Diagnostic System for Electronic Fuel Injection Engines

Total Page:16

File Type:pdf, Size:1020Kb

Diagnostic System for Electronic Fuel Injection Engines Diagnostic System for Electronic Fuel Injection Engines Pedro Maria de Sousa Melo Correia Duarte (IST n. 50823) Dissertation submitted for obtaining the degree of Master in Electrical and Computer Engineering Proposal 251/2007 Thesis Committee President: Prof. José António Beltran Gerald Advisor: Prof. Moisés Simões Piedade Members: Prof. Leonel Augusto Pires Seabra de Sousa Prof. Francisco André Corrêa Alegria September 2007 To all of those who always fed my interest in engineering, specially my grand fathers, my uncles and my father. I would probably be a rich doctor by now if weren't for you. i Acknowledgements Acknowledgements Before going into any further details of my thesis I believe that I must mention all the people and companies who made my work possible or at least eased the way as much as they could. Among these there are three special acknowledgements that have to be made to the ones whose contribution was invaluable. These are my parents and grandparents who gave me all the support they could, both financially and emotionally, throughout my academic process; my supervisor Dr. Moisés Piedade who accepted to guide my work and whose passion for electronics has been a key factor on my personal motivation on this course; and at last but not less important than the others, my colleague Paulo Louro who assisted me on every doubts I came across regarding both hardware and software development. I must also express my profound appreciation for the following individuals: Eng. Victor Silvestre from Fatrónica, Fabrico de Artigos Electrónicos, S.A. who provided me with testing hardware for the development of the on-board car computer, Dr. Francisco Alegria who reviewed my thesis for its final presentation, Mrs. Marli Gomes and Mr. Manuel Ribeiro for the assistance with laboratory material requests, and the team of soon-to-be engineers who shared the laboratory with me and helped me to keep the good mood through the entire project. As of communities I have to thank to all the members of the DIY community of pgmfi.org who researched the electronic control units used in Honda engines. Without their investigation which is underway for at least 10 years it would have not been possible to achieve the results I got. I also must express my sincere appreciation for the community vtec.pt which helped me in many ways regarding the vehicle that was the subject of my research. ii Abstract Abstract For the last 30 years, the automotive industry has been feeling the strong impact of electronic components in their end-products. Part of the technology that started being used for the simple control of headlights and brake lights soon became part of more complex embedded systems that reached many areas of the vehicle ranging from vital security applications to multimedia appliances. On extremely advanced vehicles the electronics and harness hardware used may reach up to 70% of the total cost of the final product. With the growth of the concurrent market for OEM and aftermarket off-the-shelves multi-purpose devices, standards regarding communication between the vehicle and these third party appliances had to be defined. Originally developed in 1980, CAN bus was created to establish a consensus in intra-vehicle communication. It sill is one of the most successful protocols for serial communication nowadays and is already employed outside the automotive industry. However, in an age where critical functionality such as X-by-Wire tends to earn more market place, more reliable and faster buses are required. The work presented in this paper explores one possible approach to develop a console that integrates three standards of communication with low cost interfaces. After exhaustive research CAN bus, LIN bus and USB were chosen to integrate this prototype in order to allow transmission speeds up to 1Mbps concerning the third party peripherals and up to 12 Mbps towards the vehicle on-board computer. Although examples for all the buses were provided, the main functional objective of this thesis is to give the driver the possibility to interact with the engine ECU, using this platform, in a vehicle that was not prepared for the effect at the time of its design. The achieved result was the ability to gather real time information about the conditions of an internal combustion engine and to be able to interact with mechatronic peripherals on the fly. Keywords Automotive Communication, CAN bus, LIN, On-board Computer, ECU, Datalogging iii Resumo Resumo Desde há 30 anos que a indústria automóvel tem vindo a sentir o grande impacto dos componentes electrónicos nos seus produtos finais. Parte da tecnologia que começou por ser usada para o simples controlo de faróis e luzes de travagem rapidamente se tornou parte de sistemas embebidos mais complexos que afectam várias áreas do veículo, desde aplicações de segurança crítica até aplicações multimédia. Em veículos extremamente avançados, todos os componentes electrónicos e cablagem utilizados podem chegar a 70% do valor total do produto final. Com o crescimento do mercado paralelo de peças originais ou componentes genéricos para diversos fins, protocolos de comunicação entre o veículo e estes dispositivos tiveram de ser definidos. Originalmente desenvolvido em 1980, o CAN bus for criado para estabelecer o consenso em comunicação interna automóvel. É hoje ainda um dos mais populares protocolos para comunicação em série e já é utilizado fora da indústria automóvel. Contudo, numa era onde a funcionalidade critica como o X-by-Wire tende a ganhar mais lugar