Mapping Cell Types, Dynamics, and Connections in Neural Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Mapping Cell Types, Dynamics, and Connections in Neural Circuits Mapping Cell Types, Dynamics, and Connections in Neural Circuits by Samuel Gordon Rodriques B.Sc. in Physics Haverford College, 2013 M.Phil. in Engineering Churchill College, University of Cambridge, 2014 Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN PHYSICS at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2019 © 2019 Massachusetts Institute of Technology. All rights reserved. Signature of Author: _____________________________________________ Samuel G. Rodriques Certified by: __________________________________________________ Jeff Gore, Associate Professor of Physics, Supervisor Accepted by: _________________________________________________ Nergis Mavalvala, Associate Department Head 1 2 Mapping Cell Types, Dynamics, and Connections in Neural Circuits by Samuel Gordon Rodriques Submitted to the Department of Physics on May 17th, 2019, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics. ABSTRACT Neuroscience is limited by the difficulty of recording neural activity, identifying cell types, and mapping connectivity in high throughput. In this thesis, I present several scalable technologies aimed at improving our ability to characterize the activity, composition, and connectivity of neural circuits. My primary contributions include the design for a nanofabricated electrical recording device and a new approach to nanofabrication within swellable hydrogels; a high- throughput method for mapping the locations of cell types in tissue; an approach to direct sequencing of proteins at the single molecule level; an approach to directly recording neural activity into the sequence of RNA, enabling it to be detected by DNA sequencing; and a method for molecular barcoding of neurons, with the goal of enabling a high-throughput approach to neural circuit mapping. I conclude with a consideration of the limitations of the academic incentive structure as concerns the development and deployment of new technologies, and propose a structure for basic science research, complementary to the academic structure, based on the systematic establishment of well-funded, highly focused research projects with clear goals, an incentive to rapidly disseminate information, and limited lifetimes. Thesis Supervisor: Jeff Gore Title: Associate Professor of Physics Thesis Co-supervisor: Edward S. Boyden Title: Associate Professor of Media Arts and Sciences 3 Contents Chapter 1 – Introduction ............................................................................................................................. 14 Chapter 2 – Optical Reflectometry for Recording Neural Activity ............................................................... 19 Summary .................................................................................................................................................. 20 Introduction ............................................................................................................................................. 20 Design Principles: ..................................................................................................................................... 21 Fiber-Optic Reflectometry ................................................................................................................... 22 Electrooptic Modulation ....................................................................................................................... 26 Material Selection for the Capacitor Layer .............................................................................................. 34 Discussion ................................................................................................................................................ 35 Chapter 3 – Implosion Fabrication............................................................................................................... 39 Summary .................................................................................................................................................. 41 Introduction ............................................................................................................................................. 41 Results ..................................................................................................................................................... 41 Chapter 4 – Slide-seq ................................................................................................................................... 49 Summary: ................................................................................................................................................. 51 Introduction ............................................................................................................................................. 51 Results ..................................................................................................................................................... 51 Chapter 5 – Protein Sequencing ................................................................................................................... 59 Summary .................................................................................................................................................. 60 Introduction: ............................................................................................................................................ 60 Problem Overview .................................................................................................................................... 63 Results ..................................................................................................................................................... 64 Distinguishability of amino acids based on their NAAB binding profiles ............................................. 64 Model Parameters ................................................................................................................................ 65 Methods of Data Analysis .................................................................................................................... 66 Simulations .......................................................................................................................................... 69 Measurements of 푘퐷 ............................................................................................................................ 70 Identifying Amino Acids ...................................................................................................................... 73 Application to Randomized Affinity Matrices ...................................................................................... 76 Discussion ................................................................................................................................................ 76 Primary Uncertainties .......................................................................................................................... 77 4 Calibration Error ................................................................................................................................. 77 Parallelization ...................................................................................................................................... 78 Conclusion ............................................................................................................................................... 79 Chapter 6 – Tickertape ................................................................................................................................ 80 Summary: ................................................................................................................................................. 81 Introduction ............................................................................................................................................. 81 Results: .................................................................................................................................................... 84 RNA Tickertape Infers the Timing of Isolated Transcriptional Events with High Resolution .............. 84 RNA Tickertape Infers the Timing and Magnitude of Complex Transcriptional Programs .................. 85 RNA Tickertape Operates in Single Mammalian Cells ......................................................................... 88 RNA Tickertape can be used to infer the timing of neural activity ...................................................... 90 Discussion: ............................................................................................................................................... 91 Chapter 7 – Connectomics ........................................................................................................................... 92 Summary: ................................................................................................................................................. 94 Introduction ............................................................................................................................................. 94 Scalable arbitrary-color optical super-resolution ................................................................................... 94 The power of multiple colors: ..............................................................................................................
