Pantethine: a Review of Its Biochemistry and Therapeutic Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery
An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery Alan C. Spivey [email protected] 19th Oct 2019 Lessons in Synthesis - Azadirachtin • Azadirachtin is a potent insect anti-feedant from the Indian neem tree: – exact biogenesis unknown but certainly via steroid modification: O MeO C OAc O 2 H O OH O H O OH 12 O O C 11 O 14 OH oxidative 8 O H 7 cleavage highly hindered C-C bond HO OH AcO OH AcO OH for synthesis! H H of C ring H MeO2C O AcO H tirucallol azadirachtanin A azadirachtin (cf. lanosterol) (a limanoid = tetra-nor-triterpenoid) – Intense synhtetic efforts by the groups of Nicolaou, Watanabe, Ley and others since structural elucidation in 1987. –1st total synthesis achieved in 2007 by Ley following 22 yrs of effort – ~40 researchers and over 100 person-years of research! – 64-step synthesis – Veitch Angew. Chem. Int. Ed. 2007, 46, 7629 (DOI) & Veitch Angew. Chem. Int. Ed. 2007, 46, 7633 (DOI) – Review ‘The azadirachtin story’ see: Veitch Angew. Chem. Int. Ed. 2008, 47, 9402 (DOI) Format & Scope of Presentation • Metabolism & Biosynthesis – some definitions, 1° & 2° metabolites • Shikimate Metabolites – photosynthesis & glycolysis → shikimate formation → shikimate metabolites – Glyphosate – a non-selective herbicide • Alkaloids – acetylCoA & the citric acid cycle → -amino acids → alkaloids – Opioids – powerful pain killers • Fatty Acids and Polyketides –acetylCoA → malonylCoA → fatty acids, prostaglandins, polyketides, macrolide antibiotics – NSAIDs – anti-inflammatory’s • Isoprenoids/terpenes -
Endogenous Metabolites: JHU NIMH Center Page 1
S. No. Amino Acids (AA) 24 L-Homocysteic acid 1 Glutaric acid 25 L-Kynurenine 2 Glycine 26 N-Acetyl-Aspartic acid 3 L-arginine 27 N-Acetyl-L-alanine 4 L-Aspartic acid 28 N-Acetyl-L-phenylalanine 5 L-Glutamine 29 N-Acetylneuraminic acid 6 L-Histidine 30 N-Methyl-L-lysine 7 L-Isoleucine 31 N-Methyl-L-proline 8 L-Leucine 32 NN-Dimethyl Arginine 9 L-Lysine 33 Norepinephrine 10 L-Methionine 34 Phenylacetyl-L-glutamine 11 L-Phenylalanine 35 Pyroglutamic acid 12 L-Proline 36 Sarcosine 13 L-Serine 37 Serotonin 14 L-Tryptophan 38 Stachydrine 15 L-Tyrosine 39 Taurine 40 Urea S. No. AA Metabolites and Conjugates 1 1-Methyl-L-histidine S. No. Carnitine conjugates 2 2-Methyl-N-(4-Methylphenyl)alanine 1 Acetyl-L-carnitine 3 3-Methylindole 2 Butyrylcarnitine 4 3-Methyl-L-histidine 3 Decanoyl-L-carnitine 5 4-Aminohippuric acid 4 Isovalerylcarnitine 6 5-Hydroxylysine 5 Lauroyl-L-carnitine 7 5-Hydroxymethyluracil 6 L-Glutarylcarnitine 8 Alpha-Aspartyl-lysine 7 Linoleoylcarnitine 9 Argininosuccinic acid 8 L-Propionylcarnitine 10 Betaine 9 Myristoyl-L-carnitine 11 Betonicine 10 Octanoylcarnitine 12 Carnitine 11 Oleoyl-L-carnitine 13 Creatine 12 Palmitoyl-L-carnitine 14 Creatinine 13 Stearoyl-L-carnitine 15 Dimethylglycine 16 Dopamine S. No. Krebs Cycle 17 Epinephrine 1 Aconitate 18 Hippuric acid 2 Citrate 19 Homo-L-arginine 3 Ketoglutarate 20 Hydroxykynurenine 4 Malate 21 Indolelactic acid 5 Oxalo acetate 22 L-Alloisoleucine 6 Succinate 23 L-Citrulline 24 L-Cysteine-glutathione disulfide Semi-quantitative analysis of endogenous metabolites: JHU NIMH Center Page 1 25 L-Glutathione, reduced Table 1: Semi-quantitative analysis of endogenous molecules and their derivatives by Liquid Chromatography- Mass Spectrometry (LC-TripleTOF “or” LC-QTRAP). -
The Role of Nutritional Therapies in the Care Of
© Michael Ash BSc DO ND F.DipION 2010 4/29/2010 'The role of Nutritional Therapy in the care of individuals with cardiovascular related problems' Michael Ash BSc (Hons) DO ND F DipION mBANT NTCC Osteopath Naturopath Nutritional Therapist Researcher Author Nutritional Therapy • A Functional Medicine approach to optimise outcomes, ease of engagement and compliance. • 8 Practical strategies & how to avoid common pitfalls. • Interaction of the immune system with the heart. • GastroCentric Perspective. • How food selection can provide a multi faceted benefit. • Supplements of benefit. 