Activation of Acetone by Sulfate-Reducing Bacteria – Pathway Elucidation and Enzyme Identification in Desulfococcus Biacutus

Total Page:16

File Type:pdf, Size:1020Kb

Activation of Acetone by Sulfate-Reducing Bacteria – Pathway Elucidation and Enzyme Identification in Desulfococcus Biacutus Activation of acetone by sulfate-reducing bacteria – Pathway elucidation and enzyme identification in Desulfococcus biacutus Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. rer. nat.) presented by Jasmin Renate Elisabeth Frey at the Faculty of Science Department of Biology Date of the oral examination: 27.04.2017 1. Reviewer: Prof. Dr. Bernhard Schink 2. Reviewer: Prof. Dr. Jörg Hartig Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-415229 „Die Definition von Wahnsinn ist, immer wieder das Gleiche zu tun und andere Ergebnisse zu erwarten.“ Albert Einstein Danksagung Die vorliegende Arbeit wurde im Zeitraum von August 2012 bis Februar 2017 am Lehrstuhl für Mikrobielle Ökologie, Limnologie und Allgemeine Mikrobiologie von Prof. Dr. Bernhard Schink angefertigt. Mein besonderer Dank gilt Prof. Dr. Bernhard Schink für die Möglichkeit, meine Doktorarbeit unter seiner Anleitung anfertigen zu können, für die Überlassung eines sehr interessanten und anspruchsvollen Themas sowie für seine stetige Unterstützung. Vielen Dank auch an Prof. Dr. Jörg Hartig für die Übernahme des Koreferats und für hilfreiche Diskussionen und Anregungen während der Fortschrittsberichtstreffen. Großer Dank gilt meinem Ko-Betreuer PD Dr. David Schleheck, der mir immer mit Rat und Tat zur Seite stand, und für seine aufbauenden Worte, wenn Experimente nicht funktionierten. Großer Dank gilt auch Dr. Thomas Huhn und Fabian Schneider für ihre unermüdlichen Synthesearbeiten zur Herstellung aller benötigten Substrate. Sehr dankbar bin ich Prof. Dr. Dieter Spiteller, der mir mit den MS-Messungen und mit interessanten Diskussionen sehr geholfen hat. Außerdem bin ich auch Prof. Dr. Bernard Golding, Prof. Dr. Wolfgang Buckel, Dr. Nicolai Müller, Dr. Alexander Schmidt und Dr. Diliana Simeonova für nützliche und anregende Diskussionen dankbar. Vielen Dank an Dr. Dominik Montag, der mir beibrachte, die HPLC zu bedienen und vor allem auch zu reparieren. Antje Wiese danke ich für ihre Hilfsbereitschaft und für das Herstellen von Medien. Vielen Dank auch an meine VTK- und Bachelor-Studenten und alle anderen Mitglieder der AG Schink. Ihr habt immer für eine tolle und herzliche Atmosphäre gesorgt. Ich möchte außerdem Sophie Ehle, Ivana Fejkova, Simone Pechmann, Kristina Ruhland, Hendrik Rusche und Marion Zetzmann danken, die immer ein offenes Ohr hatten. Ein spezieller Dank geht an Astor und Junior (“Spark of Memory”), Manfred und Renate Weh, Sonja Pfeffer und Roswitha Fochler. Ihr habt mich unterstützt und für Zerstreuung gesorgt. Sehr dankbar bin ich außerdem meiner Mutter, meinem Großvater, Esther, Felicitas, dem Rest meiner Familie und Uwe Helms dafür, dass Ihr einfach da wart, für eure Unterstützung und dass ihr immer an mich geglaubt habt. 5 Table of Contents Abbreviations ................................................................................................................... 7 Summary ....................................................................................................................... 10 Zusammenfassung ........................................................................................................ 12 CHAPTER 1 General Introduction ................................................................................. 14 1.1 Acetone ................................................................................................................ 14 1.2 Biodegradation of acetone ................................................................................... 15 1.2.1 Acetone degradation under oxic conditions ................................................... 15 1.2.2 Acetone degradation under anoxic conditions ............................................... 17 1.3 Desulfococcus biacutus ........................................................................................ 19 1.4 Sulfate-reducing bacteria ..................................................................................... 20 1.5 Complete oxidation of substrates ......................................................................... 22 1.6 Aims of this thesis ................................................................................................ 24 CHAPTER 2 .................................................................................................................. 25 Abstract ...................................................................................................................... 26 Background ................................................................................................................ 27 Methods ..................................................................................................................... 28 Results ....................................................................................................................... 32 Discussion .................................................................................................................. 39 References ................................................................................................................. 46 CHAPTER 3 .................................................................................................................. 50 ABSTRACT ................................................................................................................ 51 INTRODUCTION ........................................................................................................ 52 RESULTS ................................................................................................................... 