Recommended publications
  • Recombinant Human ARFIP2 Protein Catalog Number: ATGP1695
    Recombinant human ARFIP2 protein Catalog Number: ATGP1695 PRODUCT INPORMATION Expression system E.coli Domain 1-341aa UniProt No. P53365 NCBI Accession No. NP_036534 Alternative Names Arfaptin 2, POR1 PRODUCT SPECIFICATION Molecular Weight 40.2 kDa (364aa) confirmed by MALDI-TOF Concentration 0.25mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 0.2M NaCl, 40% glycerol, 1mM DTT Purity > 90% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description Arfaptin 2, also known as ARFIP2, is a Rac1 binding protein necessary for Rac-mediated actin polymerization and the subsequent formation of membrane ruffles and lamellipodia. ARFIP2 has also been shown to interact with the ADP ribosylation factor ARF6, a GTPase that associates with the plasma membrane and intracellular endosome vesicles, in a GTP dependent manner. Arfaptin 2 also regulates the aggregation of mutant Huntingtin protein by possibly impairing proteasome function. Expression of ARFIP2 was shown to be increased at sites of neurodegeneration. Recombinant human ARFIP2 protein, fused to His-tag at N-terminus, was expressed in E. coli 1 Recombinant human ARFIP2 protein Catalog Number: ATGP1695 and purified by using conventional chromatography techniques. Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MGSMTDGILG KAATMEIPIH GNGEARQLPE DDGLEQDLQQ VMVSGPNLNE TSIVSGGYGG SGDGLIPTGS GRHPSHSTTP SGPGDEVARG IAGEKFDIVK KWGINTYKCT KQLLSERFGR GSRTVDLELE LQIELLRETK RKYESVLQLG RALTAHLYSL LQTQHALGDA FADLSQKSPE LQEEFGYNAE TQKLLCKNGE TLLGAVNFFV SSINTLVTKT MEDTLMTVKQ YEAARLEYDA YRTDLEELSL GPRDAGTRGR LESAQATFQA HRDKYEKLRG DVAIKLKFLE ENKIKVMHKQ LLLFHNAVSA YFAGNQKQLE QTLQQFNIKL RPPGAEKPSW LEEQ General References D'Souza Schorey C., et al.
    [Show full text]
  • Mutations in DCPS and EDC3 in Autosomal Recessive Intellectual
    Human Molecular Genetics, 2015, Vol. 24, No. 11 3172–3180 doi: 10.1093/hmg/ddv069 Advance Access Publication Date: 20 February 2015 Original Article Downloaded from ORIGINAL ARTICLE Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA http://hmg.oxfordjournals.org/ decapping in neurodevelopment Iltaf Ahmed1,2,†, Rebecca Buchert3,†, Mi Zhou5,†, Xinfu Jiao5,†, Kirti Mittal1, Taimoor I. Sheikh1, Ute Scheller3, Nasim Vasli1, Muhammad Arshad Rafiq1, 6 1 7 2 M. Qasim Brohi , Anna Mikhailov , Muhammad Ayaz , Attya Bhatti , at Universitaet Erlangen-Nuernberg, Wirtschafts- und Sozialwissenschaftliche Z on August 15, 2016 Heinrich Sticht4, Tanveer Nasr8,9, Melissa T. Carter10, Steffen Uebe3, André Reis3, Muhammad Ayub7,11, Peter John2, Megerditch Kiledjian5,*, John B. Vincent1,12,13,* and Rami Abou Jamra3,* 1Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8, 2Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan, 3Institute of Human Genetics and 4Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany, 5Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA, 6Sir Cowasji Jehangir Institute of Psychiatry, Hyderabad, Sindh 71000, Pakistan, 7Lahore Institute of Research and Development,
    [Show full text]
  • A University of Sussex Phd Thesis Available Online Via
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Exploring interactions between Epstein- Barr virus transcription factor Zta and The Human Genome By IJIEL BARAK NARANJO PEREZ FERNANDEZ A Thesis submitted for the degree of Doctor of Philosophy University Of Sussex School of Life Sciences September 2017 ii I hereby declare that this thesis has not been and will not be, submitted in whole or in part to another University for the award of any other degree. Signature:…………………………..…………………………..……………………… iii Acknowledgements I want to thank Professor Alison J Sinclair for her guidance, mentoring and above all continuous patience. During the time that I’ve been part of her lab I’ve appreciated her wisdom as an educator her foresight as a scientist and tremendous love as a parent. I wish that someday soon rather than later her teachings are reflected in my person and career; hopefully inspiring others like me. Thanks to Professor Michelle West for her help whenever needed or offered. Her sincere and honest feedback, something that I only learned to appreciate after my personal scientific insight was developed.
