Novel GANAB Variants Associated with Polycystic Liver Disease Liyanne F

Total Page:16

File Type:pdf, Size:1020Kb

Novel GANAB Variants Associated with Polycystic Liver Disease Liyanne F van de Laarschot et al. Orphanet J Rare Dis (2020) 15:302 https://doi.org/10.1186/s13023-020-01585-4 RESEARCH Open Access Novel GANAB variants associated with polycystic liver disease Liyanne F. M. van de Laarschot1, René H. M. te Morsche1, Alexander Hoischen2, Hanka Venselaar3, Hennie M. Roelofs1, Wybrich R. Cnossen1, Jesus M. Banales4,5,6, Ronald Roepman2† and Joost P. H. Drenth1*† Abstract Background: Polycystic liver disease (PLD) is an inherited disorder characterized by numerous cysts in the liver. Auto- somal dominant polycystic kidney and liver disease (ADPKD and ADPLD, respectively) have been linked to pathogenic GANAB variants. GANAB encodes the α-subunit of glucosidase II (GIIα). Here, we report the identifcation of novel GANAB variants in an international cohort of patients with the primary phenotype of PLD using molecular inversion probe analysis. Results: Five novel GANAB variants were identifed in a cohort of 625 patients with ADPKD or ADPLD. In silico analysis revealed that these variants are likely to afect functionally important domains of glucosidase II α-subunit. Missense variant c.1835G>C p.(Arg612Pro) was predicted to disrupt the structure of the active site of the protein, likely reduc- ing its activity. Frameshift variant c.687delT p.(Asp229Glufs*60) introduces a premature termination codon predicted to have no activity. Two nonsense variants (c.2509C>T; p.(Arg837*), and c.2656C>T; p.(Arg886*)) and splice variant c.2002 1G>C, which causes aberrant pre-mRNA splicing and afecting RNA processing, result in truncated proteins and are+ predicted to cause abnormal binding of α- and β-subunits of glucosidase II, thus afecting its enzymatic activ- ity. Analysis of glucosidase II subunits in cell lines shows expression of a truncated GIIα protein in cells with c.687delT, c.2509C>T, c.2656C>T, and c.2002 1G>C variants. Incomplete colocalization of the subunits was present in cells with c.687delT or c.2002 1G>C variants.+ Other variants showed normal distribution of GIIα protein. + Conclusions: We identifed fve novel GANAB variants associated with PLD in both ADPKD and ADPLD patients sup- porting a common pathway in cystogenesis. These variants may lead to decreased or complete loss of enzymatic activity of glucosidase II which makes GANAB a candidate gene to be screened in patients with an unknown genetic background. Keywords: Polycystic liver disease, Glucosidase II, Molecular inversion probe analysis, Liver cysts, Cholangiocytes Background kidney cysts, but renal function remains preserved [1, Development of numerous liver cysts is the primary 2]. On the contrary, kidney cysts are the dominant fea- phenotype of autosomal dominant polycystic liver dis- ture of patients with autosomal dominant polycystic kid- ease (ADPLD). ADPLD patients may present with few ney disease (ADPKD), and the majority of these patients develop concurrent liver cysts [3]. Almost all ADPKD patients harbour gene mutations in polycystic kidney dis- *Correspondence: [email protected] ease 1 (PKD1) or polycystic kidney disease 2 (PKD2) [4]. †Ronald Roepman and Joost P. H. Drenth should be considered joint senior author Te genetic landscape in ADPLD is more diverse as, to 1 Department of Gastroenterology and Hepatology, Institute date, mutations in at least seven genes explain collectively for Molecular Life Sciences, Radboud University Medical Center, P.O. only 25–30% of the genetic spectrum of ADPLD [2, 5]. Box 9101, 6500 HB Nijmegen, The Netherlands Full list of author information is available at the end of the article Although ADPLD and ADPKD are two distinct genetic © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. van de Laarschot et al. Orphanet J Rare Dis (2020) 15:302 Page 2 of 11 disorders, they share PLD as a major phenotypic fea- explore the incidence of GANAB mutations in a large, ture. Recent evidence suggests that the involved proteins independent cohort of patients with PLD as dominant interact, with decreased levels of functional polycystin-1 phenotype, and to evaluate the efect of GANAB muta- (PC1), encoded by PKD1, as the central element for cyst tions on protein structure and glucosidase II subunit development [6, 7]. binding. With the exception of LRP5 (a transmembrane protein part of the LRP5/LRP6/Frizzled co-receptor complex [8, 9]) all genes involved in