<<

Geological Quarterly, Vat. 38. No. 4,1994, p. 622658

Composition and origin of the bed*

The Kupferschieferof Upper age mpicd in , , the and England has been investigatd for its mineral, chemicnl and (S,Pb, 0 and C)isotopic composition-Bateof deposition of the sapropelic mnrly (rarely mom than half a metre in thickness) was very low. This iq indicated by high VIC, Mo/C and UIC ratios. Galena and spbalerite mineralization in the sediment, exceeding 0.5% rnctd, occurs ovcr relatively Iarge areas. Mineralization of chalcacite, bornitc and with more than 0.5% Cu is restricted to sdl regions which occur on top of voluminous Rotliegendcssedirnen ts. Economic grades for Former and present miningin the lattcr masare due to additional mininelizizion ofthe footwall (Wcissliegcndes) nndlor hanging wall ( ) of the Kupferschiefcr bed. Late dingenetic rernobilimtian of Cu into the hanging wall is usually indicatcd by adjacent zones of secondarily oxidized mela1 barren"RoteFaulc". Thc isotopically very iight sulphur (634~-24 to 40360) in the mjority of the syngenetically. early and late diageneticnfly formed sulphides is exphined as a product of bacterial sulphare ducti ion. Precipitation of sulphides from seawater does not cause high Cu concentrations or cvcn moderate Pb concentmtionsin snpropelic sediment. Seawater of closed newshore hqins and diagenetic fluids received their high metal concentralions from the porous Rotliegendes sdirnents in the Kupferscbieferfootwafl.Bccause Zn-Fb-Cu sulphides and pyrite contain different ant[ not equilibrated sulphur , the former sulphides cannot have genenlly rcplaccd thc latter mineral. Vertical and late& zonation of Cu {plus Ag), Pb and Zn sulphides in this sequence is controlled by their solubility and by the rate of bacterial sulphidepmduction. The isotopic composition of thc Kupferschiefer from Germmy is intermediate between that of galcna from the Middle RamrneIsberg ore and horn vein deposits ofthe Harz Mts. Thc majority of properlies of the Kupferschiefer bed can be explained by a syngcnetic (indicatcd by fnmboids) to dingenetic (and not epigenetic) mineralization with metals mainly derived from s&d Rotliegendes sediments.

INTRODUCTION

The Kupfmchiefer is a laminated rnarIy shale, dark grey to black in colour due to a high content of degraded organic carbon. It is usually less than a metre thick and can be sampled at numerous surface, drilling and mining exposures in England, the NetherIands, Gemany and Poland. This sediment was formed in n marine basin of Late Permian age. Its palamgeography is drawn in Figure 1. It occurs in the footwall of the well known evaporite

Composition and origin ofthe Kupferschieferbed 625 series. A specific feature of this bIack shale is i& mineralization of sphalerite, galena, cholcocite, ' and chalcopyrite in certain areas of deposition. The copper minerals are mainly restricted to regions mat far fmm the shore (densely stippled area of Fig. 1). The four deposits of former and present mining at Richelsdorf, Mansfeld - Sangerhausen, the North-Sudetic Syncline and the Fore-Sudetic Monocline are marked by arrows in Figure. I. The present author has investigated samples from these localities in Germany andPoland, and from numerous areas covered by Kupferschiefer grading fmm low to high Zn,Pb, Cu concentrations. Chemical, isotopic and microscopic methods were applied. Controversial models exist of a syngenetic-diageneticor an epigenetic formation of the Zn-Pb-Cu mineralization. Conclusions on the genesis should not be excEusively based on investigations fmm the mining areas. They should rather consider the different varieties of the Kupferschiefer bed and its footwall ranging from background ta economic metal concentrations.

GEOLOGY AND PALAEOEKVIRONMENT

At the beginning of the Zechstein period a marine transgression fl mded parts of CentraI Europe extending from northern England and the to Iarge parts of Poland (Eg. 1). By this time the pre-existing Variscan mountains were eroded to alarge extent and deep depressions were filled with Lower Permian detritus. The Zechstein transgression hit an almost flat topography in northern Gemany and Poland and a hilly topography surrounding the preserved parts of the Vasiscan mountains. The hilly region caused the formation of separate basins with a few hundred metres water depth. Erosion did not contribute much detrital material bemuse of the dry climate.The latitudinal position of the Cenkal European part of the Upper was about 20 to 30 degrees North (C.R. Scotese et al., 1979). , molybdenum and uranium are elements, which typically accumulated in sapropelic sediments in amounts which correlate inverseIy with the race of sediment accurnuIation, VIC, MolC and UEC ratios as high as 0.03,0.005 and 0.001, respectively, indicate very low rates of detrital deposition of Kupferschiefer sapropels (UIC ratio from B,Tonndorf, 1994). They may be compared with sapropels from the Black Sea with VIC = O,IK13 and MolC = 0.001 [H. -3. Brurnsack, 1988). The rate of deposition in theBlack Sea is about 30 crn per thousand years (L. A. harkin, 1960). At the much lower rate of deposition in the North Atlantic of about 1 cm per thousand years VIC and MoJC ratios as high as 0.01 and 0.005, respectiveIy, could be observed in C, -rich clays of Cenomzl- niafluronian age in this ocean (H. -J. Brurnsack, 1980,1986). As comparison indicates