    [Show full text]
  • Anti-ARL4A Antibody (ARG41291)
    Product datasheet [email protected] ARG41291 Package: 100 μl anti-ARL4A antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes ARL4A Tested Reactivity Hu, Ms, Rat Tested Application ICC/IF, IHC-P Host Rabbit Clonality Polyclonal Isotype IgG Target Name ARL4A Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 121-200 of Human ARL4A (NP_001032241.1). Conjugation Un-conjugated Alternate Names ARL4; ADP-ribosylation factor-like protein 4A Application Instructions Application table Application Dilution ICC/IF 1:50 - 1:200 IHC-P 1:50 - 1:200 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 23 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol ARL4A Gene Full Name ADP-ribosylation factor-like 4A Background ADP-ribosylation factor-like 4A is a member of the ADP-ribosylation factor family of GTP-binding proteins. ARL4A is similar to ARL4C and ARL4D and each has a nuclear localization signal and an unusually high guaninine nucleotide exchange rate.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Dcps Is a Transcript-Specific Modulator of RNA in Mammalian Cells
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press DcpS is a transcript-specific modulator of RNA in mammalian cells MI ZHOU,1 SOPHIE BAIL,1 HEATHER L. PLASTERER,2 JAMES RUSCHE,2 and MEGERDITCH KILEDJIAN1 1Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA 2Repligen Corporation, Waltham, Massachusetts 02453, USA ABSTRACT The scavenger decapping enzyme DcpS is a multifunctional protein initially identified by its property to hydrolyze the resulting cap structure following 3′ end mRNA decay. In Saccharomyces cerevisiae, the DcpS homolog Dcs1 is an obligate cofactor for the 5′-3′ exoribonuclease Xrn1 while the Caenorhabditis elegans homolog Dcs-1, facilitates Xrn1 mediated microRNA turnover. In both cases, this function is independent of the decapping activity. Whether DcpS and its decapping activity can affect mRNA steady state or stability in mammalian cells remains unknown. We sought to determine DcpS target genes in mammalian cells using a cell-permeable DcpS inhibitor compound, RG3039 initially developed for therapeutic treatment of spinal muscular atrophy. Global mRNA levels were examined following DcpS decapping inhibition with RG3039. The steady-state levels of 222 RNAs were altered upon RG3039 treatment. Of a subset selected for validation, two transcripts that appear to be long noncoding RNAs HS370762 and BC011766, were dependent on DcpS and its scavenger decapping catalytic activity and referred to as DcpS-responsive noncoding transcripts (DRNT) 1 and 2, respectively. Interestingly, only the increase in DRNT1 transcript was accompanied with an increase of its RNA stability and this increase was dependent on both DcpS and Xrn1.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • SUPPLEMENTARY TABLES and FIGURE LEGENDS Supplementary
    SUPPLEMENTARY TABLES AND FIGURE LEGENDS Supplementary Figure 1. Quantitation of MYC levels in vivo and in vitro. a) MYC levels in cell lines 6814, 6816, 5720, 966, and 6780 (corresponding to first half of Figure 1a in main text). MYC is normalized to tubulin. b) MYC quantitations (normalized to tubulin) for cell lines Daudi, Raji, Jujoye, KRA, KRB, GM, and 6780 corresponding to second half of Figure 1a. c) In vivo MYC quantitations, for mice treated with 0-0.5 ug/ml doxycycline in their drinking water. MYC is normalized to tubulin. d) Quantitation of changing MYC levels during in vitro titration, normalized to tubulin. e) Levels of Odc (normalized to tubulin) follow MYC levels in titration series. Supplementary Figure 2. Evaluation of doxycycline concentration in the plasma of mice treated with doxycycline in their drinking water. Luciferase expressing CHO cells (Tet- off) (Clonethech Inc) that is responsive to doxycycline by turning off luciferase expression was treated with different concentrations of doxycycline in culture. A standard curve (blue line) correlating luciferase activity (y-axis) with treatment of doxycycline (x- axis) was generated for the CHO cell in culture. Plasma from mice treated with different concentrations of doxycycline in their drinking water was separated and added to the media of the CHO cells. Luciferase activity was measured and plotted on the standard curve (see legend box). The actual concentration of doxycycline in the plasma was extrapolated for the luciferase activity measured. The doxycycline concentration 0.2 ng/ml measured in the plasma of mice correlates with 0.05 μg/ml doxycycline treatment in the drinking water of mice, the in vivo threshold for tumor regression.
