Saturn V: Americas Rocket to the Moon Pdf, Epub, Ebook

Total Page:16

File Type:pdf, Size:1020Kb

Saturn V: Americas Rocket to the Moon Pdf, Epub, Ebook SATURN V: AMERICAS ROCKET TO THE MOON PDF, EPUB, EBOOK Eugen Reichl | 144 pages | 28 Apr 2018 | Schiffer Publishing Ltd | 9780764354823 | English | Atglen, United States Saturn V: Americas Rocket to the Moon PDF Book Okinawa , with waves of 2. Flight : Apollo 7 , Apollo 8. Because of the failure of the launch vehicle S-IVB stage and other pressure vessel problems, testing had been restricted by the office of the Apollo Program Director. Mueller testified in congressional hearings. They could never figure it out. It was agreed that the LEV would have redundant guidance and control capability for each phase of the lunar maneuvers. Research on 1 million lb thrust engine begun. Payload: 47, kg , lb to a translunar trajectory. Stafford, Eugene A. Study results were requested no later than July 1, , including cost, schedule, and technical data. How did NASA put men on the moon? EST November 19, he exclaimed, "Whoopee! EDT on July The study concluded that a manned station with a crew of 24 could be orbiting the Earth in Members were William A. Lockheed recommendations on a scientific space station program. NASA announced crew selection for the second and third manned Apollo missions. Since the SPS was used to attain the desired high apogee, there was insufficient propellant left to gain the high-velocity increase desired for the entry. They think it was just Boeing, but it was in-house. Leroy Grumman Facts. Flight : Apollo 10 , Apollo The CSM was injected into a trajectory toward the earth at a. Fully fueled for liftoff, the Saturn V weighed 6. Evaluation of recovery areas for Saturn V Apollo missions -. Maynard, and William F. Low and Lee B. This visually rich book celebrates the US flag as seen through the eyes of Americans from all walks of life. The S-IC stage cutoff occurred 2 minutes 30 seconds into the flight at an altitude of about 63 kilometers. This, in turn, required deployable rather than fixed legs so the larger gear could be stored in the Saturn V adapter. First production F-1 engine delivered -. Empty Mass : 13, kg 29, lb. The vehicle ended up with the same payload capability as the 'too large' Nova. Should the vehicle per se be incapable of achieving this figure, said Phillips, he would relax certain flight constraints to achieve the best possible balance between the space vehicle and the specific mission to be flown. Backup Crew : Cooper , Eisele , Mitchell. Simulations at Ames in had indicated that the Saturn V could be manually flown into orbit within dispersions of meters in altitude, and 0. Related Persons : Eisenhower , Glennan , von Braun. Saturn V L American orbital launch vehicle. Huntsville had been building rockets for the Army at Redstone since They then reentered the LM and closed the hatch at a. Show More. Saturn V: Americas Rocket to the Moon Writer It was based on the proposition that a large rotating space station would be one method by which the United States could maintain its position as a leader in space technology. After two orbits, which required about three hours, the S-IVB stage was reignited to place the spacecraft in a simulated lunar trajectory. George N. This booster engine assembly would be recovered and reused. Duration : 8. In service all around the world for decades, it remains—Iraq War controversies notwithstanding—the world standard in light military tactical vehicles. The S-II configuration provided for four J-2 liquid-oxygen - liquid-hydrogen engines, each delivering , pounds of thrust. The time for lunar landing was not resolved. The first maneuver following the abort decision was made with the descent propulsion system to place the spacecraft back in a free-return trajectory around the moon. Related Persons : Kraft. Both of these rockets were launched without crews. Twitter Share. ASF, the Pathfinder first full-scale Apollo Saturn V launch vehicle and spacecraft combination, was rolled out from Kennedy Space Center's Vehicle Assembly Building to the launch pad, for use in verifying launch facilities, training crews, and developing test procedures. Saturn V-Centaur American orbital launch vehicle. CM, apex heatshield, and one main parachute were recovered by the carrier U. You also agree to the Terms of Use and acknowledge the data collection and usage practices outlined in our Privacy Policy. This burn lasted five minutes. Rotating manned orbital research laboratory for a Saturn V launch vehicle. North American selected to build S-II stage. The firing was scheduled to occur on the Cape Kennedy pass at the end of the second revolution, but could not be accomplished. Four LEMs were also added to the program. The objectives and profile of the C prime mission would be developed to provide maximum gain consistent with standing flight safety requirements. The