no mercado, protocolos mais fiáveis e rápidos são necessários. O trabalho apresentado neste documento explora uma abordagem possível ao desenvolvimento de uma consola que integra três protocolos de comunicação de baixo custo. Após uma pesquisa exaustiva CAN bus, LIN bus e USB foram escolhidos para integrar este protótipo de forma a permitir velocidades de transmissão até 1 Mbps considerando os periféricos automóveis e até 12 Mbps considerando o computador de bordo. Apesar de terem sido criados exemplos para todos os barramentos de dados implementados, a principal objectivo funcional desta tese é dar a possibilidade de interagir com a ECU do motor, utilizando esta plataforma, num veículo que não está preparado para o efeito de fábrica. O resultado obtido foi a capacidade de observar em tempo real informação sobre as condições de um motor de combustão interna e conseguir interagir com periféricos mecânicos e eléctricos de forma instantânea. Palavras-chave Comunicaçao automóvel, CAN bus, LIN, Computador de Bordo, ECU, Registo de Dados iv Table of Contents Table of Contents Acknowledgements................................................................................. ii Abstract.................................................................................................. iii Resumo ................................................................................................. iv Table of Contents.................................................................................... v List of Figures .......................................................................................viii List of Tables........................................................................................... x List of Abbreviations............................................................................... xi 1 Introduction ..................................................................................1 1.1 Overview.................................................................................................. 2 1.2 Motivation and Contents.......................................................................... 3 2 Protocols ......................................................................................5 2.1 Introduction.............................................................................................. 6 2.2 Protocol Overview ................................................................................... 6 2.2.1 IEBus overview – Class A ..................................................................................... 6 2.2.2 Motorola Interconnect (MI) Overview – Class A.................................................... 7 2.2.3 SAE J1708 overview – Class A............................................................................. 7 2.2.4 Local Interconnect Network (LIN) overview – Class A .......................................... 7 2.2.5 J1850 overview – Class A ..................................................................................... 8 2.2.6 Distributed Systems Interface (DSI) overview – Class B ...................................... 8 2.2.7 Intellibus overview – Class B and C ..................................................................... 8 2.2.8 Controller Area Network (CAN) overview – Class B and C................................... 9 2.2.9 FlexRay overview – Class C.................................................................................. 9 2.2.10 Media Oriented Systems Transport (MOST) overview – Class C....................... 10 v 2.2.11 On-Board Diagnostic (OBD) overview – Class C ................................................ 10 2.2.12 Byteflight (SI-Bus) overview – Class C................................................................ 11 2.2.13 Bosch-Siemens-Temic (BST) overview – Class C .............................................. 11 2.2.14 Mobile Multimedia Link (MML) Overview – Class C............................................ 12 2.2.15 Domestic Digital Bus (D2B) overview – Class C ................................................
Recommended publications
  • RZ Family Microprocessors Brochure
    RZ FAMILY Renesas Microprocessor 2018.10 THE NEXT-GENERATION PROCESSOR TO MEET THE NEEDS OF THE SMART SOCIETY HAS ARRIVED. achine In M te n r a f a m c u e H ntr wo Co ol Net rk CONTENTS RZ/A SERIES ___________________________________________ 04 RZ/G SERIES ___________________________________________ 10 RZ/T SERIES ___________________________________________ 16 RZ/N SERIES ___________________________________________ 22 RZ SPECIFICATIONS ______________________________________ 28 PACKAGE LINEUP _______________________________________ 38 02-03 The utilization of intelligent technology is advancing in all aspects of our lives, including electric household appliances, industrial equipment, building management, power grids, and transportation. The cloud-connected “smart society” is coming ever closer to realization. Microcontrollers are now expected to provide powerful capabilities not available previously, such as high-performance and energy-efficient control combined with interoperation with IT networks, support for human-machine interfaces, and more. To meet the demands of this new age, Renesas has drawn on its unmatched expertise in microcontrollers to create the RZ family of embedded processors. The lineup of these “next-generation processors that are as easy to use as conventional microcontrollers” to meet different customer requirements. The Zenith of the Renesas micro As embedded processors to help build the next generation of advanced products, the RZ family offers features not available elsewhere and brings new value to customer applications.