Rg. 1. Map of Zechstcin deposition based on information from S. Depawski /1978], W. Jung (1968) and P. A. Ziegler (I 982) Position of tbe bur mining Iocalities of Kupferschicfer is marked by arr6ws Mapacechsztyfiskiego systemu depozycyjnego. na podstawie prac X. Depowskiego (1978), W.Jungn (1968) i P. A. Zieglen (1982) 1 -plylkornomkie piaskowce iinpki, 2 -siarczany i wtglrtny z mapommi, 3 -s61 lwniema z ewaporam usyhrowanie kopalri cecbsnflskich md miedd wsbano shmtkami

Composition and origin of the Kupferschiefer kd 627 maximum of pyrites (hrn -32 to -39%). The large fraction of isotopically lighter pyrite was consequently not formed in equilibrium with Zn-PbCu sulphides because in case of copmipitation pyrite sulphur is isotopically heavier than sulphur of Zn-Pb-Cu suIphides (c.f. Fig. 16-B-3b in H. Nielsen, 1978). This fact requires different sources or stages for the formation of the two groups of sulphides and does not allow the author to assume that Zn-Pb-Cu sdphides have generally replaced pyrite. Our microscopic observation of highly and moderately mineralized Kupferschiefer samples and results published by I. NisXewicz (1980) on materiaIfromthePolishdepositssuggestthatpyrite partly replaced bysphalerite, galena or Cu sulphides is not very abundant. In the Polish deposits the abundance of Cu is often higher than that of Fe which excludes a general replacement of pyrite by Cu sulphides. The most abundant carbonate in the Kupferschiefer sediment is dolomite (K. H. Wedepohl, 1964; R. Erzberger, 1965). An early diagenetic formation of this carbonate is conformable with its content of about 400 ppm Sr. On the basis of experimental msults R. L. Jacobson and H. E. Usdowski (1976) suggested that the concentration of STin seawater- equiIibrated dolomite should be about one half of the Sr abundance in marine calcite. The concentration in recent marine calcite is close to I000 ppm Sr (J. Veizer, 1978). The average oxygen isotopic composition of the majority of samples of Kupferschiefer dolomite, as investigated by G. Marowsky (1969), is close to at80-2% relative to SMOW which reflects an origin from fluids being close to seawater oxygen isotopic composition. Calcite instead of dolomiteoccurs in various samples frornthe Kupferschiefer bed. Its low Sr concentration (5400 ppm Sr] and light oxygen isotopic composition (~'~0from 0 to -9%) indicates a secondary origin (replacement of dolomite etc.). The deposits of the Fore-Sudetic Mono- cline, RicheIsdorf and San erhausen contain a larger fraction of carbonates with light oxygen. Their average of 6l f0 is between -4 and -6%~(J. Hammer et at., 1940; A. BechteI, S. Hoernes, 1993) and indicates higher proportions of meteoric waters in the diagenetic fluids. The radiogenic age of silicate minerals in the Kupferschiefer bed is not conformable with the age of sediment deposition because of their dehtal: origin. A rough estimate of the age of mineralization and some indication about its source might be derived from the lead isotopic composition of the galena fractions in Zechstein sediments (including the Kupfer- schiefer) in relation to the upper crustal lead develapment as calculated by 1. S. Stacey and 1. D. Kramers (1975). 5. Lev2que and U. Haack (1993) have published 207~b/20~band 206~b~204~bratios of galena in Zechstein JLimestone and Kupfesschieferfrom the S W border of the Han Mts., and aIso of hydrothermal ore veins and the syngenetic RammeIsberg ore deposit, both in the Harz Mts. The vein deposits of the Ham Mts. are mainly of Jurassic age (J. LkvQue, U. Haack, 1993) and the Rarnmelsberg mineralizatien is of Middle Devonian age (380 Ma). We present the plots of 207~b/204~band 206~b/20%bratios of the respective minerdimions published by J. Leveque and U. Haack (1993)in Figure 2. The average lead isotopic data on 8 Kupferschiefer samples from Germany (K.H. WedepohF et al., 1978) and on 10 Kupferscbiefer samples from Sangerhausen (south of the HmMts.) (J. Hammer et al., 1987)also plot in the Zechstein (2)area of Figure 2. The model age of the sy ngenetic Rammelsberg (Rr deposit is about 300 Ma on the J. S. Stacey and I. D. Krmers (1975) curve which indicates a higher U/Pb ratio of their source relative to the upper continental crust The model age of the major vein mineralization of the Harz Mts. (B) is about 180 Ma on the J. S. Stacey and J. D. Kramers (1975) curve which is conformable with a Jurassic 628 Karl Hans Wcdcpohl