first stage had the most powerful engines, since it had the challenging task of lifting the fully fueled rocket off the ground. This site uses cookies and by continuing to browse it you are agreeing to our use of cookies. He is a known expert on aerospace technology and has authored books and specialty articles on the topic. Saturn C-3 The launch vehicle concept considered for a time as the leading contender for the Earth Orbit Rendezvous approach to an American lunar landing. Apollo 8 lunar mission scheduled for December Saturn V L American orbital launch vehicle. Saturn V: Americas Rocket to the Moon Reviews Please review our terms of service to complete your newsletter subscription. Development work was divided into four tasks: 1 Thiokol and Aerojet-General were to develop inch diameter, solid rocket motors of 3 million pounds of thrust for demonstration static firings; 2 Thiokol was to work on a inch, 3 million-pound thrust, two-segment solid rocket motor; 3 Thiokol was to develop and static fire a inch, one-segment solid rocket motor of one million pounds thrust demonstrating thrust vector control TVC through movable nozzles; and 4 Lockheed was to static fire a inch, single segment solid rocket motor of one million pounds thrust that demonstrated TVC through jet tabs. Status : Out of Production. Inside, the rocket contained three million parts in a labyrinth of fuel lines, pumps, gauges, sensors, circuits, and switches--each of which had to function reliably, and did. That's about as much weight as 10 school buses. The ascent engine was considered to be the most critical engine in the Apollo- Saturn vehicle. Perrine, Jr. Both Apollo and Saturn guidance and control systems would be operating during the launch phase. Schiffer Publishing, Ltd. Spacecraft : CSM Electrical. The coast phase was devoted to navigation sightings, two television transmissions, and system checks. Testing would be conducted in Douglas' After the S-IVB was staged off the spacecraft following injection into the translunar trajectory, the service module would be used for midcourse corrections. View Product. Cart 0. Howard D. Requirements for sterilization procedures were discussed and referred for further study. Saturn C-3 The launch vehicle concept considered for a time as the leading contender for the Earth Orbit Rendezvous approach to an American lunar landing. Microsoft, Oracle, Salesforce join COVID vaccination records system project Tech giants are among the companies participating in the initiative, which seeks to create a "health wallet app". The first Artemis mission is part of NASA's plan to return astronauts to the moon by , but that goal seems unlikely to be met. The Douglas Devastator was the US Navy's first all-metal combat aircraft, the Navy's first airplane with a fully enclosed cockpit, the first aircraft to have hydraulically folding wings, and the first US Navy torpedo bomber to see combat. The final flight program for Apollo 9 was verified; the emergency egress test with the prime and backup crew was conducted; and the software integration test between the lunar module and Mission Control Center, MSC, was completed on January In most cases the S-II would have to be fitted with 'sea-level' versions of its J-2 engines, which were designed only for operation in near-vacuum conditions. Apollo 13 LM -. Lovell, Jr. Abort feasibility for the AS mission -. There were dozens of medium-sized or "Secondary" contractors, and hundreds of smaller contractors who supplied parts as well as specialized engineering and consulting experience to the Apollo program. Cernan, and John W. They then returned to the CM. Disher; Eldon W. The new facility, Launch Complex 39, would include a building large enough for the vertical assembly of a complete Saturn launch vehicle and Apollo spacecraft. It could launch about tons into Earth orbit. The first phase of a three-phase construction program would begin in and would include four test stands for static-firing the Saturn C-5 S-IC and S-II stages; about 20 support and service buildings would be built in the first phase. But at this smaller angle, the panels now blocked the CM's four flush- mounted omnidirectional antennas, used during near-earth phases of the mission. After 3 hours 56 minutes on the lunar surface, the two astronauts entered the Intrepid to rest and check plans for the next EVA. The question arose as to whether the out-the-window reference was sufficient or whether an electromechanical device with a panel readout in the CM was required to verify separation. Brown, John C. W ith a cluster of five powerful engines in each of the first two stages and using high-performance liquid hydrogen fuel for the upper stages, the Saturn V was one of the great feats of 20th-century engineering. Watch Apollo-era footage projected on the side of the vehicle and do not miss the daily guided tour through each of the three stages of the rocket.