ADPLD encode proteins involved Results in endoplasmic reticulum trafcking and quality control Patient characteristics of glycoproteins. Tese genes include PRKCSH, SEC63, For our molecular inversion probe (MIP) analysis we GANAB, ALG8, SEC61B, DNAJB11, and ALG9 [10]. Cen- included a total of 625 patients with ADPKD or ADPLD. tral to the pathomechanism of ADPLD is glucosidase II, Patients were referred to our center for genetic analy- an endoplasmic reticulum (ER) resident N-linked glycan- sis or treatment of PLD by hospitals from the Nether- processing enzyme. Glucosidase II (GII) is a complex of lands, Belgium, Spain, and Denmark. All patients had catalytic α-subunit (GIIα), encoded by GANAB, and a the primary phenotype of polycystic liver disease (PLD). regulatory β-subunit (GIIβ), encoded by PRKCSH. Col- Patients were diagnosed with ADPKD or ADPLD based lectively this contributes to the localization and enzy- on clinical presentation. 90 patients were diagnosed with matic activity of GIIα [11]. Glucosidase II catalyzes the ADPKD, and 535 patients with ADPLD. Of the 625 ana- two-step hydrolysis at α1,3-linked glucose–glucose and lysed patients, 17 families were included that consisted glucose–mannose residues of high-mannose-type gly- of 62 family members. Patients had not been genetically cans to generate a quality control protein tag on glyco- screened previously. proteins that is recognized by ER chaperones [12]. As Of the eight patients with likely pathogenic heterozy- such, it acts as a major partner in glycoprotein processing gous GANAB variants, seven patients presented with and quality control in the ER [13]. ADPLD and three patients had 1–3 kidney cysts, while in Te concept that genetic defects disrupting difer- the remaining patients no kidney cysts could be detected. ent subunits of a protein complex result in a very simi- One patient was diagnosed with ADPKD. Te hepatic lar phenotype (“guilt by association”) is well-accepted phenotype did not difer between patients afected by [14]. While mutations in GIIβ have been associated with ADPLD or ADPKD. Six out of eight patients were female ADPLD, the phenotypic picture for GIIα is less clear. and the mean age was 56 (range 31–79) years. Clinical Most studies have linked GANAB to ADPKD and renal presentation of patients with GANAB variants can be cysts were present in most patients [15]. We set out to found in Table 1. Table 1 Clinical presentation of kidney and liver disease in 8 afected individuals with GANAB variants Family 11-0741 Unrelated individuals 8951 9087 8380 11726 11475 11716 8700 12241 Gender Female Female Male Female Male Female Female Female Diagnosis ADPLD ADPLD ADPLD ADPLD ADPLD ADPKD ADPLD ADPLD Mutation (RefSeq NM_198335) Chromo- g.62400926TG>G g.62400926TG>G g.62393841C>T g.62394111C>T g.62396665G>C g.62414056delTAG g.62397125G>C g.62397125G>C some CGG position (Hg19) cDNA c.687delT c.687delT c.2656C>T c.2509C>T c.2002 1G>C c.11_16delTAG CGG c.1835G>C c.1835G>C + change Amino acid p.Asp- p.Asp- p.Arg886* p.Arg837* Splicing variant p.Val4_Ala5del p.Arg612Pro p.Arg612Pro change 229Glufs*60 229Glufs*60 Radiological presentation Type CT Ultrasound CT CT n/a MRI CT CT Liver cysts > 20 cysts multiple cysts 15 cysts > 20 cysts n/a > 20 cysts > 10 cysts > 30 cysts kidney No No 2 bilateral cysts No n/a > 20 bilateral cysts 3 cysts in left 1 cyst in left kidney cysts kidney ADPKD autosomal dominant polycystic kidney disease, ADPLD autosomal dominant polycystic liver disease, CT computed tomography, MRI magnetic resonance imaging, n/a not available for review van de Laarschot et al. Orphanet J Rare Dis (2020) 15:302 Page 3 of 11 Identifcation of GANAB variants in PLD-afected Segregation analysis of GANAB variants individuals and families To bolster the causal relationship between GANAB vari- MIP analysis identifed 38 variants in 32 patients, ants identifed by MIP analysis and clinical presentation of which 13 heterozygous GANAB variants are pos- of PLD, we tested DNA of family members for GANAB sibly pathogenic. We identifed one frameshift, one variants. We confrmed that frameshift variant c.687delT in-frame deletion, one splice site, two nonsense, and co-segregated with the disease in family 11-0741. Tis eight missense variants that were all validated by ADPLD family presented with multiple liver cysts, with- Sanger sequencing (Fig. 1, Additional File 1). Nota- out renal cysts which suggests that the variant is likely bly, none of these variants have been reported before pathogenic.