1 © Michael Ash BSc DO ND F.DipION 2010 4/29/2010 Client Overview Goals Determine their aims and outcomes – the purpose of the plan is to support the patients goals with evidence based strategies Identify realistic goals, obtain agreement that these are achievable and describe plan ASSESMENT ANTECEDENTS TRIGGERS Medical history review and systems analysis assess the: MEDIATORS Antecedents: Sex, Age, Genetics, Lifestyle, Experiences, Trauma, Childhood, Stress, etc. Triggers: Events that initiate illness or symptoms – stress, infection, environmental toxins, food. etc. – look to see if they can be removed or controlled Mediators: Cytokines, prostaglandins, free radicals, neurotransmitters, fear, personal value, behavioural conditioning, poverty, etc. Evolutionary Nutritional Therapy • In physiology, foetal nutritional stress appears to flip an evolved switch that sets the body into a state that protects against starvation. • When these individuals encounter modern diets, they respond with the deadly metabolic syndrome of obesity, hypertension, and diabetes. • Barker DJ, Eriksson JG, Forsén T, Osmond C.Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002 Dec;31(6):1235-9. -
The Effect of Vitamin Supplementation on Subclinical
molecules Review The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect? Ovidiu Mitu 1,2,* , Ioana Alexandra Cirneala 1,*, Andrada Ioana Lupsan 3, Mircea Iurciuc 4 , 5 5 2, Ivona Mitu , Daniela Cristina Dimitriu , Alexandru Dan Costache y , Antoniu Octavian Petris 1,2 and Irina Iuliana Costache 1,2 1 Department of Cardiology, Clinical Emergency Hospital “Sf. Spiridon”, 700111 Iasi, Romania 2 1st Medical Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania 3 Department of Cardiology, University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania 4 Department of Cardiology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania 5 2nd Morpho-Functional Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania * Correspondence: [email protected] (O.M.); [email protected] (I.A.C.); Tel.: +40-745-279-714 (O.M.) Medical Student, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania. y Academic Editors: Raluca Maria Pop, Ada Popolo and Stefan Cristian Vesa Received: 25 March 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: Micronutrients, especially vitamins, play an important role in the evolution of cardiovascular diseases (CVD). It has been speculated that additional intake of vitamins may reduce the CVD burden by acting on the inflammatory and oxidative response starting from early stages of atherosclerosis, when the vascular impairment might still be reversible or, at least, slowed down. The current review assesses the role of major vitamins on subclinical atherosclerosis process and the potential clinical implications in patients without CVD. -
The Efficacy of Pantothenic Acid As a Modifier of Body Composition in a Porcine Model of Obesity Development
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2004 The efficacy of pantothenic acid as a modifier of body composition in a porcine model of obesity development Carey Ann Baldwin Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Baldwin, Carey Ann, "The efficacy of pantothenic acid as a modifier of body composition in a porcine model of obesity development" (2004). Retrospective Theses and Dissertations. 20349. https://lib.dr.iastate.edu/rtd/20349 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The efficacy of pantothenic acid as a modifier of body composition in a porcine model of obesity development by Carey Ann Baldwin A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Animal Nutrition Program of Study Committee: Tim Stahly, Major Professor Paul Flakoll Chad Stahl Iowa State University Ames, Iowa 2004 Copyright© Carey Ann Baldwin, 2004. All rights reserved. 11 Graduate College Iowa State University This is to certify that the master's thesis of Carey Ann Baldwin has met the thesis requirements of Iowa State University Signatures have been redacted for privacy 111 TABLE OF CONTENTS ACKNOWLEDGEMENTS Vl ABSTRACT Vll CHAPTER 1. GENERAL INTRODUCTION 1 Introduction 1 Thesis Organization 2 Literature Cited 2 CHAPTER 2. -
Functional and Structural Variation Among Sticholysins, Pore-Forming Proteins from the Sea Anemone Stichodactyla Helianthus
International Journal of Molecular Sciences Review Functional and Structural Variation among Sticholysins, Pore-Forming Proteins from the Sea Anemone Stichodactyla helianthus Esperanza Rivera-de-Torre 1,2,3 , Juan Palacios-Ortega 1,2 , J. Peter Slotte 1,2, José G. Gavilanes 1, Álvaro Martínez-del-Pozo 1 and Sara García-Linares 1,* 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense, 28040 Madrid, Spain; [email protected] (E.R.-d.-T.); [email protected] (J.P.-O.); jpslotte@abo.fi (J.P.S.); [email protected] (J.G.G.); [email protected] (Á.M.-d.