    [Show full text]
  • Retinal Pigment Epithelium Protein of 65 Kda Gene
    Molecular Vision 2013; 19:2312-2320 <http://www.molvis.org/molvis/v19/2312> © 2013 Molecular Vision Received 31 July 2013 | Accepted 14 November 2013 | Published 16 November 2013 Retinal pigment epithelium protein of 65 kDA gene-linked retinal degeneration is not modulated by chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/ Neuroglycan C/ chondroitin sulfate proteoglycan 5 Sandra Cottet,1,2 René Jüttner,3 Nathalie Voirol,1 Pierre Chambon,4 Fritz G. Rathjen,3 Daniel F. Schorderet,1,2,5 Pascal Escher1,2 1Institute for Research in Ophthalmology, Sion, Switzerland; 2Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland; 3Max-Delbrück-Centrum, Berlin, Germany; 4Institut de Génétique et de Biologie Moléculaire et Cellulaire, Collège de France, Strasbourg, France; 5EPFL-Ecole Polytechnique Fédérale, Lausanne, Switzerland Purpose: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65−/− mouse model of Leber congenital amaurosis. Methods: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5−/−/Rpe65−/−). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Tran- scriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. Results: No differences in the progression of retinal degeneration were observed between the Rpe65−/− and Cspg5−/−/ Rpe65−/− mice.
    [Show full text]
  • Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex
    fnagi-10-00259 August 24, 2018 Time: 10:32 # 1 ORIGINAL RESEARCH published: 27 August 2018 doi: 10.3389/fnagi.2018.00259 Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex Yang Hu1,2,3, Junping Pan1, Yirong Xin1, Xiangnan Mi1, Jiahui Wang1, Qin Gao1 and Huanmin Luo1,3* 1 Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China, 2 Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China, 3 Institute of Brain Sciences, Jinan University, Guangzhou, China Human neurons function over an entire lifetime, yet the molecular mechanisms which perform their functions and protecting against neurodegenerative disease during aging are still elusive. Here, we conducted a systematic study on the human brain aging by using the weighted gene correlation network analysis (WGCNA) method to identify meaningful modules or representative biomarkers for human brain aging. Significantly, 19 distinct gene modules were detected based on the dataset GSE53890; among them, six modules related to the feature of brain aging were highly preserved in diverse independent datasets. Interestingly, network feature analysis confirmed that the blue modules demonstrated a remarkably correlation with human brain aging progress. Edited by: Panteleimon Giannakopoulos, Besides, the top hub genes including PPP3CB, CAMSAP1, ACTR3B, and GNG3 Université de Genève, Switzerland were identified and characterized by high connectivity, module membership, or gene Reviewed by: significance in the blue module. Furthermore, these genes were validated in mice of Suowen Xu, different ages. Mechanically, the potential regulators of blue module were investigated. University of Rochester, United States Maciej J. Lazarczyk, These findings highlight an important role of the blue module and its affiliated genes in Geneva University Hospitals (HUG), the control of normal brain aging, which may lead to potential therapeutic interventions Switzerland for brain aging by targeting the hub genes.
    [Show full text]