Recommended publications
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Glycoproteomics-Based Signatures for Tumor Subtyping and Clinical Outcome Prediction of High-Grade Serous Ovarian Cancer
    ARTICLE https://doi.org/10.1038/s41467-020-19976-3 OPEN Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer Jianbo Pan 1,2,3, Yingwei Hu1,3, Shisheng Sun 1,3, Lijun Chen1, Michael Schnaubelt1, David Clark1, ✉ Minghui Ao1, Zhen Zhang1, Daniel Chan1, Jiang Qian2 & Hui Zhang 1 1234567890():,; Inter-tumor heterogeneity is a result of genomic, transcriptional, translational, and post- translational molecular features. To investigate the roles of protein glycosylation in the heterogeneity of high-grade serous ovarian carcinoma (HGSC), we perform mass spectrometry-based glycoproteomic characterization of 119 TCGA HGSC tissues. Cluster analysis of intact glycoproteomic profiles delineates 3 major tumor clusters and 5 groups of intact glycopeptides. It also shows a strong relationship between N-glycan structures and tumor molecular subtypes, one example of which being the association of fucosylation with mesenchymal subtype. Further survival analysis reveals that intact glycopeptide signatures of mesenchymal subtype are associated with a poor clinical outcome of HGSC. In addition, we study the expression of mRNAs, proteins, glycosites, and intact glycopeptides, as well as the expression levels of glycosylation enzymes involved in glycoprotein biosynthesis pathways in each tumor. The results show that glycoprotein levels are mainly controlled by the expression of their individual proteins, and, furthermore, that the glycoprotein-modifying glycans cor- respond to the protein levels of glycosylation enzymes. The variation in glycan types further shows coordination to the tumor heterogeneity. Deeper understanding of the glycosylation process and glycosylation production in different subtypes of HGSC may provide important clues for precision medicine and tumor-targeted therapy.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Figure S1. Representative Report Generated by the Ion Torrent System Server for Each of the KCC71 Panel Analysis and Pcafusion Analysis
    Figure S1. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. A Figure S1. Continued. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. B Figure S2. Comparative analysis of the variant frequency found by the KCC71 panel and calculated from publicly available cBioPortal datasets. For each of the 71 genes in the KCC71 panel, the frequency of variants was calculated as the variant number found in the examined cases. Datasets marked with different colors and sample numbers of prostate cancer are presented in the upper right. *Significantly high in the present study. Figure S3. Seven subnetworks extracted from each of seven public prostate cancer gene networks in TCNG (Table SVI). Blue dots represent genes that include initial seed genes (parent nodes), and parent‑child and child‑grandchild genes in the network. Graphical representation of node‑to‑node associations and subnetwork structures that differed among and were unique to each of the seven subnetworks. TCNG, The Cancer Network Galaxy. Figure S4. REVIGO tree map showing the predicted biological processes of prostate cancer in the Japanese. Each rectangle represents a biological function in terms of a Gene Ontology (GO) term, with the size adjusted to represent the P‑value of the GO term in the underlying GO term database.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Global Mapping of Herpesvirus-‐Host Protein Complexes Reveals a Novel Transcription
    Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Infectious Disease and Immunity in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Britt A. Glaunsinger, Chair Professor Laurent Coscoy Professor Qiang Zhou Spring 2015 Abstract Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis Doctor of Philosophy in Infectious Diseases and Immunity University of California, Berkeley Professor Britt A. Glaunsinger, Chair Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 high-confidence virus-host interactions. KSHV causes AIDS-associated cancers and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. This work revealed many new interactions between viral and host proteins. I have focused on one interaction in particular, that of a previously uncharacterized KSHV protein, ORF24, with cellular RNA polymerase II (RNAP II). All DNA viruses encode a class of genes that are expressed only late in the infectious cycle, following replication of the viral genome.
