical backgrounds. Their adoption and use patterns exemplary case for understanding how householders respond to illustrate the important role that gift exchange plays in adoption, robotic products that replace blue-collar work in the home, which and how the robot changes cleaning routines and creates non- some researchers believe to be the future of home robotic cleaning activities. -
Sharkninja V Irobot Corporation IPR2020-00734
[email protected] Paper No. 11 571-272-7822 Entered: October 6, 2020 UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD SHARKNINJA OPERATING LLC, SHARKNINJA MANAGEMENT LLC, AND SHARKNINJA SALES COMPANY, Petitioner, v. IROBOT CORPORATION, Patent Owner. IPR2020-00734 Patent 9,921,586 B2 Before TERRENCE W. McMILLIN, AMANDA F. WIEKER, and JASON W. MELVIN, Administrative Patent Judges. MELVIN, Administrative Patent Judge. DECISION Granting Institution of Inter Partes Review 35 U.S.C. § 314 IPR2020-00734 Patent 9,921,586 B2 I. INTRODUCTION SharkNinja Operating LLC, SharkNinja Management LLC, and SharkNinja Sales Company (“Petitioner”) filed a Petition (Paper 1, “Pet.”) requesting institution of inter partes review of claims 1–19 of U.S. Patent No. 9,921,586 B2 (Ex. 1001, “the ’586 patent”). iRobot Corporation (“Patent Owner”) filed a Preliminary Response. Paper 6. After our email authorization, Petitioner filed a Preliminary Reply (Paper 7) and Patent Owner filed a Preliminary Sur-Reply (Paper 9). Pursuant to 35 U.S.C. § 314 and 37 C.F.R. § 42.4(a), we have authority to determine whether to institute review. An inter partes review may not be instituted unless “the information presented in the petition . and any response . shows that there is a reasonable likelihood that the petitioner would prevail with respect to at least 1 of the claims challenged in the petition.” 35 U.S.C. § 314(a). For the reasons set forth below, we conclude that Petitioner has shown a reasonable likelihood it will prevail in establishing the unpatentability of at least one challenged claim, and we institute inter partes review. -
History of Robotics: Timeline
History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios. -
Administrators Guide to First Robotics Program Expenses
ADMINISTRATORS GUIDE TO FIRST ROBOTICS PROGRAM EXPENSES FIRST has 4 programs under the umbrella all foCused on inspiring more students to pursue Careers in sCienCe, teChnology, engineering, and mathematiCs. All of the programs use a robot Competition exCept the youngest group which is for K-3 and it is more of a make-it/engineering expo. Junior FIRST LEGO league (JrFLL) for students kindergarten through third grade is a researCh/design challenge and introduction to the engineering process. Kids go on a research journey, create a poster and LEGO model Present at Expo to reviewers and then all teams reCeive reCognition. Expos can be organized at the local level and a regional expo will be held in March. Costs are: ($50 - $300 per season) • $25 JrFLL program fees (annual dues) • $25 Expo registration fees • Teams Can use any LEGO, must have one moving part with a motor. FIRST does offer a large kit of parts for about $150 Registration: Never closes Register Here: http://www.usfirst.org/robotiCsprograms/jr.fll/registration Competitions/tournaments: Expo is held in the spring (RGV Local) FIRST Lego league (FLL) has a new game theme eaCh year, which also includes a student chosen project in whiCh they researCh and purpose a solution that fits their Community’s needs. The Challenge is revealed in early September eaCh year and the Competition season is from November – MarCh. Team size is limited to 10 students. Costs are: ($1,500 - $3,000 first season, then $1,000 - $2,500 per season to sustain program) • $225 FLL program fees (annual dues) • $300 -$420 Lego Mindstorms robot kit (re-usable each year) • $65 game field set-up kit (new each year) • $70 - $90 tournament registration fees • $500 - $1,000 for team apparel, meals, presentation materials, promotional items for team spirit, etc. -
Fresh Innovators Put Ideas Into Action in Robot Contest March 2010 Texas Instruments 3