55 DISCUSSION ............................................................................................................. 62 MATERIAL AND METHODS ...................................................................................... 65 References ................................................................................................................. 91 CHAPTER 4 .................................................................................................................. 94 Abstract ...................................................................................................................... 95 1. Introduction............................................................................................................. 95 2. Methods/Experimental section ............................................................................... 96 3. Results and discussion ......................................................................................... 103 4. Conclusions .......................................................................................................... 109 6 References ............................................................................................................... 117 CHAPTER 5 General Discussion ................................................................................ 119 Outlook ........................................................................................................................ 125 Scientific contributions list ............................................................................................ 126 Record of Achievement ............................................................................................... 128 References .................................................................................................................. 129 Abbreviations 7 Abbreviations 2D-PAGE two dimensional polyacrylamide gel electrophoresis α alpha A ampere aa amino acids AdoCbl adenosylcobalamine, vitamine B12 ADP adenosine diphosphate Amp ampicillin AMP adenosine monophosphate ATP adenosine triphosphate ß beta B12 vitamine B12, adenosylcobalamine bp base pairs BSA bovine serum albumin °C degree centigrade C carbon cm centimeter Cm chloramphenicol CO carbon monoxide CO2 carbon dioxide CoA coenzyme A DNA desoxyribonucleic acid DNPH dinitrophenylhydrazine E. coli Escherichia coli ESI electrospray ionization et al. and others (et alii) γ gamma h hour Abbreviations 8 H hydrogen H2O chemical formula of water IPTG isopropyl β-D-1-thiogalactopyranoside l litre LB lysogenic broth µ micro (10-6) m meter, milli (10-3) M molar, mol per litre; mega (106) max. maximal, maximum MDR medium-chain dehydrogenase/reductase superfamily alcohol dehydrogenase min minute mol 6.022 x 1023 particles MS mass spectrometry n nano (10-9) N nitrogen NAD+(H) nicotinamide adenine dinucleotide (reduced form) NADP+(H) nicotinamide adenine dinucleotide phosphate (reduced form) NCBI National Center for Biotechnology Information Ni nickel NTA nitrilotriacetic acid NMR Nuclear magnetic resonance (spectroscopy) O oxygen OD optical density P phosphorus; phosphate PAGE polyacrylamide gel electrophoresis PCR polymerase chain reaction pH potential of hydrogen PMF peptide mass fingerprinting Abbreviations 9 rt room temperature S sulfur TDP thiamine diphosphate (formerly TPP; thiamine pyrophosphate) THF tetrahydrofolate U unit UK United Kingdom USA United States of America UV ultra violet V volt vol volume v/v volume per volume w/v weight per volume x g gravity of Earth Summary 10 Summary Acetone degradation is a well understood process in aerobic and nitrate-reducing bacteria, whereas only little is known about the degradation of acetone by sulfate-reducing bacteria. Aerobes and nitrate reducers activate acetone via carboxylation to acetoacetate, spending at least two ATP. Such an energy-expensive activation reaction is hardly
Recommended publications
  • Synthetic Biology Applications in Industrial Microbiology
    SYNTHETIC BIOLOGY APPLICATIONS IN INDUSTRIAL MICROBIOLOGY Topic Editors Weiwen Zhang and David R. Nielsen MICROBIOLOGY FRONTIERS COPYRIGHT STATEMENT ABOUT FRONTIERS © Copyright 2007-2014 Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering Frontiers Media SA. All rights reserved. approach to the world of academia, radically improving the way scholarly research is managed. All content included on this site, such as The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share text, graphics, logos, button icons, images, and generate knowledge. Frontiers provides immediate and permanent online open access to all video/audio clips, downloads, data compilations and software, is the property its publications, but this alone is not enough to realize our grand goals. of or is licensed to Frontiers Media SA (“Frontiers”) or its licensees and/or subcontractors. The copyright in the text of individual articles is the property of their FRONTIERS JOURNAL SERIES respective authors, subject to a license granted to Frontiers. The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online The compilation of articles constituting journals, promising a paradigm shift from the current review, selection and dissemination this e-book, wherever published, as well as the compilation of all other content on processes in academic publishing. this site, is the exclusive property of All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service Frontiers. For the conditions for downloading and copying of e-books from to the scholarly community. At the same time, the Frontiers Journal Series operates on a revo- Frontiers’ website, please see the Terms lutionary invention, the tiered publishing system, initially addressing specific communities of for Website Use.