    [Show full text]
  • Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases
    BRIEF REVIEW www.jasn.org Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases Emilie Cornec-Le Gall,1,2 Vicente E. Torres,1 and Peter C. Harris1 1Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and 2Department of Nephrology, University Hospital, European University of Brittany, and National Institute of Health and Medical Sciences, INSERM U1078, Brest, France ABSTRACT Data indicate significant phenotypic and genotypic overlap, plus a common patho- ADPLD (Table 1).15–20 The difference in genesis, between two groups of inherited disorders, autosomal dominant polycystic renal survival between PKD1 and PKD2 kidney diseases (ADPKD), a significant cause of ESRD, and autosomal dominant patients has been highlighted in multiple polycystic liver diseases (ADPLD), which result in significant PLD with minimal studies (Table 2).3,21 In addition, PKD1 PKD. Eight genes have been associated with ADPKD (PKD1 and PKD2), ADPLD patients have a larger height-adjusted total (PRKCSH, SEC63, LRP5, ALG8,andSEC61B), or both (GANAB). Although genetics kidney volume (HtTKV; an early measure is only infrequently used for diagnosing these diseases and prognosing the associ- of the severity of renal disease in ADPKD) ated outcomes, its value is beginning to be appreciated, and the genomics revolu- and lower eGFR than PKD2 patients.14,22 tion promises more reliable and less expensive molecular diagnostic tools for these A further difference is the number of kid- diseases. We therefore propose categorization of patients with a phenotypic and ney cysts, with fewer in PKD2 than PKD1 genotypic descriptor that will clarify etiology, provide prognostic information, and (Figure 1, A and C), although the rate of better describe atypical cases.
    [Show full text]
  • Physiological and Pathophysiological Regulation of the Ryanodine Receptor in Skeletal Muscle
    Physiological and pathophysiological regulation of the ryanodine receptor in skeletal muscle Alisa Umanskaya Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2015 © 2015 Alisa Umanskaya All rights reserved Abstract Physiological and pathophysiological regulation of ryanodine receptor in skeletal muscle Alisa Umanskaya Ryanodine receptor calcium release channels are essential for skeletal muscle contraction, as they mediate the release of calcium ions from intracellular stores into the cytosol. The data presented in this dissertation demonstrate the evolutionarily conserved mechanisms of skeletal muscle ryanodine receptor regulation in the physiological and pathophysiological states. Adrenergic stimulation causes increased skeletal muscle force, however, despite the well- established role of this physiological response, the molecular mechanism is not known. Here we present a mechanism whereby phosphorylation of a single amino acid on the ryanodine receptor is a key signal in the physiological stress-induced inotropic response in mouse skeletal muscle. Therefore acute post-translational modifications of ryanodine receptor channels are important for healthy muscle contraction. Conversely, chronic stress-induced post-translational modifications result in poorly functioning murine ryanodine receptor channels that contribute to skeletal muscle dysfunction in age- dependent skeletal muscle weakness and Muscular Dystrophies. Finally, we present data that demonstrates striking evolutionary conservation in ryanodine receptor regulation in the physiological and pathophysiological states between mice and C. elegans. This work has broad implications for understanding the underlying mechanisms of skeletal muscle contraction and important disorders that affect human health. Furthermore, this works presents ryanodine receptor channels as a viable therapeutic target for age-related skeletal muscle weakness, Muscular Dystrophies, and also implicates C.