Rg.2. Areas of Idisotopic composition of Zechstein depo6iitq inchding Kupfembiefer at the SW border of Am Mls. (Z)which occur inkmediate between galena composition from Middle Devonian syngenetic Rnrnmelsberg om (R) and mainly Jun~aicvein type ore from the Ham Mts. (H) (according to J. IRv%ue, U. Haack, 1993); the upper crustal lead evolution curve by J. 5. Stncey, J. 13. Kramers (1975) is included Obszary o ustalonym skladzie izotop6w oiowiu, wlwznie z hpkiem miedzionoinyrnwystepujljqcym na SW knrlcu Harm (2).ktdry cechuje sklad potredni rnidzy galen? ze Brodkowodewafiskich syrtgenetycznych adRmmels- bergu (K) i jumjskimi rudnmi tyiowymi z Hmu (H)(wedlug: J. WvCque, U. Haack. 1993); hqwn ewoEucji g6rnoskompowcgo olowiu wcdlug: S. S. Stacey, J. D. Kromers (1975) age. Galena from the Zechstein sediments plots intermediate between R and H,indicating a model age intermediate between 380 and 180 Ma. The boundary between the Permian and is 245 Ma (G.S. Odin, 1982). The Kupferschiefer sedimentation, which gives the maximum age of that system, must be close to that boundary because of the short duration of the LatePermian (55 Ma: M.Mennjng, 1986). E. G. Jawett etnl. (1987a) have published palaeomagnetic ages of the "Rote Faule" hematitizatian of the Kupferschiefer in Poland at 23WIO and 24W10 Ma. These authors probably underestimated the error of the palaeomagnetic method. Figure 2 clearly demonstrates that the Kupferschiefer lead is isotopically separate from the lead of the vein deposits of the Harz Mts. which excludes assumptions about a general hydrothermal rnineraiization of Mesozoic age of the Kupfer- schiefer bed in Gemany.

SWHIDEPRECIPITATION AND ITS LATERAL AND VERTICfi ZONATION

Genetic interpretations of structures of sufphide ores often suffer from remobilization and recrystallization of fine-grained rninesaIs. Our rnicroscapic and micropbe studies of Kupferschiefer samples from Drente, Groningen (the Netherlands), Sangerhausen {Ger- Composition and origin of heKnpferschiefer bed 629

Pig. 3. Microphotograph of chalcocite (gmy) beside pyrite (white) fmboids from intermediae layer in Knpfw-. schiefer fmm PolkowIoe (Point lOWShaff Bl), Fore-Sudetic Monocline (Poland) Thc size of the aggregates is 8-1 0 pm containing grains with r size of aboul I pm; the mindcomposition has been identified by microprnbe (H. P. Koch, 1989) Mihfotografia chalkozynu (szare) obok piqtowych fmmboidh wale) w hpku micdziono6nym z Polkowic [stanowisko I Wsyb RI), monoklina pmedsudecka (Polska) 630 Karl Hans Wedepohl many) and Polkowice (Poland) lead us to detect very small framboids (5 I0 p size) of chalcocite, bornite and chalcopyrite in these materials (J3. P. Koch, 1989, c.f. Ag. 3). 2. SnwIowicz (1993) reported the occurrence and formation of copper and copper-iron suIphide framboids in the deposits of the EoreSudetic Monocf ine. After the detection of framhids of pyrite in the suspended matter sf the anoxic water column in the Framvaren Fjord in Norway (J. M. Ski, 1988) the old controversy about the nature of framboids in this case could be solved in favour of bacterial sulphide production in anoxjc seawater. This allows us to assume that the framboids of copper minerals in Kupferschiefer samples are also products of bacterial sulphide precipitation. They indicate higher than seawater Cu. concentrations in the anoxic waters of their source. The major fraction of the sulphides of Zn,Pb, Cu and Fe occurs in coarscr than frarnboidaI grains. They have to be explained as products of remobilization and recrystaIlization of originally bacteriogenic sulphides. The latter being identified by their extremely light sulphur isotopic composition. Recrystallizn- tion has abundantly occurred at temperatures lower than 75'C because we could identify bornite from Sangerhausen and Groningen as being low-temperature species with excess sulphur as defined by R. Brett and R. A. Yund (1964). A model of sulphide precipitation in anoxic seawater can be used to form ideas about the mineralization of the Kupferschiefer. Such a model requires estimates about the ratc of sediment accumulation and assumptions about the rate of water exchange between the oxic and anoxic part of a stagnant seawater column of Black Sea type. Dissolved sulphide precipitates those metal ions in which oxic seawater concentrations exceed the solubiIity of their sulphides. These sulphides are diluted in the sediment by detrital minerals. For a continuous process of sulphide precipitation aperrnanent oscillation ofthe02MzSinterface in the stagnant seawilkr column is required. In our model we have assumed nn amplitude of oscillation of 30 m per year. This is a large amplitude compared with a value of 2 m per year for the present Black Sea (G.Qstlund, 1974). If the detrital accumulation is as low as in the present North Atlantic (1 cdlOOO years) the maximum metal concentration precipi- tated as sulphide will be 1200 pprn Zn, 800 ppm Cu, 8 pprn Ag and 2 pprn Pb in the model sapropelic sediment. Metal concentrations in oxic seawater used for this balance are values reported by K. W. Bruland (1983). Our model can explain the accumuIations of Cu, Zn and Cd in the sapropelic sediment of the Framvaren Fjord and the Cariaco Trench observed by L. Jacobs et nL (1 985, 1987). But it cannot explain the economic mineralizations of the Kupferschiefer bed. As a consequence one has to postulate distinctly higher than normal seawater concentrations of Cu, Pb, ZR,Ag etc. in the fluids which caused the different Kupferschiefer mineralizations. Non-seawater CulZn and Pb/Zn ratios are required in the source fluid. Black and sapropelic sediments rareIy exceed concentrations of 50 ppm Pb, 150 ppm Cu and 500 pprn Zn (J. D. Vine, E. B. Tourtelot, 1970; H. -J. Brumsack, 1988). In relation to these background levels we have classified concentrations exceeding 5000 pprn Zn, Pb or Cu as appreciable mineralizations. Figure 4 demonstrates that values exceeding 5000 pprn Zn or Pb occur over a relatively large area and values of more than 5000 pprn Cu are reskicted to a small area of Kupferschiefcr coverage. For the evaluation of Figure 4 it must be conceded that sampling of the total Kupferschiefer area is still incomplete. The area highly mineralized in copper is underlain by thick deposits of Rotliegendes sandstones and conglomerates with good permeability. But several regions highly mineralized in lead Composition and origin of the Kupferschieferbed 63 1 -