    [Show full text]
  • Toxicological Profile for Acetone Draft for Public Comment
    ACETONE 1 Toxicological Profile for Acetone Draft for Public Comment July 2021 ***DRAFT FOR PUBLIC COMMENT*** ACETONE ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. This information is distributed solely for the purpose of pre dissemination public comment under applicable information quality guidelines. It has not been formally disseminated by the Agency for Toxic Substances and Disease Registry. It does not represent and should not be construed to represent any agency determination or policy. ***DRAFT FOR PUBLIC COMMENT*** ACETONE iii FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health.
    [Show full text]
  • Index of Recommended Enzyme Names
    Index of Recommended Enzyme Names EC-No. Recommended Name Page 1.2.1.10 acetaldehyde dehydrogenase (acetylating) 115 1.2.1.38 N-acetyl-y-glutamyl-phosphate reductase 289 1.2.1.3 aldehyde dehydrogenase (NAD+) 32 1.2.1.4 aldehyde dehydrogenase (NADP+) 63 1.2.99.3 aldehyde dehydrogenase (pyrroloquinoline-quinone) 578 1.2.1.5 aldehyde dehydrogenase [NAD(P)+] 72 1.2.3.1 aldehyde oxidase 425 1.2.1.31 L-aminoadipate-semialdehyde dehydrogenase 262 1.2.1.19 aminobutyraldehyde dehydrogenase 195 1.2.1.32 aminomuconate-semialdehyde dehydrogenase 271 1.2.1.29 aryl-aldehyde dehydrogenase 255 1.2.1.30 aryl-aldehyde dehydrogenase (NADP+) 257 1.2.3.9 aryl-aldehyde oxidase 471 1.2.1.11 aspartate-semialdehyde dehydrogenase 125 1.2.1.6 benzaldehyde dehydrogenase (deleted) 88 1.2.1.28 benzaldehyde dehydrogenase (NAD+) 246 1.2.1.7 benzaldehyde dehydrogenase (NADP+) 89 1.2.1.8 betaine-aldehyde dehydrogenase 94 1.2.1.57 butanal dehydrogenase 372 1.2.99.2 carbon-monoxide dehydrogenase 564 1.2.3.10 carbon-monoxide oxidase 475 1.2.2.4 carbon-monoxide oxygenase (cytochrome b-561) 422 1.2.1.45 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase .... 323 1.2.99.6 carboxylate reductase 598 1.2.1.60 5-carboxymethyl-2-hydroxymuconic-semialdehyde dehydrogenase . 383 1.2.1.44 cinnamoyl-CoA reductase 316 1.2.1.68 coniferyl-aldehyde dehydrogenase 405 1.2.1.33 (R)-dehydropantoate dehydrogenase 278 1.2.1.26 2,5-dioxovalerate dehydrogenase 239 1.2.1.69 fluoroacetaldehyde dehydrogenase 408 1.2.1.46 formaldehyde dehydrogenase 328 1.2.1.1 formaldehyde dehydrogenase (glutathione)
    [Show full text]
  • Brockarchaeota, a Novel Archaeal Phylum with Unique and Versatile Carbon Cycling Pathways
    Lawrence Berkeley National Laboratory Recent Work Title Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Permalink https://escholarship.org/uc/item/2gn7m5pw Journal Nature communications, 12(1) ISSN 2041-1723 Authors De Anda, Valerie Chen, Lin-Xing Dombrowski, Nina et al. Publication Date 2021-04-23 DOI 10.1038/s41467-021-22736-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s41467-021-22736-6 OPEN Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways Valerie De Anda 1, Lin-Xing Chen2, Nina Dombrowski 1,3, Zheng-Shuang Hua 4, Hong-Chen Jiang5, ✉ ✉ Jillian F. Banfield 2,6, Wen-Jun Li 7,8 & Brett J. Baker 1 Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 1234567890():,; archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, ‘Brock- archaeota’, named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes.
