(12) Patent Application Publication (10) Pub. No.: US 2015/0307854 A1 B0tes Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2015/0307854 A1 B0tes Et Al US 20150307854A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0307854 A1 B0tes et al. (43) Pub. Date: Oct. 29, 2015 (54) METHODS OF PRODUCING 6-CARBON Publication Classification CHEMICALS VA COA-DEPENDENT CARBON CHAIN ELONGATION (51) Int. Cl. ASSOCATED WITH CARBON STORAGE CI2N 9/02 (2006.01) CI2P 7/44 (2006.01) (71) Applicant: INVISTA North America S.ár.l., (52) U.S. Cl. Wilmington, DE (US) CPC ....... CI2N 9/0008 (2013.01); C12Y 102/02001 (2013.01); CI2P 7/44 (2013.01) (72) Inventors: Adriana Leonora Botes, Rosedale East (GB); Alex Van Eck Conradie, Eaglescliffe (GB) (57) ABSTRACT (21) Appl. No.: 14/666,055 This document describes biochemical pathways for produc ing adipic acid, caprolactam, 6-aminohexanoic acid, hexam (22) Filed: Mar. 23, 2015 ethylenediamine or 1.6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl Related U.S. Application Data groups, in a C6 aliphatic backbone Substrate. These path ways, metabolic engineering and cultivation strategies (62) Division of application No. 13/715,981, filed on Dec. described herein rely on CoA-dependent elongation enzymes 14, 2012, now Pat. No. 9,102.958. or analogues enzymes associated with the carbon Storage (60) Provisional application No. 61/576,401, filed on Dec. pathways from polyhydroxyalkanoate accumulating bacte 16, 2011. 18. Patent Application Publication Oct. 29, 2015 Sheet 1 of 8 US 2015/0307854 A1 Patent Application Publication Oct. 29, 2015 Sheet 2 of 8 US 2015/0307854 A1 3. EC 38 Patent Application Publication Oct. 29, 2015 Sheet 3 of 8 US 2015/0307854 A1 Patent Application Publication Oct. 29, 2015 Sheet 4 of 8 US 2015/0307854 A1 r C th it. $$$$$$ Patent Application Publication Oct. 29, 2015 Sheet 5 of 8 US 2015/0307854 A1 gºInfö?? Patent Application Publication Oct. 29, 2015 Sheet 6 of 8 US 2015/0307854 A1 O Patent Application Publication Oct. 29, 2015 Sheet 7 of 8 US 2015/0307854 A1 Patent Application Publication Oct. 29, 2015 Sheet 8 of 8 US 2015/0307854 A1 US 2015/0307854 A1 Oct. 29, 2015 METHODS OF PRODUCING 6-CARBON 0009. However, no wild-type prokaryote or eukaryote CHEMICALS VA COA-DEPENDENT naturally overproduces or excretes C6 building blocks to the CARBON CHAIN ELONGATION extracellular environment. Nevertheless, the metabolism of ASSOCATED WITH CARBON STORAGE adipic acid and caprolactam has been reported (Ramsay et al., Appl. Environ. Microbiol., 1986, 52(1), 152-156; and CROSS-REFERENCE TO RELATED Kulkarni and Kanekar, Current Microbiology, 1998, 37, 191 APPLICATIONS 194). 0001. This application is a divisional application of U.S. 0010. The dicarboxylic acid, adipic acid, is converted effi application Ser. No. 13/715,981, filed Dec. 14, 2012, which ciently as a carbon Source by a number of bacteria and yeasts claims priority to U.S. Application Ser. No. 61/576,401, filed via B-oxidation into central metabolites. 3-oxidation of adi Dec. 16, 2011. The disclosures of these applications are incor pate to 3-oxoadipate faciliates further catabolism via, for porated by reference in their entirety. example, the ortho-cleavage pathway associated with aro matic Substrate degradation. The catabolism of 3-oxoadipyl TECHNICAL FIELD CoA to acetyl-CoA and succinyl-CoA by several bacteria and fungi has been characterised comprehensively (Harwood and 0002 This invention relates to methods for biosynthesiz Parales, Annual Review of Microbiology, 1996, 50,553-590). ing adipic acid, 6-aminohexanoic acid, hexamethylenedi Both adipate and 6-aminohexanoate are intermediates in the amine, caprolactam, and 1.6-hexanediol using one or more catabolism of caprolactam, finally degraded via 3-oxoadipyl isolated enzymes Such as B-ketothiolases, dehydrogenases, CoA to central metabolites. reductases, hydratases, monooxygenases, co-hydroxylases 0011 Potential metabolic pathways have been suggested and transaminases or using recombinant host cells expressing for producing adipic acid from biomass-Sugar: (1) biochemi one or more such enzymes. cally from glucose to cis,cis muconic acid via the ortho cleavage aromatic degradation pathway, followed by chemi BACKGROUND cal catalysis to adipic acid; (2) a reversible adipic acid 0003 Nylons are polyamides that are generally synthe degradation pathway via the condensation of Succinyl-CoA sized by the condensation polymerisation of a diamine with a and acetyl-CoA and (3) combining B-oxidation, a fatty acid dicarboxylic acid. Similarly, nylons may be produced by the synthase and ()-oxidation. However, no information using condensation polymerisation of lactams. A ubiquitous nylon these strategies has been reported (Jang et al., Biotechnology is nylon 6.6, which is produced by reaction of hexamethyl & Bioengineering, 2012, 109(10), 2437-2459). enediamine (HMD) and adipic acid. Nylon 6 is produced by 0012. The optimality principle states that microorganisms a ring opening polymerisation of caprolactam. Therefore, regulate their biochemical networks to Support maximum adipic acid, hexamethylenediamine and caprolactam are biomass growth. Beyond the need for expressing heterolo important intermediates in the production of nylons (Anton & gous pathways in a host organism, directing carbon flux Baird, Polyamides Fibers, Encyclopedia of Polymer Science towards C6 building blocks that serve as carbon sources and Technology, 2001). rather than as biomass growth constituents, contradicts the 0004 Industrially, adipic acid and caprolactam are pro optimality principle. For example, transferring the 1-butanol duced via air oxidation of cyclohexane. The air oxidation of pathway from Clostridium species into other production cyclohexane produces, in a series of steps, a mixture of cyclo strains has often fallen short by an order of magnitude com hexanone (K) and cyclohexanol (A), designated as KA oil. pared to the production performance of native producers Nitric acid oxidation of KA oil produces adipic acid (Musser, (Shen et al., Appl. Environ. Microbiol., 2011, 77(9), 2905 Adipic acid, Ullmann's Encyclopedia of Industrial Chemis 2915). try, 2000). Caprolactam is produced from cyclohexanone via 0013 The efficient synthesis of the six carbon aliphatic its oxime and Subsequent acid rearrangement (Fuchs, Kiec backbone precursor is a key consideration in synthesizing C6 Zka and Moran, Caprolactam, Ullmann's Encyclopedia of building blocks prior to forming terminal functional groups, Industrial Chemistry, 2000) Such as carboxyl, amine or hydroxyl groups, on the C6 ali 0005 Industrially, hexamethylenediamine (HMD) is pro phatic backbone. duced by hydrocyanation of C6 building block to adiponitrile, followed by hydrogenation to HMD (Herzog and Smiley, SUMMARY Hexamethylenediamine, Ullmann's Encyclopedia of Indus trial Chemistry, 2012). 0014. This document is based at least in part on the dis 0006 Given a reliance on petrochemical feedstocks; bio covery that it is possible to construct biochemical pathways technology offers an alternative approach via biocatalysis. for producing a six carbon chain aliphatic backbone precur Biocatalysis is the use of biological catalysts. Such as Sor, in which two functional groups, e.g., carboxyl, amine or enzymes, to perform biochemical transformations of organic hydroxyl, can be formed, leading to the synthesis of one or compounds. more of adipic acid, 6-aminohexanoic acid, hexamethylene 0007 Both bioderived feedstocks and petrochemical feed diamine, caprolactam, and 1.6-hexanediol (hereafter “C6 stocks are viable starting materials for the biocatalysis pro building blocks”). These pathways, metabolic engineering, CCSSCS. and cultivation strategies described herein rely on CoA-de 0008 Accordingly, against this background, it is clear that pendent elongation enzymes or homologs thereof associated there is a need for Sustainable methods for producing adipic with the carbon storage pathways from polyhydroxyal acid, caprolactam, 6-aminohexanoic acid, hexamethylenedi kanoate accumulating bacteria Such as Cupriavidus necator: amine and 1.6-hexanediol (hereafter “C6 building blocks”) 0015. In the face of the optimality principle, it surprisingly wherein the methods are biocatalyst based (Tang et al., Bio has been discovered that appropriate non-natural pathways, technology & Bioengineering, 2012, 109(10), 2437-2459). feedstocks, host microorganisms, attenuation strategies to the US 2015/0307854 A1 Oct. 29, 2015 host’s biochemical network, and cultivation strategies may be acetoacetyl-CoA can be formed by conversion of malonyl combined to efficiently produce C6 building blocks. CoA by an acetoacetyl-CoA synthase classified under EC 0016. In some embodiments, the C6 aliphatic backbone 2.3.1.194. The malonyl-CoA can be formed by conversion of for conversion to a C6 building block can be formed from acetyl-CoA by an acetyl-CoA carboxylase classified under acetyl-CoA via two cycles of CoA-dependent carbon chain EC 6.4.1.2. The trans-2-enoyl-CoA hydratase can be the gene elongation using either NADH or NADPH dependent product of pha. enzymes. See FIG. 1 and FIG. 2. 0023 The (R) 3-hydroxyhexanoyl-CoA can be formed by 0017. In some embodiments, the enzyme in the CoA-de conversion of 3-oxohexanoyl-CoA by a 3-oxoacyl-CoA pendent carbon chain elongation pathway generating the C6 reductase classified under EC 1.1.1.100 such as that encoded aliphatic backbone catalyzes irreversible enzymatic steps. by fabG. The crotonyl-CoA can be formed by conversion of 0018. In some embodiments, the terminal carboxyl groups (R) 3-hydroxybutanoyl-CoA by a trans-2-enoyl-CoA can be enzymatically formed using an acyl-CoA hydrolase, hydratase classified under EC 4.2.1.119. (R) 3-hydroxybu an aldehyde dehydrogenase, a 6-oxohexanoate dehydroge tanoyl-CoA can beformed by conversion of acetoacetyl-CoA nase or a cytochrome P450/co-hydroxylase. See FIG. 3 and by an acetoacyl-CoA reductase classified under EC 1.1.1.36 FIG. 4. such as that encoded by phaB. 0019. In some embodiments, the terminal amine groups 0024. In any of the methods described herein, the method can be enzymatically formed using an co-transaminase or a can include producing hexanoate by forming a first terminal diamine transaminase. See FIG. 5 and FIG. 6. carboxyl group in hexanoyl CoA using an acyl-CoA hydro 0020.
Recommended publications
  • Synthetic Biology Applications in Industrial Microbiology
    SYNTHETIC BIOLOGY APPLICATIONS IN INDUSTRIAL MICROBIOLOGY Topic Editors Weiwen Zhang and David R. Nielsen MICROBIOLOGY FRONTIERS COPYRIGHT STATEMENT ABOUT FRONTIERS © Copyright 2007-2014 Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering Frontiers Media SA. All rights reserved. approach to the world of academia, radically improving the way scholarly research is managed. All content included on this site, such as The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share text, graphics, logos, button icons, images, and generate knowledge. Frontiers provides immediate and permanent online open access to all video/audio clips, downloads, data compilations and software, is the property its publications, but this alone is not enough to realize our grand goals. of or is licensed to Frontiers Media SA (“Frontiers”) or its licensees and/or subcontractors. The copyright in the text of individual articles is the property of their FRONTIERS JOURNAL SERIES respective authors, subject to a license granted to Frontiers. The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online The compilation of articles constituting journals, promising a paradigm shift from the current review, selection and dissemination this e-book, wherever published, as well as the compilation of all other content on processes in academic publishing. this site, is the exclusive property of All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service Frontiers. For the conditions for downloading and copying of e-books from to the scholarly community. At the same time, the Frontiers Journal Series operates on a revo- Frontiers’ website, please see the Terms lutionary invention, the tiered publishing system, initially addressing specific communities of for Website Use.