>0+55A Pb a Berlin

0> 0.91. Cv

Fora-Sudetic Monocline

Shore d the I lupfcrsihi~ferSea(l> 1

Fig. 4. Map of Kupferschiefer deposition in Central Eumpeandareal distribution of Kupfmchiefer mindization exceeding 0.5% Cu, Pb or Zn; the latter is based on information from G. Richter (1941), K. B. Eisenhuth, E. Kaotrsch (1954), E. Messer (1955), D.M. Hirst, K. C. Dunham (1963). K. H.Wcdepohl(l964 and unpublished), G. Knitzschke (1966). R. Erzbcrgeret a[.(1968), C.Hadcyk (1970,1986) and S. Speczik eta/. (1986) Mapa swlymentncji lupku micdzionobnegona obszarae Europy hdkowej oraz obszary zawiemjqce rninenlbcj~ w lupku miedzionoinym ozawartobci ponad 0.5%Cu, Pb lub Zn; wysQpowanieminernIizacji wedhg G. RichCcra (1941), K. H. Bsenhuthrr, E. Kautrscha (19543, E. Messera (1955), D. M. Airsta. K. C. Dunhama (1963), K. H. WedepohIn (1964 i pracc niepublikowane), G. Knik~chkcgn(19661, R. Erzbergera i in. (1 968). C. Hardczyka (1 970.I986) i S. Speczib i in. (1 986); 1 -pierwotny zesieg mmalupku miedzionoinego;2 -bez minemlizacji CU-Pb-Zn

andlor and areas with distinctly higher than background copper concentdons occur on top of almost impermeable greywackes and cherts of Devonian to age. Mining of the Kupferschiefer ores in the Richelsdorf and MansfeId -Sangerhausen nreas of Gemany was discontinued because of a restricted mineralization of the hanging and footwall beside the Kupferschiefer bed itself. The economic conditions are much better in the ForeSudetic Monocline (Lubin- Sieroszowice mining area) of Poland where a thicker Kupferschiefer plus footwall and hanging wall are highly mineralized. The mineralization of the Weissliegendes sandstone in the footwall 1ocalIy occuw in rhythmic bands of disseminated digenite and chalcwite grains very light in suIphur isotopes (s3%-39 to 44%0).The white sandstones host Cu and Cu-Fe sulphides to a depth of 1 to 20 rn. W. Mayer and A. Pieswfiski (1990) and 2. Sawlowicz and K. B. Wedepohl(1992) expIained the sulphide bands as aprecipi tate of hydrogen sulphide generated within the Kupferschiefer and diffused into the porous volume of the sandstone which was soaked with water and dissolved copper, The latter was supplied from the underlying red sandstone. The almost equidistant sulphide bands were formed from top to bottom as soon as a certain supersah- ration of copper sulphide was attained in the stream of sulphide diffusion (2.Sawfowicz, K. H. Wedepohl, 1992). This model of diagenetic mineralization aIlows the supply of 632 Karl Hans Wedepohl

bnckriogenic sulphide from the stilI unconso3idated Kupferschiefer environment and copper from the thick red-bed footwall. The reIativeIy small Cu-rich prospects are usua11y bordered by a secondarily oxidized and unmineraIized equivalent of the Kupferschiefet, which is called 'Rote Fiiule"' (for details see C. Freese, W.Sung, 1965; R. Erzberger, 1965; J. Rentzsch, 1965). A belt with high Zn mineralization of more than 100 km length trends NEJSW from the Flechting Rise through the eastern slope of the Han Mts. to the northern part of the Thuringim Mts. (J. Rentzsch, G. Knitzschke, 1968).Its trend is parallel to that of the 1argeRotliegendes troughs. W. Sung and G,Knitzschke Vide R. Enberger et ai., 1968) present infomation on a lateral zoning of mineral parageneses in the SE foreland of the Harz Mts. with the following sequence: hematite rRote Ftuiule"), covellite-idaite, chalcodte, barnite-chalcocite, galena- sphalerite-chalcopyrite,gdena-sphalerite, pyrite. This lateral: zoning agrees onIy partly with agradientof decreasingoxygenfugacity.Thescale of regional metal zoning inthe MansfeEd - Sangerhausen disaict and in the ForeSudetic Monocline can be tens of kiIometres (for the latter area see map in E. C.Jowett et ol., 1987b; H. Kucha, 1990). The vertical zoning of metals in Kupferschiefer profiles from England to Poland has been reported by D. M. Hirst, K. C. Dunham (1963), G.Richter (19411,K. H. Eisenhuth, E. Kautzsch (19541, K. H. Wedepohl (19641, G. Marowsb (C969), W. Mayer, A. Pies- trzyfiski (1985) and R. Kucha (1990). In areas with high Cu mineralization this eIement is mainly accumuIated at the base of the Kupferschiefer bed (often incIuding the top of the footwall-rock). The major Pb-Zn mineralization usually occurs in the higher layers of the profile. The commonly (but not always) observed vertical zonation from chaIcocite or bornite to chalcopyrite, and from chalcopyrite through gaIena to sphalerite follows an increasing solubility of these sulphides in B2S containing fluids with seawater NaCI concentration (H. C. Helgeson, 1969).