    [Show full text]
  • Renesas MCU M16C Family (R32C/M32C/M16C/R8C)
    2008.01 Renesas MCU M16C Family (R32C/M32C/M16C/R8C) www.renesas.com World’s No. 1* Flash MCUs !! index Roadmap Total shipments of Rewriting possible during operation, and CPU Architecture World’s No. 1 1,000,000,000 units!! World’s No. 1 program/erase cycles increased to 100,000! E2dataFlash substantially improves the functionality and performance of data Flash MCUs Thanks to strong demand, total flash MCU Flash MCUs flash, allowing data to be rewritten independently while the MCU is operating. Concepts Proof No. 1 shipments reached the 1 billion mark in March 2007. Proof No. 4 Guaranteed program/erase cycles have been increased to 100,000, and data Renesas flash MCUs are used in a wide range of save times are two orders of magnitude faster than external E2PROM. consumer, industrial and automotive applications. (E2dataFlash: E2PROM emulation data flash memory) Product Lineup Development Tools No. 1 lineup of flash MCUs with 40µsec./byte high-speed flash World’s No. 1 over 300 products in 30 series!! World’s No. 1 programming!! Development Flash MCUs Flash MCUs Tools from Divided into high-end, middle, and low-end classes, Flash MCU technology supports high-speed Renesas Partners Proof No. 2 the flash MCU lineup is built on the most advanced Proof No. 5 programming at a rate of 512KB every 20 seconds technology. Flexible support is provided for (total time required for reprogramming, including Middleware/ increasingly large and complex software. erasing and programming). Demo Sets Functions/ Application Fields Memory Capacity High-speed flash memory supporting Comprehensive support and World’s No.
    [Show full text]
  • Renesas Automotive
    Renesas Automotive www.renesas.com 2011.10 Introduction Renesas "Green" Automotive Initiative Automotive Leading the World with a Wide-Ranging Product Lineup I Application Systems I Renesas Products I Renesas Constituent Technologies HEV/EV 15 Car Instrumentation 36 I Renesas Automotive Products Selection Guide I Renesas Development Environments Analog and Power Devices 03 Security Solutions 09 Powertrain 19 Car Audio 39 Analog and Power Device Products 65 Contents AUTOSAR Solutions Optimized for Renesas MCUs 53 RL78 Family of New Affordable MCUs 05 Functional Safety Solutions 11 Chassis & Safety 24 Car Information System 41 Analog Master (Semi-Custom)/Mixed Signal ASIC (Fully Custom) Products 75 Development Environments from Renesas Partner 55 SoC R-Car Series for In-Vehicle Terminals 07 AUTOSAR Solutions 13 Advanced Driver Assistance System 28 In-Vehicle Networking 47 SoC Products for In-Vehicle Information Terminals 75 Body 31 Analog & Power Devices 49 01 02 Renesas Products Renesas Analog and Power Devices Automotive Automotive Power Devices Combining Low-Voltage Power MOSFETs with Ultralow On-Resistance ECO Renesas is the world’s No. 1 supplier of Comparison with TO-263-7 (40V) Energy Efficiency and Compactness Process Name low-voltage MOSFETs, offering a broad Pch A N L 1 Series No. 312 lineup of attractive products. Through Low Voltage Tolerance 7th Generation Channel the use of a fabrication process Four Technologies That Contribute to “Green Cars” 8th Generation For Automotive Applications 171 –30V to 100V 1.2mohm employing an
    [Show full text]
  • RZ Family Microprocessors Brochure
    RZ FAMILY MICROPROCESSORS 64-Bit & 32-Bit Arm-based high-end MPUs 2021.07 THE NEXT-GENERATION PROCESSOR TO MEET THE NEEDS OF THE SMART SOCIETY HAS ARRIVED. achine In M te n r a f a m c u e H ntr wo Co ol Net rk CONTENTS RZ/V SERIES ___________________________________________ 04 RZ/G SERIES ___________________________________________ 08 RZ/A SERIES ___________________________________________ 16 RZ/T SERIES ___________________________________________ 22 RZ/N SERIES ___________________________________________ 30 PACKAGE LINEUP _______________________________________ 35 02-03 The utilization of intelligent technology is advancing in all aspects of our lives, including electric household appliances, industrial equipment, building management, power grids, and transportation. The cloud-connected “smart society” is coming ever closer to realization. Microcontrollers are now expected to provide powerful capabilities not available previously, such as high-performance and energy-efficient control combined with interoperation with IT networks, support for human-machine interfaces, and more. To meet the demands of this new age, Renesas has drawn on its unmatched expertise in microcontrollers to create the RZ family of embedded processors. The lineup of these “next-generation processors that are as easy to use as conventional microcontrollers” to meet different customer requirements. The Zenith of the Renesas micro As embedded processors to help build the next generation of advanced products, the RZ family offers features not available elsewhere and
    [Show full text]
  • Extracting and Mapping Industry 4.0 Technologies Using Wikipedia
    Computers in Industry 100 (2018) 244–257 Contents lists available at ScienceDirect Computers in Industry journal homepage: www.elsevier.com/locate/compind Extracting and mapping industry 4.0 technologies using wikipedia T ⁎ Filippo Chiarelloa, , Leonello Trivellib, Andrea Bonaccorsia, Gualtiero Fantonic a Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy b Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, 56124 Pisa, Italy c Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy ARTICLE INFO ABSTRACT Keywords: The explosion of the interest in the industry 4.0 generated a hype on both academia and business: the former is Industry 4.0 attracted for the opportunities given by the emergence of such a new field, the latter is pulled by incentives and Digital industry national investment plans. The Industry 4.0 technological field is not new but it is highly heterogeneous (actually Industrial IoT it is the aggregation point of more than 30 different fields of the technology). For this reason, many stakeholders Big data feel uncomfortable since they do not master the whole set of technologies, they manifested a lack of knowledge Digital currency and problems of communication with other domains. Programming languages Computing Actually such problem is twofold, on one side a common vocabulary that helps domain experts to have a Embedded systems mutual understanding is missing Riel et al. [1], on the other side, an overall standardization effort would be IoT beneficial to integrate existing terminologies in a reference architecture for the Industry 4.0 paradigm Smit et al.
    [Show full text]
  • 29064 L902 Di
    THATTHE TOUT UNTUTUN US AUTO20180011173A1 CON UNUNTUK DI MO ANTHI (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 / 0011173 A1 Newman ( 43 ) Pub . Date : Jan . 11 , 2018 ( 54 ) LOW -PROFILE IMAGING SYSTEM WITH GOIS 17 /89 (2006 .01 ) ENHANCED VIEWING ANGLES B6OR 11 / 00 (2006 .01 ) (52 ) U .S . CI. ( 71) Applicant : NextEV USA , Inc. , San Jose , CA (US ) CPC .. GOIS 7 /4816 ( 2013 .01 ) ; GOIS 17 / 936 (2013 .01 ) ; GOIS 17 /89 (2013 . 01 ) ; B60R 11 /04 ( 72 ) Inventor: Austin L . Newman , San Jose, CA (US ) (2013 .01 ) ; B62D 39/ 00 ( 2013 .01 ) ; B60R ( 21 ) Appl. No .: 15 / 394 ,402 2011/ 004 ( 2013. 01 ) ( 22 ) Filed : Dec . 29 , 2016 (57 ) ABSTRACT Related U . S . Application Data Methods, devices , and systems of a light imaging and ranging system are provided . In particular, the imaging and (60 ) Provisional application No. 62 / 359 , 563 , filed on Jul. ranging system includes a LIDAR sensor and a low -profile 7 , 2016 , provisional application No . 62 /378 , 348 , filed optics assembly having a reflective element with a continu on Aug . 23 , 2016 , provisional application No . 62 / 403 , ous and uninterrupted reflective surface surrounding a 273 , filed on Oct. 3 , 2016 , provisional application No . periphery of a LIDAR sensor in a light path of the LIDAR 62 /424 , 976 , filed on Nov. 21, 2016 . sensor. The reflective element is positioned at a distance offset from the periphery of the LIDAR sensor and directs Publication Classification light emitted by the LIDAR sensor to a second reflective ( 51 ) Int . Ci. element that is substantially similar in shape and size as the GOIS 7 / 481 ( 2006 .01 ) reflective element.