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]
  • Epigenetic Mechanisms Involved in the Cellular Response to DNA Damage Processed by Base Excision Repair
    Epigenetic mechanisms involved in the cellular response to DNA damage processed by Base Excision Repair Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Laura Gail Bennett November 2017 i Abstract Chromatin remodelling is required for access to occluded sequences of DNA by proteins involved in important biological processes, including DNA replication and transcription. There is an increasing amount of evidence for chromatin remodelling during DNA repair, although this has been mostly focused towards DNA double strand break and nucleotide excision repair. At this time there is little evidence for chromatin remodelling in base excision repair (BER). BER is a highly conserved DNA repair pathway which processes spontaneous endogenous DNA base damages generated by oxidative metabolism, but also those induced by exogenous agents (eg. ionising radiation), to maintain genome stability. The mechanism in which the BER repairs damaged bases has been extensively studied and the repair proteins involved are well known. However in terms of chromatin, BER is poorly understood. It is thought that chromatin remodelling occurs due to accumulating evidence indicating that certain BER enzymes are significantly less efficient at acting on sterically occluded sites and near the nucleosome dyad axis. At this time the mechanisms and enzymes involved to facilitate BER are unknown. Therefore, the study presented in this thesis aimed to identify specific histone modification enzymes and/or chromatin remodellers that are involved in the processing of DNA base damage during BER. A method to generate two mononucleosome substrates with a site specific synthetic AP site (tetrahydrofuran; THF) was used to measure recombinant AP endonuclease 1 (APE1) activity alone, and APE1 in HeLa whole cell extract (WCE) that contained chromatin modifiers.
    [Show full text]
  • Supplementary Data Genbank Or OSE Vs RO NIA Accession Gene Name Symbol FC B-Value H3073C09 11.38 5.62 H3126B09 9.64 6.44 H3073B0
    Supplementary Data GenBank or OSE vs RO NIA accession Gene name Symbol FC B-value H3073C09 11.38 5.62 H3126B09 9.64 6.44 H3073B08 9.62 5.59 AU022767 Exportin 4 Xpo4 9.62 6.64 H3073B09 9.59 6.48 BG063925 Metallothionein 2 Mt2 9.23 18.89 H3064B07 9.21 6.10 H3073D08 8.28 6.10 AU021923 Jagged 1 Jag1 7.89 5.93 H3070D08 7.54 4.58 BG085110 Cysteine-rich protein 1 (intestinal) Crip1 6.23 16.40 BG063004 Lectin, galactose binding, soluble 1 Lgals1 5.95 10.36 BG069712 5.92 2.34 BG076976 Transcribed locus, strongly similar to NP_032521.1 lectin, galactose binding, soluble 1 5.64 8.36 BG062930 DNA segment, Chr 11, Wayne State University 99, expressed D11Wsu99e 5.63 8.76 BG086474 Insulin-like growth factor binding protein 5 Igfbp5 5.50 15.95 H3002d11 5.13 20.77 BG064706 Keratin complex 1, acidic, gene 19 Krt1-19 5.06 9.07 H3007A09 5.05 2.46 H3065F02 4.84 5.43 BG081752 4.81 1.25 H3010E09 4.71 11.90 H3064c11 4.43 1.00 BG069711 Transmembrane 4 superfamily member 9 Tm4sf9 4.29 1.23 BG077072 Actin, beta, cytoplasmic Actb 4.29 3.01 BG079788 Hemoglobin alpha, adult chain 1 Hba-a1 4.26 6.63 BG076798 4.23 0.80 BG074344 Mesothelin Msln 4.22 6.97 C78835 Actin, beta, cytoplasmic Actb 4.16 3.02 BG067531 4.15 1.61 BG073468 Hemoglobin alpha, adult chain 1 Hba-a1 4.10 6.23 H3154H07 4.08 5.38 AW550167 3.95 5.66 H3121B01 3.94 5.94 H3124f12 3.94 5.64 BG073608 Hemoglobin alpha, adult chain 1 Hba-a1 3.84 5.32 BG073617 Hemoglobin alpha, adult chain 1 Hba-a1 3.84 5.75 BG072574 Hemoglobin alpha, adult chain 1 Hba-a1 3.82 5.93 BG072211 Tumor necrosis factor receptor superfamily,
    [Show full text]