SOURCE AND ACCUMULATION OF METALS

The total amount of certain elements in the sulphide min~ralization(Ee, Zn,Pb, Cu and Ag) in the organic fraction (V,Mo, Ni, Co and Cr) and in the carbonate minerals fh)of the Kupferschiefer bed has been roughly estimated with the following results: lo1 t Fe > lo9 t zn, Pb, ~n > 5. lo8 t v > 108t~i, MO, cu > 3. lo7 t co > lo5 t A~.~n equal mass of an oxidized pelitic sediment wouId contain: 10" t Fe > 4 - 1o8 t Mn > 4 - lo7 t ZR,V > 107t Ni, Cu > 8 . lo6 t Pb. 13> 4 -16' t Mo, Ag. The difference between the ma sets of data is lo9t Fb, 2n; 5 10' t ~n,V; 10' t~i,Cu, Mo. At least this mass of metals is required for the mineralization of the Kupferschiefer sapmpelic sediment. Seawater of the Zechstein transgression and porous fluids with a salinity high enough to dissolve Cu, Zn and Pb sulphides in the ppb range leached the footwalls of Rotliegendes age very efficiently for the extraction of metals. The penetration of the footwdl sandstones and conglomerates of Rotliegendw age was much larger than that of Carboniferous greywackes and cherts because of the higher permeability of the former rocks. Weathering of mica and feldspar probably contributed the largest fraction of Zn and Pb from the decomposed sandstones. Oxidation of sulphides of Fe, Cu, Zn and Pb in the hot climate transformed these minerals into leachable compounds. 5. Rentzscb ef al. (1976) report

close to 'Rote Fiiule" areas indicates some proportion of meteoric waters in the late diagenetic oxidizing fluids (J, Hammer er aL, 1990;A. BechteI, S. Homes, 1993), Any model of the formation of the Kupferschiefer bed and its syngenetic to dingenetic mineralization including that of the footwaI1 (Weissliegendes, Zechstein conglomerate) has toexplain a large variety of observations of which the majority is condensed in the foliowing list: I. Major fraction of sulphide sulphur of bacteriogenlc origin, pyrite not equilibmted with Cu-Pb-Zn-sdphides. 2. Framboidal chdcocite, bornite, chalcopyrite as primary precipitat~sof suIpbide. 3. Lateral and vertical zonation of Zn, Pb, Cu accumulation (including area of 'Rote Faule" formation). 4. Isotopic composition of Pb. 5. Major Zn, Pb,Cu mineralization in Kupferschiefer covering Permian sandstones with high permeability, occasjonsllly covering Carboniferous greywackes and che* with low permeability, 6. Mineralization over large distances (>I000 km). 7. Paiaeogeographjcal control of mineralization at modest coastal distance. 8. Abnormal mobilization and accumulation of Pb, Zn > Mn, V > Ni, Cu,Mo. Investigations have also to consider the Kupferschiefer composition outside the mining localities. Several investigations specialized on a minor number of items listed have not been reported in this paper. In the past two decades a number of authors have suggested an epigenetic formation of the Kupferschiefer rnineraIization by brines during a Mesozoic event. Readers inkrested in this suggestion are referred to E. C. Jowett et nl. (I987b); B. Kucha (1990) and papers listed by these authors.

Geochemiscbm Institat der Universitiit Grjttingen GBttingen, Goldschmidtstm~1 Rexi&: 29.07.1994