Recommended publications
  • Victor Or Villain? Wernher Von Braun and the Space Race
    The Social Studies (2011) 102, 59–64 Copyright C Taylor & Francis Group, LLC ISSN: 0037-7996 print / 2152-405X online DOI: 10.1080/00377996.2010.484444 Victor or Villain? Wernher von Braun and the Space Race JASON L. O’BRIEN1 and CHRISTINE E. SEARS2 1Education Department, University of Alabama in Huntsville, Huntsville, Alabama, USA 2History Department, University of Alabama in Huntsville, Huntsville, Alabama, USA Set during the Cold War and space race, this historical role-play focuses on Wernher von Braun’s involvement in and culpability for the use of slave laborers to produce V-2 rockets for Nazi Germany. Students will grapple with two central questions. Should von Braun have been allowed to emigrate to the United States given his affiliation with the Nazis and use of slave laborers? Should the U.S. government and military have put Braun in powerful positions in NASA and military programs? This activity encourages students to hone their critical thinking skills as they consider and debate a complex, multi-layered historical scenario. Students also have opportunity to articulate persuasive arguments either for or against von Braun. Each character sketch includes basic information, but additional references are included for teachers and students who want a more in depth background. Keywords: role-play, Wernher von Braun, Space Race, active learning Victor or Villain? Wernher von Braun and the Space Role-Playing as an Instructional Strategy Race By engaging in historical role-plays, students can explore In 2009, the United States celebrated the fortieth anniver- different viewpoints regarding controversial topics (Clegg sary of the Apollo 11 crew’s landing on the moon.
    [Show full text]
  • An Early Manned Lunar Landing Q
    . ' - ,, ,, ,, . ... , " X64 80440 O~s7!- A FEASIBLE APPROACH FOR AN EARLY MANNED LUNAR LANDING Q PART I SUMMARY REPORT OF AD HOC TASK GROUP STU6Y (u) JUNE 16, 1961 Restriction/Classification Cancelled NA§A HEADQUARTERS, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ' I ------AD HOC TASK .GROUP . William A. Fleming - Chairman, Hq. Facilities Addison M. Rothrock - Deputy Chairman, Hq.· Albert J. Kelley - Hq. Samuel Snyder - Hq. Berg Paraghamian - Hq. Robert D. Briskman - ·Hq. Walter W. Haase - Hq. Secrest L. Berry - Hq. Spacecraft Llle Sciences . ..John H. Disher - Hq. James P. Nolan, Jr. - ·Hq • Merle. G•. Waugh - Hq. A.H. Schwichtenberg - Lovelace Foundation. Kenneth Kleinknecht - STG Alan B. Kehlet - STG Advanced Technology Launch Vehicles Ernesto. Pearson, Jr. - Hq. Eldon W. Hall - Hq. Space Sciences Melvyn Savage - Hq. Heinz H. Koelle .- MSFC · William Shipley - JPL William L. Lovejoy_~_Hq. Robert Fellows - Hq •.. Norman Raf el - Hq. Alfred M. Nelson - Hq. The effort: or the Ad Hoc Task Group were supplemented very signllicantly by major contributions in each technical area from a large number or other staff members at the various NASA Centers and at NASA Headquarters. Although these· added participants are too numerous to mention individually, their contributions are a vital part of the study results. i Restriction/Classification Cancelled lil TABLE OF CONTENTS INTRODUCTION ~ Purpose and Study Approach 1 Ground Rules and Guidelines 2 Program Elements 3 Use of the Sequenced Milestone System 4 Approach to Program Funding 5 PROGRAM PLAN ·objectives 6 Program Scope 8 Mission Approach 12 Spacecraft Requirements 24 Launch Vehicle Development 32_ Facilities 48 ' Supporting Research 62 Early .Managemen:b·;_ Actiort:s.