    [Show full text]
  • Index of Recommended Enzyme Names
    Index of Recommended Enzyme Names EC-No. Recommended Name Page 1.2.1.10 acetaldehyde dehydrogenase (acetylating) 115 1.2.1.38 N-acetyl-y-glutamyl-phosphate reductase 289 1.2.1.3 aldehyde dehydrogenase (NAD+) 32 1.2.1.4 aldehyde dehydrogenase (NADP+) 63 1.2.99.3 aldehyde dehydrogenase (pyrroloquinoline-quinone) 578 1.2.1.5 aldehyde dehydrogenase [NAD(P)+] 72 1.2.3.1 aldehyde oxidase 425 1.2.1.31 L-aminoadipate-semialdehyde dehydrogenase 262 1.2.1.19 aminobutyraldehyde dehydrogenase 195 1.2.1.32 aminomuconate-semialdehyde dehydrogenase 271 1.2.1.29 aryl-aldehyde dehydrogenase 255 1.2.1.30 aryl-aldehyde dehydrogenase (NADP+) 257 1.2.3.9 aryl-aldehyde oxidase 471 1.2.1.11 aspartate-semialdehyde dehydrogenase 125 1.2.1.6 benzaldehyde dehydrogenase (deleted) 88 1.2.1.28 benzaldehyde dehydrogenase (NAD+) 246 1.2.1.7 benzaldehyde dehydrogenase (NADP+) 89 1.2.1.8 betaine-aldehyde dehydrogenase 94 1.2.1.57 butanal dehydrogenase 372 1.2.99.2 carbon-monoxide dehydrogenase 564 1.2.3.10 carbon-monoxide oxidase 475 1.2.2.4 carbon-monoxide oxygenase (cytochrome b-561) 422 1.2.1.45 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase .... 323 1.2.99.6 carboxylate reductase 598 1.2.1.60 5-carboxymethyl-2-hydroxymuconic-semialdehyde dehydrogenase . 383 1.2.1.44 cinnamoyl-CoA reductase 316 1.2.1.68 coniferyl-aldehyde dehydrogenase 405 1.2.1.33 (R)-dehydropantoate dehydrogenase 278 1.2.1.26 2,5-dioxovalerate dehydrogenase 239 1.2.1.69 fluoroacetaldehyde dehydrogenase 408 1.2.1.46 formaldehyde dehydrogenase 328 1.2.1.1 formaldehyde dehydrogenase (glutathione)
    [Show full text]
  • Brockarchaeota, a Novel Archaeal Phylum with Unique and Versatile Carbon Cycling Pathways
    Lawrence Berkeley National Laboratory Recent Work Title Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Permalink https://escholarship.org/uc/item/2gn7m5pw Journal Nature communications, 12(1) ISSN 2041-1723 Authors De Anda, Valerie Chen, Lin-Xing Dombrowski, Nina et al. Publication Date 2021-04-23 DOI 10.1038/s41467-021-22736-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s41467-021-22736-6 OPEN Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways Valerie De Anda 1, Lin-Xing Chen2, Nina Dombrowski 1,3, Zheng-Shuang Hua 4, Hong-Chen Jiang5, ✉ ✉ Jillian F. Banfield 2,6, Wen-Jun Li 7,8 & Brett J. Baker 1 Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 1234567890():,; archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, ‘Brock- archaeota’, named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes.
    [Show full text]
  • Wo 2008/115840 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 25 September 2008 (25.09.2008) WO 2008/115840 A2 (51) International Patent Classification: (74) Agents: GAY,David, A. et al; McDermott, Will & Emery C12N 1/21 (2006.01) LLP,4370LaIoIIa Village Drive, Suite 700, San Diego, CA 92122 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2008/057168 kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: 14 March 2008 (14.03.2008) AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, (25) Filing Language: English EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, IP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, (26) Publication Language: English LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, (30) Priority Data: PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, 60/918,463 16 March 2007 (16.03.2007) US SY, TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (71) Applicant (for all designated States except US): GENO- (84) Designated States (unless otherwise indicated, for every MATICA, INC. [US/US]; 5405 Morehouse Drive, Suite kind of regional protection available): ARIPO (BW, GH, 210, San Diego, CA 92121 (US).