    [Show full text]
  • Application of High-Resolution Mass Spectrometry and a Theoretical
    pubs.acs.org/est Article Application of High-Resolution Mass Spectrometry and a Theoretical Model to the Quantification of Multifunctional Carbonyls and Organic Acids in e‑Cigarette Aerosol Yichen Li, Amanda E. Burns, Guy J.P. Burke, Morgan E. Poindexter, Amy K. Madl, Kent E. Pinkerton, and Tran B. Nguyen* Cite This: Environ. Sci. Technol. 2020, 54, 5640−5650 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Electronic (e-) cigarette aerosol (particle and gas) is a complex mixture of chemicals, of which the profile is highly dependent on device operating parameters and e-liquid flavor formulation. The thermal degradation of the e-liquid solvents propylene glycol and glycerol often generates multifunctional carbonyls that are challenging to quantify because of unavailability of standards. We developed a theoretical method to calculate the relative electrospray ionization sensitivities of hydrazones of organic acids and carbonyls with 2,4-dinitrophe- Δ nylhydrazine based on their gas-phase basicities ( Gdeprotonation). This method enabled quantification by high-performance liquid chromatography−high- resolution mass spectrometry HPLC-HRMS in the absence of chemical standards. Accurate mass and tandem multistage MS (MSn) were used for structure identification of vaping products. We quantified five simple carbonyls, six hydroxycarbonyls, four dicarbonyls, three acids, and one phenolic carbonyl in the e-cigarette aerosol with Classic Tobacco flavor. Our results suggest that hydroxycarbonyls, such as hydroxyacetone, lactaldehyde, and dihydroxyacetone can be significant components in e-cigarette aerosols but have received less attention in the literature and have poorly understood health effects. The data support the radical-mediated e-liquid thermal degradation scheme that has been previously proposed and emphasize the need for more research on the chemistry and toxicology of the complex product formation in e-cigarette aerosols.
    [Show full text]
  • Kinetic Analysis of the Dimerization and Disproportionation of Aqueous Glyoxal Alfred Richard Fratzke Jr
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1985 Kinetic analysis of the dimerization and disproportionation of aqueous glyoxal Alfred Richard Fratzke Jr. Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Fratzke, Alfred Richard Jr., "Kinetic analysis of the dimerization and disproportionation of aqueous glyoxal" (1985). Retrospective Theses and Dissertations. 7845. https://lib.dr.iastate.edu/rtd/7845 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Wo 2008/115840 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 25 September 2008 (25.09.2008) WO 2008/115840 A2 (51) International Patent Classification: (74) Agents: GAY,David, A. et al; McDermott, Will & Emery C12N 1/21 (2006.01) LLP,4370LaIoIIa Village Drive, Suite 700, San Diego, CA 92122 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2008/057168 kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: 14 March 2008 (14.03.2008) AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, (25) Filing Language: English EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, IP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, (26) Publication Language: English LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, (30) Priority Data: PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, 60/918,463 16 March 2007 (16.03.2007) US SY, TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (71) Applicant (for all designated States except US): GENO- (84) Designated States (unless otherwise indicated, for every MATICA, INC. [US/US]; 5405 Morehouse Drive, Suite kind of regional protection available): ARIPO (BW, GH, 210, San Diego, CA 92121 (US).
    [Show full text]
  • An in Silico Characterization of Microbial Electrosynthesis for Metabolic Engineering of Biochemicals
    An in silico Characterization of Microbial Electrosynthesis for Metabolic Engineering of Biochemicals by Aditya Pandit A thesis submitted in conformity with the requirement for the degree of Masters of Applied Science Graduate Department of Chemical Engineering and Applied Chemistry University of Toronto (c) Copyright by Aditya Pandit 2012 An in silico Characterization of Microbial Electrosynthesis for Metabolic Engineering of Biochemicals Aditya Vikram Pandit Masters of Applied Science Graduate Department of Chemical Engineering and Applied Chemistry University of Toronto 2012 ABSTRACT A critical concern in metabolic engineering is the need to balance the demand and supply of redox intermediates. Bioelectrochemical techniques offer a promising method to alleviate redox imbalances during the synthesis of biochemicals. Broadly, these techniques reduce intracellular NAD+ to NADH and therefore manipulate the cell‘s redox balance. The cellular response to such redox changes and the additional reducing can be harnessed to produce desired metabolites. In the context of microbial fermentation, these bioelectrochemical techniques can improve product yields and/or productivity. We have developed a method to characterize the role of bioelectrosynthesis in chemical production using the genome-scale metabolic model of E. coli. The results elucidate the role of bioelectrosynthesis and its impact on biomass growth, cellular ATP yields and biochemical production. The results also suggest that strain design strategies can change for fermentation ii processes that employ microbial electrosynthesis and suggest that dynamic operating strategies lead to maximizing productivity. iii ACKNOWLEDGMENTS I would like to give my thanks to my supervisor, Prof. Mahadevan for giving me the opportunity to do my masters degree in his lab.