WHITE PAPER Jean Anne Booth Director of WW Stellaris Marketing Fresh Innovators Put and Customer-Facing Engineering Sue Cozart Applications Engineer Ideas into Action in Robot Contest Introduction The annual FIRST® Robotics Challenge (FRC) inspires young men and women to explore applications of motors to make good use of mechanical Texas Instruments puts tools motion in imaginative ways, all in the name of a real-life game. In doing so, in the hands of creators of these high school students learn to work on a team toward a common goal, tomorrow’s machine control stretch their knowledge and exercise their creativity, apply critical thinking and systems. develop a strategic game plan, and move from theoretical and book learning to practical application of concepts, all the while learning valuable lessons that will help them in the workplace and in life throughout their adulthood. But as much as anything, the FIRST® programs are designed to interest children in science and math by making it fun and engaging through the use of robots. Texas Instruments is one of the FRC suppliers, lending its motor control technology to the materials and tool kit from which each team of students builds its robot. The Stellaris® microcontroller-based motor control system and software used by the students is from the same Jaguar® developer's kit used by professionals to build sophisticated motion-control systems used in industry day in and day out. The easy-to-use kits let naive high school students, as well as industry professionals, control various types of motors in complex systems without having to comprehend the underlying algorithms in use or details of the microcontroller (MCU) program code that is implementing the algorithms. -
CYBORG Seagulls Are Ready to Recycle
CYBORG Seagulls are ready to recycle By Edward Stratton The Daily Astorian Published: February 24, 2015 10:45AM The robotbuilding season for 25 Seaside and Astoria students on the C.Y.B.O.R.G. Seagulls robotics team ended Feb. 17. SEASIDE — Seaside High School’s studentbuilt robot SARA is in the bag and ready to recycle. The robotbuilding season for 25 Seaside and Astoria students on the CYBORG Seagulls robotics team ended Feb. 17. Now the team prepares to send 15 students to compete against 31 other teams in the divisional qualifier of the FIRST Robotics Competition starting Thursday in Oregon City. From left, Pedro Martinez, Austin JOSHUA BESSEX — THE DAILY ASTORIAN Milliren and Connor Adams, test out their SARA (Stacking Agile Robot The competition and its teams are chockfull of Assembly) robot during the CYBORG Seagulls robotic team meeting. acronyms, including Seaside’s team name The robot is designed to pick up recycling cans and cargo boxes and move them. The team will use SARA to compete in Recycle Rush, a (Creative Young Brains Observing and robotics game based on recycling Thursday through Saturday. Redefining Greatness, or CYBORG) and the Buy this photo league they compete in (For Inspiration and 1 of 6 Recognition of Science and Technology, or FIRST). For more information on the CYBORG Seagulls and the Building SARA FIRST Robotics Competition, visit www.team3673.org The CYBORG Seagulls, now in their fifth year of the competition, had from Jan. 4 to Feb. 17 to build and program SARA in their workshop. -
Robotics Irobot Corp. (IRBT)
Robotics This report is published for educational purposes only by students competing in the Boston Security Analysts Society (BSAS) Boston Investment iRobot Corp. (IRBT) Research Challenge. 12/13/2010 Ticker: IRBT Recommendation: Sell Price: $22.84 Price Target: $15.20-16.60 Market Profile Figure 1.1: iRobot historical stock price Shares O/S 25 mm 25 Current price $22.84 52 wk price range $14.45-$23.00 20 Beta 1.86 iRobot 3 mo ADTV 0.14 mm 15 Short interest 2.1 mm Market cap $581mm 10 Debt 0 S & P 500 (benchmarked Jan-09) P/10E 25.2x 5 EV/10 EBITDA 13.5x Instl holdings 57.8% 0 Jan-09 Apr-09 Jul-09 Oct-09 Jan-10 Apr-10 Jul-10 Oct-10 Insider holdings 12.5% Valuation Ranges iRobot is a SELL: The company’s high valuation reflects overly optimistic expectations for home and military robot sales. While we are bullish on robotics, iRobot’s 52 wk range growth story has run out of steam. • Consensus is overestimating future home robot sales: Rapid yoy growth in 2010 home robot Street targets sales is the result of one-time penetration of international markets, which has concealed declining domestic sales. Entry into new markets drove growth in home robot sales in Q4 2009 and Q1 2010, 20-25x P/2011E but international sales have fallen 4% since Q1 this year, and we believe the street is overestimating international growth in 2011 (30% vs. our estimate of 18%). Domestic sales were down 29% in 8-12x Terminal 2009 and are up only 2.5% ytd. -
