Robotics Irobot Corp. (IRBT)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Irobot Corporation Irobot Designs, Develops and Sells Robots That Make a Difference
iRobot Corporation iRobot designs, develops and sells robots that make a difference. iRobot invests significant resources to manufacture, promote and protect its products and related intellectual property. iRobot registered trademarks are protected under U.S. and international law; iRobot reserves the right to bring action against the infringement of legally protected trademarks and products. iRobot regularly monitors the Internet, including auction sites, in order to protect its intellectual property rights. Unauthorized reselling, marketing or auctioning using iRobot copyrighted items is illegal and can result in liability for damages, criminal penalties and termination of eBay selling privileges. iRobot notifies eBay of auction listings containing unauthorized uses of iRobot copyrights and trademarks. eBay complies with iRobot's request by taking appropriate action in accordance to its user policies. This includes the removal of auctions from the eBay website that illegally offer copyrighted terms and products. Only iRobot brand products, as supplied and distributed by iRobot Corporation, and delivered as manufactured, in the carton to the original customer purchaser, is warranted by iRobot Corporation against manufacturing defects in materials and workmanship for the qualifyinglimited warranty period. iRobot Affiliate Program If you are an online retailer and want to earn commission by selling iRobot products on your website, you may opt to participate in the iRobot Affiliate Program. iRobot selects partners based on corporate guidelines and federal law. Through the iRobot Affiliate Program, Approved Affiliates may earn cash by promoting iRobot products on their website by directing consumers from your site to the iRobot Online Store. The program is free to join and easy to use. -
Global Inventory of AUV and Glider Technology Available for Routine Marine Surveying
Appendix 1. Global Inventory of AUVs and Gliders Global Inventory of AUV and Glider Technology available for Routine Marine Surveying Project Leaders: Dr Russell Wynn (NOC) and Dr Elizabeth Linley (NERC) Report Prepared by: Dr James Hunt (NOC) Inventory correct as of September 2013 1 Return to Contents Appendix 1. Global Inventory of AUVs and Gliders Contents United Kingdom Institutes ................................................................. 16 Marine Autonomous and Robotic Systems (MARS) at National Oceanography Centre (NOC), Southampton ................................. 17 Autonomous Underwater Vehicles (AUVs) at MARS ................................... 18 Autosub3 ...................................................................................................... 18 Technical Specification for Autosub3 ......................................................... 18 Autosub6000 ................................................................................................ 19 Technical Specification .............................................................................. 19 Autosub LR ...................................................................................................... 20 Technical Specification .............................................................................. 20 Air-Launched AUVs ........................................................................................ 21 Gliders at MARS .............................................................................................. 22 Teledyne -
Understanding Domestic Robot Owners Ja-Young Sung1, Rebecca E
Housewives or Technophiles?: Understanding Domestic Robot Owners Ja-Young Sung1, Rebecca E. Grinter1, Henrik I. Christensen1, Lan Guo2 1 Center for Robotics and Intelligent Machines 2Siemens Medical Solutions Inc. Georgia Institute of Technology 51 Valley Stream Pkwy 85 5th Street, Atlanta GA 30332 USA Malvern, PA 19355 USA {jsung, beki,hic}@cc.gatech.edu [email protected] ABSTRACT Roomba users. Among other domestic robots that serve household Despite the growing body of Human-Robot Interaction (HRI) tasks, such as Scooba, Robomower and Dressman, we selected research focused on domestic robots, surprisingly little is known Roomba for three main reasons. First, Roomba have been very about the demographic profile of robot owners and their influence successful in the United States and that gave us wide accessibility on usage patterns. In this paper, we present the results of a survey to Roomba owners making it easier to recruit a large sample size. of 379 iRobot’s Roomba owners, that identified their Second, Roomba is one of the longest available domestic robots, demographic and usage trends. The outcome of the survey and we hypothesize that its adoption may have gone beyond suggests that Roomba users are equally likely to be men or “early adopters” or leading users, allowing us to capture a broader women, and they tend to be younger with high levels of education range of experiences. Third, and most importantly, Roomba is an and technical backgrounds. Their adoption and use patterns exemplary case for understanding how householders respond to illustrate the important role that gift exchange plays in adoption, robotic products that replace blue-collar work in the home, which and how the robot changes cleaning routines and creates non- some researchers believe to be the future of home robotic cleaning activities. -