    [Show full text]
  • America's Greatest Projects and Their Engineers - VII
    America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft.
    [Show full text]
  • A LOOK BACK at USING NUCLEAR PROPULSION to POWER SPACE VEHICLES in the 1960’S
    39th AIANASMWSAWASEE Joint Propulsion Conference and Exhibit A I A A-2003-4588 Von Braun Center, Huntsville, Alabama July 20-23,2003 MARSHALL SPACE FLIGHT CENTER AND THE REACTOR-IN-FLIGHT STAGE: A LOOK BACK AT USING NUCLEAR PROPULSION TO POWER SPACE VEHICLES IN THE 1960’s Mike Wright NASA Marshall Space Flight Center Huntsville, Alabama ABSTRACT ~ This paper examines the Marshall Space Flight Center’s role in the Reactor-In-Flight (RIlT) project that NASA was involved with in the early 1960’s. The paper outlines the project’s relation to the joint NASA-Atomic Energy Commission nuclear initiative known as Project Rover. It describes the justification for the RIFT project, its scope, and the difficulties that were encountered during the project. It also provides as assessment of NASA’s overall capabilities related to nuclear propulsion in the early 1960’s. INTRODUCTION Ideas about harnessing nuclear energy to propel everything from cars to locomotives to rockets have been around for more than 50 yr. In May 1940, The Boston Globe ran the headline: “Just add cold water, fly to the stratosphere. One pill of U-235, miracle substance just announced, would drive an automobile for a ye ar...” Six years later, The Associated Press reported that the “The Buffalo Machinery Co. eventually expected to power locomotives from coast to coast at a cost of less then $1.” After ‘World War 11, engineers began serious studies regarding how to propel rockets using nuclear propulsion. In June 1946, the Division of Reactor Development for the Atomic Energy Commission (AEC) asked the Applied Physics Laboratory (APL) of The Johns Hopkins University to study the feasibility of nuclear propulsion.
    [Show full text]
  • Day 6: Comparing Themes Across Texts English Language Arts
    Day 6: Comparing Themes Across Texts English Language Arts • Analyze the primary source quotes of Apollo 1 astronauts prior to their tragic deaths. Attempt to find a common theme that relates to the previous themes • Additional Resource Video: Apollo 1 Mission Results in Space Changes https://bit.ly/2DXV9gs The Apollo 1 Mission Videos of Quotes from the Apollo 1 Astronauts: https://ctm.americanexperience.org Directions: Consider the words of the following NASA astronauts who were scheduled to lift off in Apollo 1 on February 21, 1967. Virgil “Gus” Grissom: There's always a possibility that you can have a catastrophic failure, of course. This can happen on any flight. It can happen on the last one as well as the first one. You just plan as best you can to take care of all these eventualities, and you get a well-trained crew, and you go fly. Ed White: "I think you have to understand the feeling that a pilot has, that a test pilot has, that I look forward a great deal to making the first flight. There's a great deal of pride involved in making a first flight." (The New York Times, January 29, 1967, p. 48.) Roger Chaffee: “Oh, I don’t like to say anything scary about it. Um, there’s a lot of unknowns of course and a lot of problems that could develop, might develop. And they’ll have to be solved and that’s what we’re there for.” During a test launch approximately a month before their scheduled launch into space, these men suffered a tragic death when they were locked inside of their command module when a fire broke out aboard the ship.