-P.) 2 Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland 3 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark * Correspondence: [email protected] Received: 19 October 2020; Accepted: 20 November 2020; Published: 24 November 2020 Abstract: Venoms constitute complex mixtures of many different molecules arising from evolution in processes driven by continuous prey–predator interactions. One of the most common compounds in these venomous cocktails are pore-forming proteins, a family of toxins whose activity relies on the disruption of the plasmatic membranes by forming pores. The venom of sea anemones, belonging to the oldest lineage of venomous animals, contains a large amount of a characteristic group of pore-forming proteins known as actinoporins. They bind specifically to sphingomyelin-containing membranes and suffer a conformational metamorphosis that drives them to make pores. This event usually leads cells to death by osmotic shock. Sticholysins are the actinoporins produced by Stichodactyla helianthus. Three different isotoxins are known: Sticholysins I, II, and III. -
PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished -
Structural and Functional Characterization O
Julius-Maximilians-Universität Würzburg Approaching antimicrobial resistance – Structural and functional characterization of the fungal transcription factor Mrr1 from Candida albicans and the bacterial ß-ketoacyl-CoA thiolase FadA5 from Mycobacterium tuberculosis Auf den Spuren der antimikrobiellen Resistenz – Strukturelle und funktionelle Charakterisierung des Transkriptionsfaktors Mrr1 aus Candida albicans und der bakteriellen β-ketoacyl-CoA thiolase FadA5 aus Mykobakterium tuberculosis Dissertation for a doctoral degree at the Graduate School of Life Sciences, Julius-Maximilians-Universität Würzburg, Section Biomedicine submitted by Christin Marliese Schäfer from Miltenberg am Main Würzburg, November 2014 Submitted on: ………………………………………………………..…… Office stamp Members of the Promotionskomitee: Chairperson: Ulrike Holzgrabe Primary Supervisor: Caroline Kisker Supervisor (Second): Joachim Morschhäuser Supervisor (Third): Nicole Sampson Date of Public Defence: …………………………………………….… Date of Receipt of Certificates: ……………………………………… Table of content Table of content Table of content ....................................................................................................................................... I Summary ................................................................................................................................................. 1 Zusammenfassung ................................................................................................................................... 4 1 Introduction .................................................................................................................................... -
WCA Clinical Nutrition Module 1 Part 2
Chiropractic Nutrition Module 1 Part 2 of 2 By: Chad Oler, ND WCA Clinical Nutrition: Module 1 Chad Oler, ND Chad Oler, ND ° Micronutrients ° Water soluble vitamins: RDAs, deficiency, toxicity ° Fat Soluble vitamins: RDAs, deficiency, toxicity ° Minerals: RDAs, deficiency, toxicity ° Metals: RDAs, deficiency, toxicity ° Phytonutrients ° Non-essential and conditionally essential nutrients ° Efficacy, safety, risks and benefits of glandular products and therapeutic enzymes ° Micronutrients ° Vitamins ▪ Water soluble – B, C ▪ Fat soluble – A, E, D, K ° Minerals ° Antioxidants ° Phytonutrients ° Amino acids ° Conditionally Essential Nutrients www.naturalpathhealthcenter.com 1 WCA Clinical Nutrition: Module 1 Chad Oler, ND ° Cannot be synthesized in sufficient quantities and must be obtained through diet ° Classified by their biological and chemical activity, not their structure ° Each “vitamin” refers to a number of vitamer compounds that all show the biological activity associated with a particular vitamin ° Each set of compounds is grouped under an alphabetized vitamin “generic descriptor” title ▪ “Vitamin A” includes retinal, retinol, and four known carotenoids. ° Vitamers by definition are convertible to the active form of the vitamin in the body and are sometimes inter- convertible to one another as well www.naturalpathhealthcenter.com 2 WCA Clinical Nutrition: Module 1 Chad Oler, ND ° Vitamin B1 –Thiamin ° Vitamin B2 – Riboflavin ° Vitamin B3 – Niacin ° Vitamin B5 – Pantothenic Acid ° Vitamin B6 – Pyridoxine ° Vitamin B7 - Biotin ° -
Impact of Citicoline Over Cognitive Impairments After General Anesthesia