Sharkninja V Irobot Corporation IPR2020-00734
[email protected] Paper No. 11 571-272-7822 Entered: October 6, 2020 UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD SHARKNINJA OPERATING LLC, SHARKNINJA MANAGEMENT LLC, AND SHARKNINJA SALES COMPANY, Petitioner, v. IROBOT CORPORATION, Patent Owner. IPR2020-00734 Patent 9,921,586 B2 Before TERRENCE W. McMILLIN, AMANDA F. WIEKER, and JASON W. MELVIN, Administrative Patent Judges. MELVIN, Administrative Patent Judge. DECISION Granting Institution of Inter Partes Review 35 U.S.C. § 314 IPR2020-00734 Patent 9,921,586 B2 I. INTRODUCTION SharkNinja Operating LLC, SharkNinja Management LLC, and SharkNinja Sales Company (“Petitioner”) filed a Petition (Paper 1, “Pet.”) requesting institution of inter partes review of claims 1–19 of U.S. Patent No. 9,921,586 B2 (Ex. 1001, “the ’586 patent”). iRobot Corporation (“Patent Owner”) filed a Preliminary Response. Paper 6. After our email authorization, Petitioner filed a Preliminary Reply (Paper 7) and Patent Owner filed a Preliminary Sur-Reply (Paper 9). Pursuant to 35 U.S.C. § 314 and 37 C.F.R. § 42.4(a), we have authority to determine whether to institute review. An inter partes review may not be instituted unless “the information presented in the petition . and any response . shows that there is a reasonable likelihood that the petitioner would prevail with respect to at least 1 of the claims challenged in the petition.” 35 U.S.C. § 314(a). For the reasons set forth below, we conclude that Petitioner has shown a reasonable likelihood it will prevail in establishing the unpatentability of at least one challenged claim, and we institute inter partes review. -
STYLE GUIDE Irobot Style Guide CONTENTS
STYLE GUIDE iRobot Style Guide CONTENTS Corporate Identifier: Usage & Clear Space 01 Product Logo Lock Ups & Clear Space: For Home 02 Product Logo Lock Ups: For Home 03 Product Logo Lock Ups & Clear Space: For Government 04 Product Logo Lock Ups: For Government 05 Product Logo Lock Ups: Software 06 Logo DON’Ts 07 Minimum Display Size 08 Color Palette: For Home 09 Color Palette: For Government 10 Typefaces 11 Photography: For Home 12 Photography DON’Ts: For Home 13 Photography: For Government 14 Photography DON’Ts: For Government 15 Introduction to Graphic Treatment 16 Graphic Treatment: For Home 17 Graphic Treatment DON’Ts: For Home 18 Graphic Application: For Corporation 19 Graphic Application: For Home 20 Graphic Treatment and Application: For Government 21 Tone 22 iROBOT STYLE GUIDE CORPORATE IDENTIFIER: Usage & Clear Space 1 USAGE CORPORATE LOGO PMS 356 The logo is the core of the visual identity for iRobot. It consists of a single-colored logotype. To reinforce iRobot’s excitement brand personality, the green ( PMS 356 ) is used as a corporate color. Whenever possible, the iRobot logo should be used with the corporate color, PMS 356. If it is not possible to use the corporate color, then a solid black or white (when displayed on a dark background) are the only other color options. The logo should never be displayed in any other color, or in any screened percentages of the approved logo colors. BLACK LOGO ON WHITE These logos are available under the Marketing Communications 100% Black header on the intranet: www.hq.irobot.com CLEAR SPACE Space surrounding the corporate identifier should always be clear of other visual elements in order to give visual prominence and WHITE LOGO ON COLOR maintain the integrity and legibility of the logo. -
History of Robotics: Timeline
History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios. -
Packaging Specifications and Design
ECE 477 Digital Systems Senior Design Project Rev 8/09 Homework 4: Packaging Specifications and Design Team Code Name: 2D-MPR Group No. 12 Team Member Completing This Homework: Tyler Neuenschwander E-mail Address of Team Member: tcneuens@ purdue.edu NOTE: This is the first in a series of four “design component” homework assignments, each of which is to be completed by one team member. The body of the report should be 3-5 pages, not including this cover page, references, attachments or appendices. Evaluation: SCORE DESCRIPTION Excellent – among the best papers submitted for this assignment. Very few 10 corrections needed for version submitted in Final Report. Very good – all requirements aptly met. Minor additions/corrections needed for 9 version submitted in Final Report. Good – all requirements considered and addressed. Several noteworthy 8 