    [Show full text]
  • An in Silico Characterization of Microbial Electrosynthesis for Metabolic Engineering of Biochemicals
    An in silico Characterization of Microbial Electrosynthesis for Metabolic Engineering of Biochemicals by Aditya Pandit A thesis submitted in conformity with the requirement for the degree of Masters of Applied Science Graduate Department of Chemical Engineering and Applied Chemistry University of Toronto (c) Copyright by Aditya Pandit 2012 An in silico Characterization of Microbial Electrosynthesis for Metabolic Engineering of Biochemicals Aditya Vikram Pandit Masters of Applied Science Graduate Department of Chemical Engineering and Applied Chemistry University of Toronto 2012 ABSTRACT A critical concern in metabolic engineering is the need to balance the demand and supply of redox intermediates. Bioelectrochemical techniques offer a promising method to alleviate redox imbalances during the synthesis of biochemicals. Broadly, these techniques reduce intracellular NAD+ to NADH and therefore manipulate the cell‘s redox balance. The cellular response to such redox changes and the additional reducing can be harnessed to produce desired metabolites. In the context of microbial fermentation, these bioelectrochemical techniques can improve product yields and/or productivity. We have developed a method to characterize the role of bioelectrosynthesis in chemical production using the genome-scale metabolic model of E. coli. The results elucidate the role of bioelectrosynthesis and its impact on biomass growth, cellular ATP yields and biochemical production. The results also suggest that strain design strategies can change for fermentation ii processes that employ microbial electrosynthesis and suggest that dynamic operating strategies lead to maximizing productivity. iii ACKNOWLEDGMENTS I would like to give my thanks to my supervisor, Prof. Mahadevan for giving me the opportunity to do my masters degree in his lab.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,175,297 B2 Burk Et Al
    US009 175297B2 (12) United States Patent (10) Patent No.: US 9,175,297 B2 Burk et al. (45) Date of Patent: Nov. 3, 2015 (54) MCROORGANISMIS FOR THE (2013.01); C12N 15/52 (2013.01); C12N 15/70 PRODUCTION OF 1,4-BUTANEDIOL (2013.01); CI2P 7/18 (2013.01); C12Y 101/01157 (2013.01); C12Y402/01055 (75) Inventors: Mark J. Burk, San Diego, CA (US); (2013.01) Anthony P. Burgard, Bellefonte, PA (58) Field of Classification Search (US); Robin E. Osterhout, San Diego, CPC .......... C12N 15/81, C12N 15/70; C12N 9/10: CA (US); Jun Sun, San Diego, CA (US) C12N 9/93 (73) Assignee: Genomatica, Inc., San Diego, CA (US) See application file for complete search history. (*) Notice: Subject to any disclaimer, the term of this (56) References Cited patent is extended or adjusted under 35 U.S. PATENT DOCUMENTS U.S.C. 154(b) by 283 days. 4,048,196 A 9, 1977 Broecker et al. (21) Appl. No.: 13/449,187 4,301,077 A 11/1981 Pesa et al. (22) Filed: Apr. 17, 2012 (Continued) FOREIGN PATENT DOCUMENTS (65) Prior Publication Data GB 1230276 4f1971 US 2013/O109069 A1 May 2, 2013 GB 1314126 4f1973 Related U.S. Application Data (Continued) (63) Continuation of application No. 13/009,813, filed on OTHER PUBLICATIONS Jan. 19, 2011, now Pat. No. 8,178,327, which is a continuation of application No. 127947,790, filed on Abe et al., “BioSynthesis from gluconate of a random copolyester Nov. 16, 2010, now Pat. No. 8,129,156, which is a consisting of 3-hydroxybutyrate and medium-chain-length continuation of application No.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • UC Davis UC Davis Previously Published Works