    [Show full text]
  • Architecture for a Remote Diagnosis System Used in Heavy-Duty Vehicles
    Institutionen för datavetenskap Department of Computer and Information Science Final thesis Architecture for a remote diagnosis system used in heavy-duty vehicles by Anders Björkman LIU-IDA/LITH-EX-A--08/034--SE 2008-06-30 Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping Linköping University Department of Computer and Information Science Final Thesis Architecture for a remote diagnosis system used in heavy-duty vehicles by Anders Björkman LIU-IDA/LITH-EX-A--08/034--SE 2008-06-30 Supervisor: Jan Lindman Scania Fleet Management Department at Scania CV AB Examiner: Petru Eles Dept. of Computer and Information Science at Linköpings universitet Abstract The diagnosis system of a Scania vehicle is an indispensable tool for workshop personnel and engineers in their work. Today Scania has a system for fetching diagnostic information from field test vehicles remotely and store them in a database, so called remote diagnosis. This saves the engineers much time by not having to visit every vehicle. The system uses a Windows based on- board PC in the vehicle called an Interactor. The Interactor has a telematic unit for communication with Scanias Fleet Management System and the CAN-bus in the vehicle. In the next generation of the Interactor, its telematic unit is to be replaced by a Linux based telematic unit called the Communicator 200 (C200). The purpose of this master project is to create a new architecture for a remote diagnosis system that uses the new telematic unit Communicator 200. The thesis gives an analysis of the current remote diagnosis system used at Scania and proposes an architecture for a new generation remote diagnosis system using the C200.
    [Show full text]
  • Renesas Microprocessor RZ Family
    RZ FAMILY Renesas Microprocessor www.renesas.com 2017.07 01-02 THE NEXT-GENERATION PROCESSOR TO MEET THE NEEDS OF THE SMART SOCIETY HAS ARRIVED. The utilization of intelligent technology is advancing in all aspects of our lives, including electric household appliances, industrial equipment, building management, power grids, and transportation. The cloud-connected “smart society” is coming ever closer to realization. Microcontrollers are now expected to provide powerful capabilities not available previously, such as high-performance and energy-efficient control combined with interoperation with IT networks, support for human-machine interfaces, and more. To meet the demands of this new age, Renesas has drawn on its unmatched expertise in microcontrollers to create the new RZ family of embedded processors. The lineup of these “next-generation processors that are as easy to use as conventional microcontrollers” spans four product series to meet different customer requirements. The Zenith of the Renesas micro As embedded processors to help build the next generation of advanced products, the RZ family offers features not available elsewhere and brings new value achine In M te to customer applications. n r a f a m c u e H ¢ RZ Family Roadmap RZ/G1H Cortex®-A15x4 (1.4GHz) Cortex®-A7x4(780MHz) G6400, H.264 32bit×2ch DDR3-1600 RZ/G1M Cortex®-A15x2 (1.5GHz) RZ/G-next SGX544MP2, H.264 (T.B.D) 32bit×2ch DDR3L-1600 RZ/G1N Cortex®-A15x2 (1.5GHz) ntr wo SGX544MP2, H.264 Co ol Net rk 32bit×1ch DDR3L-1600 RZ/G series 3D Graphics RZ/G1E RZ/G1C Cortex®-A7x2 (1.0GHz) Cortex®-A7x2 (1.0GHz) HMI MPU SGX540, H.264 SGX531, H.264 32bit×1ch DDR3-1333 32bit×1ch DDR3-1000 RZ/A1H RZ/A-next Cortex®-A9(400MHz) RZ/A1LU Cortex®-A9(400MHz) 10MB, WXGA, 2D RZ/A1M 3MB, XGA, JPEG RZ/A series Cortex®-A9(400MHz) for HMI Apps.