International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 Impact of Citicoline over Cognitive Impairments after General Anesthesia Kameliya Tsvetanova Department “Anesthesiology and Resuscitation“, Medical University – Pleven, Bulgaria Abstract: Postoperative cognitive delirium - POCD is chronic damage with deterioration of the memory, the attention and the speed of the processing of the information after anesthesia and operation. It is admitted that anesthetics and other perioperative factors are able to cause cognitive impairments through induction of apoptosis, neuro-inflammation, mitochondrial dysfunction and so on. More and more medicaments are used in modern medicine, as, for instance, Citicoline, which are in a position significantly to reduce this unpleasant complication of the anesthesia. Keywords: Postoperative cognitive delirium, anesthesia, Citicoline. 1. Introduction Therefore, Citocoline is the main intracellular precursor of phospholipid phosphatidyl choline. (13), (14), (15), (16), It is known that anesthetics and other perioperative factors (17), (18), (19), (20), (21), (22), (23), (24), (25), (26) are able to cause cognitive impairments through induction of apoptosis, neuro-inflammation, mitochondrial dysfunction It exerts impact over the cholinergic system and acts as a and so on. choline donor for the enhanced synthesis of acetylcholine. Chronic damage with deterioration of the memory, the attention and the speed of the processing of the information -
(19) 11 Patent Number: 6165500
USOO6165500A United States Patent (19) 11 Patent Number: 6,165,500 Cevc (45) Date of Patent: *Dec. 26, 2000 54 PREPARATION FOR THE APPLICATION OF WO 88/07362 10/1988 WIPO. AGENTS IN MINI-DROPLETS OTHER PUBLICATIONS 75 Inventor: Gregor Cevc, Heimstetten, Germany V.M. Knepp et al., “Controlled Drug Release from a Novel Liposomal Delivery System. II. Transdermal Delivery Char 73 Assignee: Idea AG, Munich, Germany acteristics” on Journal of Controlled Release 12(1990) Mar., No. 1, Amsterdam, NL, pp. 25–30. (Exhibit A). * Notice: This patent issued on a continued pros- C.E. Price, “A Review of the Factors Influencing the Pen ecution application filed under 37 CFR etration of Pesticides Through Plant Leaves” on I.C.I. Ltd., 1.53(d), and is subject to the twenty year Plant Protection Division, Jealott's Hill Research Station, patent term provisions of 35 U.S.C. Bracknell, Berkshire RG12 6EY, U.K., pp. 237-252. 154(a)(2). (Exhibit B). K. Karzel and R.K. Liedtke, “Mechanismen Transkutaner This patent is Subject to a terminal dis- Resorption” on Grandlagen/Basics, pp. 1487–1491. (Exhibit claimer. C). Michael Mezei, “Liposomes as a Skin Drug Delivery Sys 21 Appl. No.: 07/844,664 tem” 1985 Elsevier Science Publishers B.V. (Biomedical Division), pp 345-358. (Exhibit E). 22 Filed: Apr. 8, 1992 Adrienn Gesztes and Michael Mazei, “Topical Anesthesia of 30 Foreign Application Priority Data the Skin by Liposome-Encapsulated Tetracaine” on Anesth Analg 1988; 67: pp 1079–81. (Exhibit F). Aug. 24, 1990 DE) Germany ............................... 40 26834 Harish M. Patel, "Liposomes as a Controlled-Release Sys Aug. -
The Effects of Α-Gpc Supplementation On
THE EFFECTS OF -GPC SUPPLEMENTATION ON GROWTH HORMONE, FAT LOSS, AND BODY COMPOSITION IN OVERWEIGHT ADULTS by WILLIAM G. MALDONADO A thesis submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Kinesiology and Applied Physiology Written under the direction of Shawn M. Arent And approved by New Brunswick, New Jersey October, 2019 ABSTRACT OF THE THESIS The Effects of -GPC Supplementation on Growth Hormone, Fat Loss, and Body Composition in Overweight Adults By WILLIAM GERARD MALDONADO Thesis Director Shawn M. Arent In the United States, there is an increasing prevalence of obesity that is associated with health risks, and, as such, the need for effective weight loss methods is becoming increasingly more important. In the elderly, α-GPC has been shown to significantly increase growth hormone (GH) concentrations, a major stimulator of lipolysis and protein synthesis. However, very little work has been done in younger individuals. PURPOSE: to investigate if α-GPC, an acetylcholine precursor, could confer additional GH or weight loss benefits to active, overweight individuals while exercise and nutrition are maintained. METHODS: Participants were randomly assigned to either α-GPC (n=15, Mage=25.8±9.1y, MBF%=35.48±1.75%) or placebo (n=13 Mage=24.4±10.4y, MBF%=35.65±1.98%) after health/fitness screening. Both groups were instructed to consume two capsules of their respective supplement for a total of 1200 mg/day, one dose before their workout or on non-workout days with their midday meal, and the second dose before going to sleep, for eight weeks.