    [Show full text]
  • The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited
    Student Session II Paper No. GT-SSEC.E.2 The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited David M. Reeves1 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, 23666 Michael D. Scher2 University of Maryland National Institute of Aerospace, Hampton, VA, 23666 Dr. Alan W. Wilhite3 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, 23666 Dr. Douglas O. Stanley4 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, ABSTRACT The 1962 Apollo architecture mode decision process was revisited with modern analysis and systems engineer tools to determine driving selection criteria and technology/operational mode design decisions that may be used for NASA’s current Space Exploration program. Results of the study agreed with the Apollo selection of the Lunar Orbit Rendezvous mode based on the technology maturity and politics in 1962. Using today’s greater emphasis on human safety and improvements in technology and design maturity, a slight edge may be given to the direct lunar mode over lunar orbit rendezvous. Also, the NOVA direct mode and Earth orbit rendezvous mode are not competitive based any selection criteria. Finally, reliability and development, operations, and production costs are major drivers in today’s decision process. 1Graduate Research Assistant, Georgia Institute of Technology, 100 Exploration Way, AIAA Student Member. 2 Graduate Research Assistant, University of Maryland, 100 Exploration Way, AIAA Student Member. 3 Langley Professor, Georgia Institute of Technology, 100 Exploration Way, AIAA Associate Fellow. 4 Langley Professor, Georgia Institute of Technology, 100 Exploration Way, AIAA Member. Page 1 of 12 Pages Student Session II Paper No.
    [Show full text]
  • Apollo Rocket Propulsion Development
    REMEMBERING THE GIANTS APOLLO ROCKET PROPULSION DEVELOPMENT Editors: Steven C. Fisher Shamim A. Rahman John C. Stennis Space Center The NASA History Series National Aeronautics and Space Administration NASA History Division Office of External Relations Washington, DC December 2009 NASA SP-2009-4545 Library of Congress Cataloging-in-Publication Data Remembering the Giants: Apollo Rocket Propulsion Development / editors, Steven C. Fisher, Shamim A. Rahman. p. cm. -- (The NASA history series) Papers from a lecture series held April 25, 2006 at the John C. Stennis Space Center. Includes bibliographical references. 1. Saturn Project (U.S.)--Congresses. 2. Saturn launch vehicles--Congresses. 3. Project Apollo (U.S.)--Congresses. 4. Rocketry--Research--United States--History--20th century-- Congresses. I. Fisher, Steven C., 1949- II. Rahman, Shamim A., 1963- TL781.5.S3R46 2009 629.47’52--dc22 2009054178 Table of Contents Foreword ...............................................................................................................................7 Acknowledgments .................................................................................................................9 Welcome Remarks Richard Gilbrech ..........................................................................................................11 Steve Fisher ...................................................................................................................13 Chapter One - Robert Biggs, Rocketdyne - F-1 Saturn V First Stage Engine .......................15
    [Show full text]
  • Birth, Life and Death of the Saturn Launch Vehicles
    1 ILR Mitt. 351 (2001) 5.5.2001 Learning from the past: Birth, Life and Death of the Saturn Launch Vehicles H.H.Koelle Technical University Berlin Institute of Aeronautics and Astronautics Marchstr.14, D-10587 Berlin 2 Birth, Life and Death of the Saturn Launch Vehicles H.H.Koelle Abstract The SATURN launch vehicle family is the classical story of the evolution and life cycle of a space transportation system. Its official history is well documented by historians or journalists. The author, in his function of Chief, Preliminary Design Branch, U.S.Army Ballistic Missile Agency, and after joining NASA, as Director, Future Projects Office, has had a key position during the years of developing this transportation system in the Huntsville team headed by Dr.Wernher von Braun. However, this was several decades ago and in retrospect, it may be useful now to reflect on this historical development with respect to the lessons learned. The evolution of the development from the JUNO 5 booster, to the SATURN I, IB and finally SATURN V is discussed in some detail from the viewpoint of the author. Excerpts of the autors weekly notes to Dr.v.Braun shed some light on the gyrations and problems the development team had to overcome. The life cycle of the SATURN's began in 1958, production stop was ordered in 1968, and it ended with the last launch of a SATURN IB in 1975. This report comprises 2 tables, 12 figures, 26 references on 38 pages. Key words: SATURN, launch vehicles, space transportation systems lifecycle Table of Contents: 1.Introduction 2.