    [Show full text]
  • Propylene Glycol Used As an Excipient
    9 October 2017 EMA/CHMP/334655/2013 Committee for Human Medicinal Products (CHMP) Propylene glycol used as an excipient Report published in support of the ‘Questions and answers on propylene glycol used as an excipient in medicinal products for human use’ (EMA/CHMP/704195/2013). 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2017. Reproduction is authorised provided the source is acknowledged. Propylene glycol used as an excipient Table of contents Introduction ................................................................................................ 4 Scientific discussion .................................................................................... 5 1. Quality ..................................................................................................... 5 1.1. Physico-chemical properties ................................................................................... 5 1.2. Use in medicinal products ...................................................................................... 5 2. Pharmacokinetics .................................................................................... 6 2.1. Absorption ........................................................................................................... 6 2.1.1. Oral and IV pharmacokinetics.............................................................................
    [Show full text]
  • Toxicological Profile for Propylene Glycol
    TOXICOLOGICAL PROFILE FOR PROPYLENE GLYCOL U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 1997 PROPYLENE GLYCOL ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. PROPYLENE GLYCOL iii UPDATE STATEMENT A Technical Report for propylene glycol was released in May 1993. This edition supersedes any previously released draft or final profile or report. Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine/Applied Toxicology Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 PROPYLENE GLYCOL iv This page is intentionally blank. vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). Section 211 of SARA also amended Title 10 of the U. S. Code, creating the Defense Environmental Restoration Program. Section 2704(a) of Title 10 of the U. S. Code directs the Secretary of Defense to notify the Secretary of Health and Human Services of not less than 25 of the most commonly found unregulated hazardous substances at defense facilities. Section 2704(b) of Title 10 of the U. S. Code directs the Administrator of the Agency for Toxic Substances and Disease Registry (ATSDR) to prepare a toxicological profile for each substance on the list provided by the Secretary of Defense under subsection (b).
    [Show full text]
  • CERHR Monograph: Potential Human
    ��������������������������� �������������������������������������������� ����������������������������������� ��������������������� NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Propylene Glycol March 2004 NIH Publication No. 04-4482 Table of Contents Preface .............................................................................................................................................v Introduction .................................................................................................................................... vi NTP Brief on Propylene Glycol .......................................................................................................1 References ........................................................................................................................................4 Appendix I. NTP-CERHR Ethylene Glycol / Propylene Glycol Expert Panel Preface ..............................................................................................................................I-1 Expert Panel ......................................................................................................................I-2 Appendix II. Expert Panel Report on Propylene Glycol ............................................................. II-i Table of Contents ........................................................................................................... II-iii Abbreviations ...................................................................................................................II-v
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,175,297 B2 Burk Et Al
    US009 175297B2 (12) United States Patent (10) Patent No.: US 9,175,297 B2 Burk et al. (45) Date of Patent: Nov. 3, 2015 (54) MCROORGANISMIS FOR THE (2013.01); C12N 15/52 (2013.01); C12N 15/70 PRODUCTION OF 1,4-BUTANEDIOL (2013.01); CI2P 7/18 (2013.01); C12Y 101/01157 (2013.01); C12Y402/01055 (75) Inventors: Mark J. Burk, San Diego, CA (US); (2013.01) Anthony P. Burgard, Bellefonte, PA (58) Field of Classification Search (US); Robin E. Osterhout, San Diego, CPC .......... C12N 15/81, C12N 15/70; C12N 9/10: CA (US); Jun Sun, San Diego, CA (US) C12N 9/93 (73) Assignee: Genomatica, Inc., San Diego, CA (US) See application file for complete search history. (*) Notice: Subject to any disclaimer, the term of this (56) References Cited patent is extended or adjusted under 35 U.S. PATENT DOCUMENTS U.S.C. 154(b) by 283 days. 4,048,196 A 9, 1977 Broecker et al. (21) Appl. No.: 13/449,187 4,301,077 A 11/1981 Pesa et al. (22) Filed: Apr. 17, 2012 (Continued) FOREIGN PATENT DOCUMENTS (65) Prior Publication Data GB 1230276 4f1971 US 2013/O109069 A1 May 2, 2013 GB 1314126 4f1973 Related U.S. Application Data (Continued) (63) Continuation of application No. 13/009,813, filed on OTHER PUBLICATIONS Jan. 19, 2011, now Pat. No. 8,178,327, which is a continuation of application No. 127947,790, filed on Abe et al., “BioSynthesis from gluconate of a random copolyester Nov. 16, 2010, now Pat. No. 8,129,156, which is a consisting of 3-hydroxybutyrate and medium-chain-length continuation of application No.
    [Show full text]