Pluripotent Stem Cells Induced from Mouse Neural Stem Cells and Small Intestinal Epithelial Cells by Small Molecule Compounds
Cell Research (2016) 26:34-45. npg © 2016 IBCB, SIBS, CAS All rights reserved 1001-0602/16 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds Junqing Ye1, 2, *, Jian Ge1, 2, *, Xu Zhang1, 2, Lin Cheng1, 2, Zhengyuan Zhang1, 2, Shan He 1, 2, Yuping Wang4, Hua Lin4, Weifeng Yang5, Junfang Liu1, 2, Yang Zhao1, 2, 3, Hongkui Deng1, 2 1Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; 2The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; 3Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; 4Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, China; 5BeijingVitalstar Biotechnology Co., Ltd., Beijing 100012, China Recently, we reported a chemical approach to generate pluripotent stem cells from mouse fibroblasts. Howev- er, whether chemically induced pluripotent stem cells (CiPSCs) can be derived from other cell types remains to be demonstrated. Here, using lineage tracing, we first verify the generation of CiPSCs from fibroblasts. Next, we demon- strate that neural stem cells (NSCs) from the ectoderm and small intestinal epithelial cells (IECs) from the endoderm can be chemically reprogrammed into pluripotent stem cells. CiPSCs derived from NSCs and IECs resemble mouse embryonic stem cells in proliferation rate, global gene expression profile, epigenetic status, self-renewal and differen- tiation capacity, and germline transmission competency.
[Show full text]