    [Show full text]
  • America's Aims in Space
    906 FLIGHT, 14 December 19C Missiles and Space flight . AMERICA'S AIMS IN SPACE 2. The Launch Vehicles and their Operation By KENNETH OWEN VERSHADOWING all else on the United States space-flight scene is Project Apollo, the accelerated manned lunar pro- O gramme called for as a major national goal by President Kennedy on May 25 last. The President said, "No single space pro- ject will be more exciting or more impressive, or more important for the long-range exploration of space; none will be so difficult or expensive to accomplish." Within six months, the National Aeronautics and Space Administration had selected Massachusetts Institute of Technology as associate contractor for Apollo guidance and control, and were negotiating with North American a S400m prime contract for two of the three main sections of the actual spacecraft. Most of the difficulty and expense referred to by President Kennedy in connection with Apollo will arise in the developmeni of the launch vehicles needed to transport the three-man spacecraft to the Moon and back to Earth. Not that this is confined to Apollo, for vehicle development is an obvious key factor in accomplishing all the space missions on which, as described in last week's issue, NASA is currently engaged. The environment in which these launch-vehicle systems are being developed was described at the recent American Rocket Society meeting in New York by Mr Willis M. Hawkins, vice-president and general manager of Lockheed Missiles and Space Company, who listed four main points of overall design philosophy. First, Mr Hawkins commented, "What we are doing now is just barely possible and just barely reliable.
    [Show full text]
  • PROJECT APOLLO the Tough Decisions
    NASA SP-2007-4537 Robert C. Seamans, Jr. PROJECT APOLLO The Tough Decisions Monographs in Aerospace History Number 37 National Aeronautics and Space Administration Office of External Relations History Division Washington. DC 2007 Table of Contents iv List of Figures vii Acknowledgments ix Foreword 1 Chapter 1: Introduction 5 Chapter 2: Eisenhower’s Legacy 11 Chapter 3: The Kennedy Challenge 57 Chapter 4: Johnson’s Solid Support 83 Chapter 5: NASA Management 107 Chapter 6: The Grand Finale 117 Chapter 7: The Aftermath 127 Appendix 1 131 Appendix 2 139 Appendix 3 143 About the Author 145 Acronyms and Abbreviations 149 NASA Monographs in Aerospace History Series 151 Index iii List of Figures Page 13 Figure 1 Results of a study commissioned on 6 January 1961 and chaired by George Low. These findings were available on 7 February 1961. Page 14 Figure 2 NASA Management Triad in the office of James E. Webb (center). He and Dr. Robert C. Seamans, Jr. (right), listen as Dr. Hugh Dryden (left) has the floor. (NASA Image Number 66-H-93) Page 15 Figure 3 Sergey P. Korolev, founder of the Soviet space program, shown here in July 1954 with a dog that had just returned to Earth after a lob to an altitude of 100 kilometers on an R-1d rocket. Page 21 Figure 4 President John F. Kennedy congratulates astronaut Alan B. Shepard, Jr., the first American in space, on his historic 5 May 1961 ride in the Freedom 7 spacecraft and presents him with the NASA Distinguished Service Award. (NASA Image Number 1961ADM-13) Page 22 Figure 5 Formation of USSR and U.S.