    UC Davis UC Davis Previously Published Works Title Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities Permalink https://escholarship.org/uc/item/5bh2q8rd Journal BioEnergy Research, 3(2) ISSN 1939-1242 Authors DeAngelis, Kristen M. Gladden, John M. Allgaier, Martin et al. Publication Date 2010-06-01 DOI 10.1007/s12155-010-9089-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Bioenerg. Res. (2010) 3:146–158 DOI 10.1007/s12155-010-9089-z Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities Kristen M. DeAngelis & John M. Gladden & Martin Allgaier & Patrik D’haeseleer & Julian L. Fortney & Amitha Reddy & Philip Hugenholtz & Steven W. Singer & Jean S. Vander Gheynst & Whendee L. Silver & Blake A. Simmons & Terry C. Hazen Published online: 30 March 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Producing cellulosic biofuels from plant material are often too complex for enzyme discovery using current has recently emerged as a key US Department of Energy metagenomic sequencing technologies. One potential strat- goal. For this technology to be commercially viable on a egy to overcome this problem is to selectively cultivate the large scale, it is critical to make production cost efficient by microbial communities from these complex ecosystems on streamlining both the deconstruction of lignocellulosic biomass under defined conditions, generating less complex biomass and fuel production. Many natural ecosystems biomass-degrading microbial populations. To test this efficiently degrade lignocellulosic biomass and harbor premise, we cultivated microbes from Puerto Rican soil or enzymes that, when identified, could be used to increase green waste compost under precisely defined conditions in the the efficiency of commercial biomass deconstruction.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0319313 A1 SUN Et Al
    US 201603.1931.3A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0319313 A1 SUN et al. (43) Pub. Date: Nov. 3, 2016 (54) MICROORGANISMS AND METHODS FOR continuation of application No. 12/940,021, filed on THE COPRODUCTION 1,4-BUTANEDIOL Nov. 4, 2010, now Pat. No. 8,530,210. AND GAMMA-BUTYROLACTONE (60) Provisional application No. 61/264,598, filed on Nov. (71) Applicant: Genomatica, Inc., San Diego, CA (US) 25, 2009. Publication Classification (72) Inventors: Jun SUN, San Diego, CA (US); Mark J. BURK, San Diego, CA (US); (51) Int. Cl. Anthony P. BURGARD, Bellefonte, CI2P I 7/04 (2006.01) CA (US); Robin E. OSTERHOUT, CI2N 15/52 (2006.01) San Diego, CA (US); Wei NIU, CI2P 7/18 (2006.01) Lincoln, NE (US); John D. (52) U.S. Cl. TRAWICK, La Mesa, CA (US); CPC .................. CI2P 17/04 (2013.01); C12P 7/18 Robert HASELBECK, San Diego, CA (2013.01); C12N 15/52 (2013.01) (US) (57) ABSTRACT (21) Appl. No.: 14/954,487 The invention provides non-naturally occurring microbial organisms comprising 1,4-butanediol (14-BDO) and (22) Filed: Nov. 30, 2015 gamma-butyrolactone (GBL) pathways comprising at least one exogenous nucleic acid encoding a 14-BDO and GBL pathway enzyme expressed in a Sufficient amount to produce Related U.S. Application Data 14-BDO and GBL. The invention additionally provides (63) Continuation of application No. 13/936,878, filed on methods of using Such microbial organisms to produce Jul. 8, 2013, now Pat. No. 9,222,113, which is a 14-BDO and GBL.
    [Show full text]
  • KO Id Functional Hierarchy 1 Functional Hierarchy 2 Module Id Module Description Name Definition Life Style K00611 Amino Acid Me
    KO_id Functional hierarchy 1 Functional hierarchy 2 Module_id Module description Name Definition Life_style K00611 Amino acid metabolism Arginine and proline metabolism M00029 Urea cycle [PATH:map00220 map01230 map01100] OTC, argF, argI ornithine carbamoyltransferase [EC:2.1.3.3] FL-ls K00611 Amino acid metabolism Arginine and proline metabolism M00844 Arginine biosynthesis, ornithine => arginine [PATH:map00220OTC, map01230argF, argI map01100]ornithine carbamoyltransferase [EC:2.1.3.3] FL-ls K00286 Amino acid metabolism Arginine and proline metabolism M00015 Proline biosynthesis, glutamate => proline [PATH:map00330proC map01230 map01100]pyrroline-5-carboxylate reductase [EC:1.5.1.2] PA-ls K00818 Amino acid metabolism Arginine and proline metabolism M00028 Ornithine biosynthesis, glutamate => ornithine [PATH:map00220E2.6.1.11, map01210 argD map01230acetylornithine map01100] aminotransferase [EC:2.6.1.11] PA-ls K00619 Amino acid metabolism Arginine and proline metabolism M00028 Ornithine biosynthesis, glutamate => ornithine [PATH:map00220argA map01210 map01230amino-acid map01100] N-acetyltransferase [EC:2.3.1.1] PA-ls K00620 Amino acid metabolism Arginine and proline metabolism M00028 Ornithine biosynthesis, glutamate => ornithine [PATH:map00220argJ map01210 map01230glutamate map01100] N-acetyltransferase / amino-acid N-acetyltransferasePA-ls [EC:2.3.1.35 2.3.1.1] K00930 Amino acid metabolism Arginine and proline metabolism M00028 Ornithine biosynthesis, glutamate => ornithine [PATH:map00220argB map01210 map01230acetylglutamate map01100]