    [Show full text]
  • Building Automation Catalog
    BUILDING AUTOMATION Leading-edge IoT solutions for HVAC, fire/safety, building security, and lighting 2018.06 BUILDING AUTOMATION BRINGING COMFORT, SAFETY, AND ENERGY SAVINGS TO PEOPLE, BUILDINGS, AND COMMUNITIES WITH SOLUTIONS TO CONNECT, PROTECT, AND CONSERVE By connecting air conditioning, disaster prevention, crime prevention, and lighting equipment via networks, buildings can be made more convenient, secure, and energy effi cient. Renesas leverages advanced technologies in connectivity, sensing, user interface, and low-power to enable the next generation of advancements in building automation. CONTENTS Renesas Technology for Building Automation ___________________ 03 Connectivity Solutions ____________________________________ 14 Key Building Automation Communication Technologies ____________ 04 Sensing Solutions _______________________________________ 16 HVAC Systems __________________________________________ 06 Lighting Solutions (DALI ed2.0) ______________________________ 18 Fire and Safety Systems ___________________________________ 08 Power Management Solutions ______________________________ 20 Building Security Systems _________________________________ 09 Renesas Synergy™ Platform Solutions ________________________ 22 Lighting Systems _______________________________________ 10 Recommended Devices for Building Automation__________________ 26 Motor Control Solutions ___________________________________ 12 Eco System Partner ______________________________________ 30 User Interface Solutions ___________________________________ 13 02-03
    [Show full text]
  • Industrial Embedded Systems
    RSC #2 @ www.industrial-embedded.com/rsc RSC #3 @ www.industrial-embedded.com/rsc www.industrial-embedded.com VOLUME 1 • NUMBER 1 OCTOBER 20 05 COMPUTING COLUMNS TECHNOLOGY 7 Foreword Thinking 48 Modern interfaces in light of embedded computer integration A fresh start to getting things done By Andreas Geh, DIGITAL-LOGIC AG By Don Dingee 54 Embedded compute models help contain costs 8 Industrial Europe By Ernest Godsey, MEN Micro Q & A with Ulrich Gerhmann, CEO, and Norbert Hauser, 57 Product Profiles VP of Marketing, Kontron EMEA HUMAN INTERFACE By Stefan Baginski TECHNOLOGY 10 Market Pulse 80 Converging functionality in embedded industrial control IEEE 802.15.4 and ZigBee By Melissa Jones, Ultimodule By Bonnie Crutcher 84 Using software-configurable processors in biometric 98 The Final Word applications It’s all about choices By Philip Weaver, Stretch, and Fred Palma, A4 Vision By Jerry Gipper 87 Product Profiles SENSORS/CONTROL FEATURES TECHNOLOGY NETWORKING 88 Combining a hardware neural network with a powerful SPECIAL: Standards automotive MCU for powertrain applications 16 Opening gates with TCP-to-CANopen By Dr. Paul Neil, Axeon By Holger Zeltwanger, CAN in Automation APPLICATION 20 Performance, implementation, and applications of 90 Open architecture PAC technology drives undersea remotely Ethernet Powerlink operated vehicles By Frank Foerster and Bill Seitz, IXXAT By Chris Ward, C&M Group TECHNOLOGY 91 Product Profiles 12 Ultra-wideband communication for low-power wireless STORAGE body area networks TECHNOLOGY By Bart Van Poucke
    [Show full text]
  • Renesas Starter Kit+ for RZ/T1 User's Manual
    User's Manual RZ/T1 Group 3232 Renesas Starter Kit+ User’s Manual For e2 studio RENESAS MCU Family / RZ/T1 Series All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corporation without notice. Please review the latest information published by Renesas Electronics Corporation through various means, including the Renesas Electronics Corporation website (http://www.renesas.com). Rev. 1.00 Mar 2015 Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
    [Show full text]
  • RZ Family Microprocessors Brochure
    RZ FAMILY 64-Bit & 32-Bit Arm-based high-end MPUs 2020.02 THE NEXT-GENERATION PROCESSOR TO MEET THE NEEDS OF THE SMART SOCIETY HAS ARRIVED. achine In M te n r a f a m c u e H ntr wo Co ol Net rk CONTENTS RZ/A SERIES ___________________________________________ 04 RZ/G SERIES ___________________________________________ 10 RZ/T SERIES ___________________________________________ 16 RZ/N SERIES ___________________________________________ 22 RZ SPECIFICATIONS ______________________________________ 28 PACKAGE LINEUP _______________________________________ 38 02-03 The utilization of intelligent technology is advancing in all aspects of our lives, including electric household appliances, industrial equipment, building management, power grids, and transportation. The cloud-connected “smart society” is coming ever closer to realization. Microcontrollers are now expected to provide powerful capabilities not available previously, such as high-performance and energy-efficient control combined with interoperation with IT networks, support for human-machine interfaces, and more. To meet the demands of this new age, Renesas has drawn on its unmatched expertise in microcontrollers to create the RZ family of embedded processors. The lineup of these “next-generation processors that are as easy to use as conventional microcontrollers” to meet different customer requirements. The Zenith of the Renesas micro As embedded processors to help build the next generation of advanced products, the RZ family offers features not available elsewhere and brings new value
    [Show full text]