additions/corrections needed for version submitted in Final Report. Average – all requirements basically met, but some revisions in content should 7 be made for the version submitted in the Final Report. Marginal – all requirements met at a nominal level. Significant revisions in 6 content should be made for the version submitted in the Final Report. Below the passing threshold – major revisions required to meet report * requirements at a nominal level. Revise and resubmit. * Resubmissions are due within one week of the date of return, and will be awarded a score of “6” provided all report requirements have been met at a nominal level. Comments: Comments from the grader will be inserted here. ECE 477 Digital Systems Senior Design Project Rev 8/09 1.0 Introduction The 2D-MPR is an autonomous robot designed to collect data required to map a room. -
Irobot: ROBOTS for the HOME
Licensed to: iChapters User CASE 5 iROBOT: ROBOTS FOR THE HOME Robots have been around for a long time. Detroit has appeared on the cover of Popular Science. It was clear used robots for four decades to build cars, and manu- by then that his future lay in inventions. facturers of all kinds of goods use some form of robot- ics to achieve effi ciencies and productivity. But until The Opportunity iRobot brought its battery-powered vacuum cleaner to the market, no one had successfully used robots in In 1990, Brooks and Angle, who by then had be- the home as an appliance. The issue was not whether it come close working partners with their MIT col- was possible to use robots in the home, but could they league Helen Greiner, borrowed from their credit be produced at a price customers would pay. Until the cards and used bank debt to found iRobot in a tiny introduction of Roomba, iRobot’s intelligent vacuum apartment in Somerville, Massachusetts. The goal of cleaner, robots for the home cost tens of thousands of the company was to build robots that would affect dollars. At Roomba’s price point of $$199,199, it was now hhowow peppeopleople llivedived ttheirheir llives.ivese . AtAt tthathaat ttime, no one possiblee ffororor ttheheh aaveragevev rar gee cconsumeronsus meer too aaffordfford to hhaveava e a cocouldoulld coconceivenceie ve ooff a wawwayy tot bbringringn rrobotsoboto s into domes- robot cleanleaean the hohhouse.usu e.. TThathah t inn iitselftssele f is aann iniinterestingteerrests inng titicc lilifefe iinn aan aaffordableffforordad blle wwaway,y, aandndd iiRobotRoR bob t was still years story, bututt eevenveen mommorerer iinterestingnteresestitingg iiss ththehe eneentrepreneurialnttrepepreenen ururiiaal awawayayy ffromroom didiscoveringsscoovverrini g ththee oononee aapapplicationppliccatiio that would journey of Colin Angle and his company, iRobot. -
Service Robots in the Domestic Environment
Service Robots in the Domestic Environment: A Study of the Roomba Vacuum in the Home Jodi Forlizzi Carl DiSalvo Carnegie Mellon University Carnegie Mellon University HCII & School of Design School of Design 5000 Forbes Ave. 5000 Forbes Ave. Pittsburgh, PA 15213 Pittsburgh, PA 15213 [email protected] [email protected] ABSTRACT to begin to develop a grounded understanding of human-robot Domestic service robots have long been a staple of science fiction interaction (HRI) in the home and inform the future development and commercial visions of the future. Until recently, we have only of domestic robotic products. been able to speculate about what the experience of using such a In this paper, we report on an ethnographic design-focused device might be. Current domestic service robots, introduced as research project on the use of the Roomba Discovery Vacuum consumer products, allow us to make this vision a reality. (www.irobot.com) (Figure 1). The Roomba is a “robotic floor This paper presents ethnographic research on the actual use of vac” capable of moving about the home and sweeping up dirt as it these products, to provide a grounded understanding of how goes along. The Roomba is a logical merging of vacuum design can influence human-robot interaction in the home. We technology and intelligent technology. More than 15 years ago, used an ecological approach to broadly explore the use of this large companies in Asia, Europe, and North America began to technology in this context, and to determine how an autonomous, develop mobile robotic vacuum cleaners for industrial and mobile robot might “fit” into such a space. -
A National Imperative