    [Show full text]
  • Flight to the Moon Spacecraft Attitude Control, MIT IAP 16.S585
    1/17/21 Earth-Moon Orbit Orbital Period: 27-1/2 days One side of Moon always faces Earth Flight to the Moon Spacecraft Attitude Control, MIT IAP 16.S585 Robert Stengel Princeton University There is no “Dark Side” January 14, 2021 1 ALL SIDES are dark once a month 2 1 2 The Earth and the Moon December 17, 1958 Earth mass = 81.4 x Moon mass Orbit eccentricity = 0.05 1st Cosmonaut Mercury 7, 1959 Class, 1959 3 4 3 4 1 1/17/21 April 12, 1961 February 20, 1962 John Glenn Vostok 1 Friendship 7 Mercury-Atlas Yuri Gagarin 5 6 5 6 Project Gemini [1965-66] Lunar Missions 10 crewed Titan II missions June 1961 Competition among contractors for the spacecraft and launch rockets US takes Space Race Lead 7 8 7 8 2 1/17/21 First Apollo Program Contract MIT Instrumentation Laboratory August 9, 1961 HOWEVER … Lunar landing technique had not been decided 9 10 9 10 Alternative Landers Saturn 3rd Stage 11 12 11 12 3 1/17/21 Proposed Saturn Launch Vehicles July 1962 Two Saturn 5s One or One Saturn 5 Nova Ten Saturn 1s Saturn 1 Saturn 5 Nova (Saturn 8) 13 14 13 14 Saturn Launch Vehicles Saturn 1B Saturn 5 The Apollo Modules Earth Orbit Missions Lunar Missions Service Command Lunar Module Module Module North American Grumman 15 16 15 16 4 1/17/21 First Manned Flight, Apollo 7 Apollo 8, December 21-27, 1968 October 11, 1968 • Earth-orbit mission to test LM planned • More ambitious mission was pursued st Eisele Schirra Cunningham • Repurposed to 1 manned flight to the Moon • 6-day mission, no Lunar Module Coast Reentry Trans- Moon’s Lunar Coast Injection “Sphere
    [Show full text]
  • Lunar Nautics: Designing a Mission to Live and Work on the Moon
    National Aeronautics and Space Administration Lunar Nautics: Designing a Mission to Live and Work on the Moon An Educator’s Guide for Grades 6–8 Educational Product Educator’s Grades 6–8 & Students EG-2008-09-129-MSFC i ii Lunar Nautics Table of Contents About This Guide . 1 Sample Agendas . 4 Master Supply List . 10 Survivor: SELENE “The Lunar Edition” . 22 The Never Ending Quest . 23 Moon Match . 25 Can We Take it With Us? . 27 Lunar Nautics Trivia Challenge . 29 Lunar Nautics Space Systems, Inc. ................................................. 31 Introduction to Lunar Nautics Space Systems, Inc . 32 The Lunar Nautics Proposal Process . 34 Lunar Nautics Proposal, Design and Budget Notes . 35 Destination Determination . 37 Design a Lunar Lander . .38 Science Instruments . 40 Lunar Exploration Science . 41 Design a Lunar Miner/Rover . 47 Lunar Miner 3-Dimensional Model . 49 Design a Lunar Base . 50 Lunar Base 3-Dimensional Model . 52 Mission Patch Design . 53 Lunar Nautics Presentation . 55 Lunar Exploration . 57 The Moon . 58 Lunar Geology . 59 Mining and Manufacturing on the Moon . 63 Investigate the Geography and Geology of the Moon . 70 Strange New Moon . 72 Digital Imagery . 74 Impact Craters . 76 Lunar Core Sample . 79 Edible Rock Abrasion Tool . 81 i Lunar Missions ..................................................................83 Recap: Apollo . 84 Stepping Stone to Mars . 88 Investigate Lunar Missions . 90 The Pioneer Missions . 92 Edible Pioneer 3 Spacecraft . .96 The Clementine Mission . .98 Edible Clementine Spacecraft . .99 Lunar Rover . 100 Edible Lunar Rover . 101 Lunar Prospector . 103 Edible Lunar Prospector Spacecraft . 107 Lunar Reconnaissance Orbiter . 109 Robots Versus Humans . 11. 1 The Definition of a Robot .
    [Show full text]