    [Show full text]
  • Non-Natural Microbial Organisms with Improved
    (19) *EP003194604B1* (11) EP 3 194 604 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12P 7/42 (2006.01) C12P 7/16 (2006.01) 26.02.2020 Bulletin 2020/09 (86) International application number: (21) Application number: 15775307.0 PCT/US2015/050923 (22) Date of filing: 18.09.2015 (87) International publication number: WO 2016/044713 (24.03.2016 Gazette 2016/12) (54) NON-NATURAL MICROBIAL ORGANISMS WITH IMPROVED ENERGETIC EFFICIENCY NICHT-NATÜRLICHE MIKROBIELLE ORGANISMEN MIT VERBESSERTER ENERGIEEFFIZIENZ ORGANISMES MICROBIENS NON NATURELS PRÉSENTANT UNE MEILLEURE EFFICACITÉ ÉNERGÉTIQUE (84) Designated Contracting States: • V. Monedero ET AL: "Mutations lowering the AL AT BE BG CH CY CZ DE DK EE ES FI FR GB phosphatase activity of HPr kinase/phosphatase GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO switch off carbon metabolism.", The EMBO PL PT RO RS SE SI SK SM TR journal, vol. 20, no. 15 1 August 2001 (2001-08-01), 1 August 2001 (2001-08-01), pages 3928-3937, (30) Priority: 18.09.2014 US 201462052341 P XP055233568, Retrieved from the Internet: URL:http://emboj.embopress.org/content/20/ (43) Date of publication of application: 15/3928.full.pdf [retrieved on 2015-12-03] 26.07.2017 Bulletin 2017/30 • MARTA PAPINI ET AL: "Physiological characterization of recombinant Saccharomyces (73) Proprietor: Genomatica, Inc. cerevisiae expressing the phosphoketolase San Diego, CA 92121 (US) pathway: validation of activity through 13C-based metabolic flux analysis", APPLIED (72) Inventors: MICROBIOLOGY AND BIOTECHNOLOGY, • PHARKYA, Priti SPRINGER, BERLIN, DE, vol.
    [Show full text]
  • Activation of Acetone by Sulfate-Reducing Bacteria – Pathway Elucidation and Enzyme Identification in Desulfococcus Biacutus
    Activation of acetone by sulfate-reducing bacteria – Pathway elucidation and enzyme identification in Desulfococcus biacutus Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. rer. nat.) presented by Jasmin Renate Elisabeth Frey at the Faculty of Science Department of Biology Date of the oral examination: 27.04.2017 1. Reviewer: Prof. Dr. Bernhard Schink 2. Reviewer: Prof. Dr. Jörg Hartig Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-415229 „Die Definition von Wahnsinn ist, immer wieder das Gleiche zu tun und andere Ergebnisse zu erwarten.“ Albert Einstein Danksagung Die vorliegende Arbeit wurde im Zeitraum von August 2012 bis Februar 2017 am Lehrstuhl für Mikrobielle Ökologie, Limnologie und Allgemeine Mikrobiologie von Prof. Dr. Bernhard Schink angefertigt. Mein besonderer Dank gilt Prof. Dr. Bernhard Schink für die Möglichkeit, meine Doktorarbeit unter seiner Anleitung anfertigen zu können, für die Überlassung eines sehr interessanten und anspruchsvollen Themas sowie für seine stetige Unterstützung. Vielen Dank auch an Prof. Dr. Jörg Hartig für die Übernahme des Koreferats und für hilfreiche Diskussionen und Anregungen während der Fortschrittsberichtstreffen. Großer Dank gilt meinem Ko-Betreuer PD Dr. David Schleheck, der mir immer mit Rat und Tat zur Seite stand, und für seine aufbauenden Worte, wenn Experimente nicht funktionierten. Großer Dank gilt auch Dr. Thomas Huhn und Fabian Schneider für ihre unermüdlichen Synthesearbeiten zur Herstellung aller benötigten Substrate. Sehr dankbar bin ich Prof. Dr. Dieter Spiteller, der mir mit den MS-Messungen und mit interessanten Diskussionen sehr geholfen hat. Außerdem bin ich auch Prof. Dr. Bernard Golding, Prof. Dr. Wolfgang Buckel, Dr.
    [Show full text]