ANDERSON L. G., DYRSSEN D.,HALL P. 0.J. (1988) -On the sulphur chemistry of a super-anoxic fjord, Fmmvaren, Santh Norway. Marine Chem.,23, p. 283-293. BECHTEL k., ROERW S. (1993) -Stable isotopic variations ofcfay minem1s: h key to the understanding of Kupferschiefer-type minenlization, Germany. Geochim. Cosmochim. Act& 57, p. 1799-1816. BERNER R. A. (1984) -Sedimentary pyrite formation: An update. Geochim, Cosrnochim. Acta, 48, p. 605615. BRl3-r R., WND R. A. (1964) - Sulfur-rich bomites. Amer. Miner., 49, p. 1084-1098. BRUNDK. W. (1983) - Trace elements in sea-water. In: Chemical Oceanaography (ed. J. P. Riley, K. Chester),845, p. 157-220. BRUMSACK H. -5- (1980)-Geochemistryaf black shales from the Atlantic Ocean (WSDPLegs 11, 14,36 and 41). Chem. Geol., 31, p. 1-25. BRUMSACK H. -J. (1986)-Tracemetal accumulationin black shales from the Cennmani~nianboundary event. In: GIobd Bio-Events. Lecture Notes in Earth Scienccs (ed. 0.Walliser), 8, p. 337-343. BRUMSACK H. -J. (1988) -Rezente, Grs-reicheSedimente als Schliissek zum Verstiinindnis fossiler Schwarzscb liefer. Thesis for Habiiitation. Gottingen. Composition and origin of the fipferschiefer bed 635

BUCKLEY A. (1989)- An elecmn microprobc investigation of the chemishy offemmanganese coatings on Freshwater sediments. Geochim. CosmocMm. Acta, 53, p. 115-1%. DEPOWSKI S. (1978) -Lithofaues-paleogeographical atlas of the Permian of platform mas in Poland. Wyd. Geol. Warszawn. DONEGAN D., SCHRADER H. (1982) - Biogenic and abiogenic components of laminated hemipelagic sediments in the central Gulf of California. Mdne GeoI., 48, p. 215-237. EISENHUTH K H., KAIJTZSCH E. (1954) - Handbuch fiir den Kupfcmhieferbergbau. Fachbuchverlag. Leipzig. ERZBERGER R. (1%5) -Zur PalIIogeogmphie und Verbreitung der Rotfkbung in der W~erra-Serie(Zechstein 1) Stidbrandenburgs.Freib. Forsch., C193, p. 25-39. ERZBERGER R., PRANZ R., JUNG W.,KNL'ESCBKE G,,LANCER M., LUGE J., RENWXCH N.. RENTZ SCH J. (1968) - Lithologic, Paliiogeogtaphie und MetallFiihrung des Kupferschiefm in der Deutschen Dernokratischen Republik. Gylogie, 17, p. 776-791, H. 617. FREESE C., JUNG W. (1965) - Uber die RotBrbung der BasaIscRichkn des Zechsteins (Rote Fiule) and ihre Beziehungen zum Nebcngestcin irn siidostlichen Hazvorland. Freib. Forsch., C193, p. 9-23. GUNZERTG. (1953) - ijbet die Bedeutung nachti5glichcrhverschiebungen in der Kupferschieferlagematte des Richelsdorfcr Gebiirges. Wotizbl. Hess. Lilndesmt Bodenforsch.. 81. p. 258-283. HWMER J., WWCST M., PILOT J., ROSLER H. J. (1 987) -Pb-Isotopenverhdmis8e des Kupferschiefers der Sangerhiinser Mulde: Ncue Untersuchungsergebnisse.Chem. Erde, 46, p. 193-21 1. HAMMER J., JUNGEF,,ROSLER W. J.. NESES.. GLEISBERGB., STIEHLG. (1990)-element and geochemical investigations of the Kupferschiefer in the vicinity of "Rotc Eulc" indicating copper mindi- zation (Swgerbausen Basin, GDR). Chcm.Geol., 85, p. 345-360. HARA~~CZYKC. (1970) -2echstein lead-bearing shales in the FOE-SudetianMonoclinein Polmd.Emn. GeoI., 65,J. 481495. no. 4. HAR ANCZYK C. (1986) -Zechstei tein wpper-Mng shales in Poland. Lagoma! environmentsand the =propel model of genesis. In: Geology md Metdlogeny of Copper Deposits (cd. G. H. Riedrich et at.), p. 461476. Springer-VerIag,Redin, Hcideiberg. HARDER H. (1974) -Abundance of boron in common sediments and sedimentary mktypes. Section 5-K In: - Handbookof Geochemistry, 2. Springer-Verlag. BcrIin, Hcidclberg, Mew York. HARTMANN M. (1 963) -Einige geochemische Untersvchungenan Sandsteinen aus Perm und Trias. Gwchim. Cosmochim. Actq 27, p. 459499. HARTMANN M.,NlELSEN H. (1969) - S~~S-WC~~~in rezenten Meeresdimenten und ihre Deuhrng m Bcispiel einiger Sedimentprofile nus der westtichen Ostsee. Geol. Rundsch., 58, p. 621655. HELGESON H. C. (6969) - Thermodynnmics of hydrothermal syskms at eelvated temperatures and pressures. Am. J. Sc,267. HIRST D. M., DUNHAM K.C. (1963)-Chemistsy andpetmgnphy of the marI slate of S. E. Durhm. England. Econ. Gwl., 58, p. 912-940- JACQBS L., EMERSON S., SKEI J. (1985) -Partitioning and transport of metats across the M2Sinterface in apemanenfly anoxic basin: Fmvaren Pjortl, Norway. Geochim. Casmochim. Act% 49, p. 1433-1444. JACOBS L., EMERSON S., HUESTED S. S. (1987) -We metal geochemistry in the Cariaco Trench. Deep Sea Res., 34, p. 965-98 1. JACOBSON R. L.,USDOWSKI H,E. (1976) -Mtioning OFstrontium between cdcite, dolomite md liquids: An experimentnl study under higher temperature diagenetic conditions, and a model for the prediction of mineral pairs forgeothermomerty. Contr. Miner. Petrol., 59, p. 171-1 85. SOWF.TT E. C., PEARCE G. W., RYDZEWSM A. (1987a)- A Mid-Triassic pdmmagnetic age of the Kupferschieferminedmtion inPoland, based on arevised apparentpolwwanderpath for Europe and Russia. J. Geophys. RCS.,92, p. 58 1-598. JOWITT E. C., RYDZEWSW A., JOWETT R. J. (1987b)-The Kupferschicfcr Cu-Ag ore deposits in Poland: n mappraisal of the evidence of their origin and pmentation of a new genetic model. Can. J. Earth Sc., 24, p. 2016-2037, no, 10. JUNG W. (1968) -Zechtein. In: GrundriB der Geologie der DDR,1. p. 219-237. KNITZSCBKE G.(1965) -Zur Emninetalisation, Petmgraphie, Hauptmetau- und Spumlementfihnmg des Kupferschiefersim SE-Ham-vorland. Freib. Forsch., C207, p. 1-147. KOCH H.P. (1989) - Milonsondenuntersuchungen an Sulfiden aus Kupferschiefer Westeuropas. DipI. Thesis, Cottingn. KUCHA H. (1990) -Geockmistry of the Kupferschiefer, Poland. Gaol. Rundsch., 79, p. 387-399. 636 KarI Bans Wedepohl