TorchbearerTorchbearer NationalNational SecuritySecurity ReportReport A Transformed and Modernized U.S. Army: A National Imperative An AUSA Torchbearer Issue April 2007 April 2007 9 April 2007 A speaker at an AUSA-sponsored Land Warfare forum in January 1992 spoke on the U.S. Army in the post-industrial world and outlined some Army requirements: a family of combat vehicles capable of fi ghting on the ground together at full tempo; Army air vehicles that complement the ground vehicles in a synergistic way, multiplying the capability of ground forces; systems that enable commanders to command and control the force, enhancing a common perception of the battlefi eld; and the ability to sustain the force—not only with mass quantities but with precision. Th e continued operational requirements Soldiers have encountered in the subsequent 15 years have only served to validate those requirements, and it is gratifying to see the Army make steady progress toward satisfying them. Th e strength of the Army results from whole, cohesive units and Soldiers that are fully manned, equipped, trained and ready to conduct full-spectrum operations today—and modernized to meet the challenges of today and tomorrow. Th e Army has adopted a new comprehensive, innovative modernization strategy. Th at strategy provides the best equipment currently available to Soldiers fi ghting the Global War on Terror while simultaneously developing new capabilities essential for future operations. In this latest installment of AUSA’s signature Torchbearer series, we provide an in-depth analysis of the Army’s modernization plan—centered on Future Combat Systems technologies and a holistic, system-of-systems approach—to prepare the Army for success in the complex environment of the 21st century. -
Irobot Create 2 Tethered Driving Using Serial Communication and Python Nick Saxton April 2, 2015
iRobot Create 2 Tethered Driving Using Serial Communication and Python Nick Saxton April 2, 2015 Executive Summary: This application note will detail the necessary steps to write a simple Python script to control an iRobot Create 2 through serial port communication. Following an introduction to the topic and the technology used, a detailed walkthrough will be provided showing the reader how to write a user controlled tethered driving script. This walkthrough will start with a blank file and show all of the required steps to reach the final script. Additionally, automated driving code will be discussed, including comments on how it is used in the Automated 3D Environment Modeling project sponsored by Dr. Daniel Morris of the Michigan State University 3D Vision Lab1. Keywords: iRobot Create Tethered Driving Serial Communication2 Python Programming 1 Introduction: This section will introduce the technology and concepts used in this application note. First, an overview of the iRobot Create 2 Programmable Robot will be provided. Then, the Python programming language will be examined, including a brief history of the language and some of its key features. Finally, serial port communication will be discussed. Following this introduction, the objective of this application note will be looked at. The iRobot Create 2 Programmable Robot is a fully programmable version of iRobot’s popular Roomba vacuum cleaning robot. It weighs under 8 lbs, measures a little over 13 inches in diameter and approximately 3.5 inches tall, and has a serial port on its top side, accessible after removing the top cover. An image of the Create 2 can be seen below in Figure 1. -
Irobot® Warrior™ X700 a MULTI-MISSION, MODULAR ROBOT with SUPERIOR POWER
iRobot® Warrior™ X700 A MULTI-MISSION, MODULAR ROBOT WITH SUPERIOR POWER The iRobot Warrior is a powerful critical in a variety of missions, FLEX THE ROBOT’S MUSCLES and rugged robot that can carry including explosive ordnance The Warrior is highly configurable • CBRN greater than 150 lb payloads, travel disposal (EOD), reconnaissance, and to meet the demands of real-world • Battlefield Casualty Extraction through rough terrain and climb firefighting.Funded by the Technical situations such as: • Physical Security stairs with heavy loads. The robot’s Support Working Group (TSWG), • Explosive Ordnance Disposal design offers an advanced digital Warrior is currently under develop- • Firefighting • VBIED architecture and an extremely sturdy ment and is expected to become • Surveillance • SWAT platform to support the weight of available for sale in early 2008. • Target Acquisition • Reconnaissance heavy payloads, such as firearms • Weaponized Missions and hoses. The Warrior robot will be • HazMat iRobot Warrior Chassis Capabilities and Specifications Length Software Battery Endurance Deployment 40 inches First robot designed specifically – 9-Pack Sincgars Radio Lithium Rapidly deployable from non- Width for AWARE 2.0 Ion Batteries specialized vehicle 29 - 32.5 inches Navigation – 1.45 - 16 hours depending Mobility on mission profile. (depending on configuration) Leverages odometry waypoint Dual track system for enhanced 1.0 minute change-out for bat- Height navigation via built-in GPS model mobility teries 18 inches (stowed) Supports assisted tele-operated Maintenance behavior: Hardened Electronics Weight Fast pit-stop like plug and play – Obstacle avoidance sensors MIL-STD-461 – Approximately 250 lbs. concept using 3-tiered – Intelligent CG shifting MIL-STD-464 maintenance concept: – Total weight of platform and flipper control and mission payloads: Communications – Field Maintenance 400 lbs.