Acknowledgements Acknowl
2161 Acknowledgements Acknowl. B.21 Actuators for Soft Robotics F.58 Robotics in Hazardous Applications by Alin Albu-Schäffer, Antonio Bicchi by James Trevelyan, William Hamel, The authors of this chapter have used liberally of Sung-Chul Kang work done by a group of collaborators involved James Trevelyan acknowledges Surya Singh for de- in the EU projects PHRIENDS, VIACTORS, and tailed suggestions on the original draft, and would also SAPHARI. We want to particularly thank Etienne Bur- like to thank the many unnamed mine clearance experts det, Federico Carpi, Manuel Catalano, Manolo Gara- who have provided guidance and comments over many bini, Giorgio Grioli, Sami Haddadin, Dominic Lacatos, years, as well as Prof. S. Hirose, Scanjack, Way In- Can zparpucu, Florian Petit, Joshua Schultz, Nikos dustry, Japan Atomic Energy Agency, and Total Marine Tsagarakis, Bram Vanderborght, and Sebastian Wolf for Systems for providing photographs. their substantial contributions to this chapter and the William R. Hamel would like to acknowledge work behind it. the US Department of Energy’s Robotics Crosscut- ting Program and all of his colleagues at the na- C.29 Inertial Sensing, GPS and Odometry tional laboratories and universities for many years by Gregory Dudek, Michael Jenkin of dealing with remote hazardous operations, and all We would like to thank Sarah Jenkin for her help with of his collaborators at the Field Robotics Center at the figures. Carnegie Mellon University, particularly James Os- born, who were pivotal in developing ideas for future D.36 Motion for Manipulation Tasks telerobots. by James Kuffner, Jing Xiao Sungchul Kang acknowledges Changhyun Cho, We acknowledge the contribution that the authors of the Woosub Lee, Dongsuk Ryu at KIST (Korean Institute first edition made to this chapter revision, particularly for Science and Technology), Korea for their provid- Sect. -
Increasing the Trafficability of Unmanned Ground Vehicles Through Intelligent Morphing
Increasing the Trafficability of Unmanned Ground Vehicles through Intelligent Morphing Siddharth Odedra 1, Dr Stephen Prior 1, Dr Mehmet Karamanoglu 1, Dr Siu-Tsen Shen 2 1Product Design and Engineering, Middlesex University Trent Park Campus, Bramley Road, London N14 4YZ, U.K. [email protected] [email protected] [email protected] 2Department of Multimedia Design, National Formosa University 64 Wen-Hua Road, Hu-Wei 63208, YunLin County, Taiwan R.O.C. [email protected] Abstract Unmanned systems are used where humans are either 2. UNMANNED GROUND VEHICLES unable or unwilling to operate, but only if they can perform as Unmanned Ground Vehicles can be defined as good as, if not better than us. Systems must become more mechanised systems that operate on ground surfaces and autonomous so that they can operate without assistance, relieving the burden of controlling and monitoring them, and to do that they serve as an extension of human capabilities in unreachable need to be more intelligent and highly capable. In terms of ground or unsafe areas. They are used for many things such as vehicles, their primary objective is to be able to travel from A to B cleaning, transportation, security, exploration, rescue and where the systems success or failure is determined by its mobility, bomb disposal. UGV’s come in many different for which terrain is the key element. This paper explores the configurations usually defined by the task at hand and the concept of creating a more autonomous system by making it more environment they must operate in, and are either remotely perceptive about the terrain, and with reconfigurable elements, controlled by the user, pre-programmed to carry out specific making it more capable of traversing it.