L~EQUEJ., HAACK U. (1993) - Pb isotopes of hydrothermal ores in the Hnn. Miner. Deposits. 30, p. 197-2 10. MAROWSKY G. (1969) -ScMfel-, Kohlerrstoff- und Saumoff-lsotapenuntersuchu~$cnam Kupfmhiefer als Beitrag zur gcd~henDcutung. Contr. Miner, Petrol.,22, p. 290-334. MAYER W., PIESTRZYNSKI A. (1985) - Ore minmls from Lower Zechstein sdimem at Rudna mine, Fore-Sudetic Manoclinc, SW Paland. Pr. Miner. Komis. Nauk Miner. PAN Krakdw, 75. MAYER w.. P~TRZYNSKIA. (1990)-~ul~htde banding in tbe mineralized Weissliegendessnndstonesfrom the Lubin copper DistriFt, SW Poland. Miner. Pol., 21, p. 15-22, no.1-2. mINGM. (1986) - Zur Dauer dcs ZcchFteins nus magnetosmtigmphischerSicht. Z. Geol. Ws., 14, p. 39544. MESSER E. (1955) - Kupferschiefer, Sanderz und KobalMcken irn Richelsdorfer Gebrige (Hasen). Hess. LngerstBttenarch.. 3, p. 1-125. NAZARKIN L. A. (1 960)-The role of thesedimentation rate in the accumulations of absolute masses of ~nic matter in asediment. DOH.Acad. Sci. USSR. Earth Sc., DO,p. 15. PEWMAN W. L. (1962) - Distribution of elements in sedimentary rocks of the Colorado PIakau - A preliminary report. U.S. Geol. Surv. Bull., 1IWF. N[13LSENH. (1978) -Sulforistopes in nature. Section 168in: Handbmk of Geochemistry,2. Springer-Verlag. Berlin, Heidelberg. NISKWICZ 5. (1980) - Matasomtic phenomena in the Zechstein copper ore deposits oELower Silesia (in Polish with hglish summary). Geol. Sudetica, 15, p. 76-80. ODIN G. S. (1982) - Numerical dating in sfratigraphy. WiIey, Chicester. New Yak, Briskme, Toronto, Singapore. ~~ZUNDG. (1974) --Expedition "Odysseus 65": Radiucmbon age of Black Sea deepwater. In: The Black Sea - Geology, Chemistry and Biology (ed. E. T. Degens, D. A. Ross). Am. Ass. Petrol. Geol. Mem., 20, p. 127-1 32, PAUL J. (1982) -Zur Rand- und Schwellcn-Fdeb des Kupferschiefers.Z. Dtsch, GeoI. Ges., 133, p. 5711-605. KENTTSCH J. (1965)-Fmielle Gesetzmalligkeitenbeim Auftreten der Roten Fiiute. Freib. Fonch., 4393, p. 99-106. RENTZSCH J., KNITZSCHKE G.(1968) -Die Eazminedparagenescn dcs Kupferschiefers und ihre regionalc Verbreitung. Freib. Fo'orsch., C231. p. 189-21 1. RENTZSCH J., SCHIRMER B., RQLLIG G.,TISCHl3NWRF G.f 1976) -On the metnl source of non-ferrous mineralizations in the Zechstein basement (Kupferschiefcr type). In: The current rnctdlogenic pblcms of Centnl Empo{HI. J. Fedak), p. 171-188. Wyd. Geol. Warszawa. RICHTER G. (1941) - Gcologischc GesetrmaBigkeiten in der Metallfihnmg des Kupferscbiefers. Arch. Lagerstmenforsch., Neue Folge Heft, 73, p. 741. SAWOWICZ 2. (1989) -On the origin of copper mineralization in the Kupferschiefer: a sulfur isotope study. Terra Nova, 1, p. 339-343. SAWLOWICZZ. (1993) - Primary solphide mineralization in Cu-Fe-Szones of Kupferschiefer, Fore-Sudetic Monocline, %land. Trans. Inst. Min. Metall. (Scct. B Apptied Farfh Sc.), 101, p. 14. SAWLOWICZ Z., WEDEPOHL K. H. (1992) - The origin of rhythmic suIphide bands from the Perminn sandstones (Weissliegendes) in the footwall ofhPore-Sudetic"Kupfcrs&icfer'* (PoEand). Miner. Depsita, 27, p. 242-248, no. 3. SCCKESE C. R., BAMBACH R K., BARTON C., VAN DER VOO R., ZIEGLER A. M.(1979) - Paleozoic base maps. J. Geol., 87, p. 217-277. SKEI J. M. (1988)-Formation of Fnmboidal iron in thewater of apemnently nnoxic fiord-Framvmn, South Norway. Marine Chern., 23, p. 345-352. SPECZIK S., SKOWRONEK C., FREDRICH G., DIEDEZ R., S~A~C., SCMTF. -P. (1 986) -The environment of gnemtion of some bmmetal Zechstein occurrences in Central Eumpe. Acm Geol. Pol., 39 p. 1-35. no. 1-3. STACW J. S.. KRAMeRS J. D. (1975) - Approximation of terrestrial lead isotope evolution by a two-stage model. Eurth Planet. Sc. Lett., 26, p. 207-221. TONNDORP H. (1 994) -Mehilogenic des Urms im ostdeuwhen khstein. Abhanrll. Sicbsiscbe Akad. Wiss. Leipzig Mat. Nntur. Kl., 55, p. 1-132, no. 3. VHZR J. (1978) - Abundance of Sr in mmmon sediments md sedimentmy rock types. Section 38-K in: Handbook ofGeochemistry, 2. VINE J. D., TOURTELOT B. B. (1970) -Geochemistry ofblackshate depwits-A summary. Eon.Geol., 65, p. 253-272. Composition and origin ofthe Kupferschieferbed 637

WEDEWHL K. H. (1964) - Untersuchungen am Kupferschiefer in Nordwestdeutschland. Ein Beibag zur Dcutung dcr Genese bisuminijsw Sedimente. Geochim. Cosmochim. Acta, 28, p, 305-364. WEDEPDHL K. H., DELEVAUX M. A,, DOE B. R. (1978) - The potential sourcc of Iead in the Permian Kupferschiefer bed of Europe and some sclccted Paleozoic mineral deposik in the Fedenl Republic of Germany. Cantr. Miner. Pctrol., 65, p. 273-281. ZEGLER P. A. (1982) - Geological atla< of Western and Central Europe. Shell Internationale Petroleum Maatschappij B.Y. ZIELI~~SKIR. A,, BLOCH S.. WALKER T. R. (1983) -The mobility and distribution of heavy rtpetals during the formation of first cycle red beds. &on. Genl., 78, p. 1574-1589.

Ksrl Hans WEDEPOHL,

Streszczenie

Pr6bki Iupku rniedxionodnego, pobranezodhnicE powiemhniowych, zkopalit orazzotwon5w wiertnictych na abszarze Anglii, Holandii, Nicrniec i Polski, zostafy poddme badaniom minmtogicmyrn, chemicznym i izotopowym (C, 0, S, Pb). Dntowanie izotapowe (Pb) ornz palwmagnetycme wsknzuje na wiek minernlizncji zblifmy do granicy pcrm-bias. SzybkoSt sedyrnentacji Inminowanego Iupku sapropetowego byb niewielka, zbtiionado wspbkesnej depozycji osaddw w pdhocnj cqtci Oceanu Atlantyckiego. Framboidslneslnrktury chalkozynu, bomity chdkopirytu i pirytu sq prawdopodobnie pmduklem pierwotnej precypitacji w beztlenowym, redukcyjnym Smdowisku, obejmujqcym wod~rnorska i osad. Lkka izotopowa siarka pochodzenia bakterioge- nicznego wyswuje w siarczkach pierwotnych i rekrystalizowanych. Piryt nic jest w mwnowadze izotopowej z siarnkmi Zn,Pb i CUze wgldu na odmienne ir6dio siarki. Pionowa i pozioma strefowofC rozrnieszczenia Ag, Cu, Pb i Zn, odpowiadajpca malejwj mzpuszcaalnoki siarczk6w tych metali.jest kontrolowana przezpowohq produkcjesiarki biogcnicmcj. Podczas transgresji cechsztyriskiej prucesy iugowmiapiaskowc6w dolnego perrnu dostarczyIy prawdopodobnie gtwnej ~Scimetali do beztlcno~chw6d basendw przybneznych. Silnieohsz- cowany lupek miedzionoiny rnoAelokalnie wystqpowad ponad skatarni karbonu o bardzo niskiej pnepuszcmIno- Sci. Wiekszos'E obscrwacji, wykonanych na dukyrn obszarze, wskazuje na synpnelyc~no-diagencvcznymodel minedizacji.