Antimicrobial Prescribing Guidelines for Sheep
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org). -
Swedres-Svarm 2010
SVARM|2010 Swedish Veterinary Antimicrobial Resistance Monitoring Content Swedish Veterinary Antimicrobial Resistance Monitoring 2010 Preface .............................................................................................3 Guidance for readers ........................................................................4 Editors Summary ..........................................................................................5 Björn Bengtsson, Helle Ericsson Unnerstad, Sammanfattning...............................................................................7 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Use of antimicrobials .......................................................................9 Department of Animal Health and Zoonotic bacteria ...........................................................................14 Antimicrobial Strategies, National Veterinary Salmonella ...................................................................................14 Institute (SVA) SE-751 89 Uppsala, Sweden Campylobacter .............................................................................18 Methicillin resistant Staphylococcus aureus (MRSA) ....................19 Authors Highlight: Escherichia coli with ESBL - or transferrable Björn Bengtsson, Helle Ericsson Unnerstad, AmpC-type resistance in broilers .............................................22 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Indicator bacteria ...........................................................................24 -
Conjunctivitis Or Worse?
Red Eye in Dogs and CatS: Conjunctivitis or Worse? Tracy Revoir, DVM Senior Manager of Veterinary Support, Dechra Veterinary Products It should come as no surprise that conjunctivitis is Common Causes of Conjunctivitis the most common ophthalmic disorder in dogs and cats. But because the clinical signs of conjunctivitis If you do confirm conjunctivitis, the next step is can mimic those of more serious ophthalmic identifying the cause. If both eyes are affected and diseases (glaucoma and uveitis), it’s important to abnormal clinical signs are apparent in other body confirm your diagnosis. systems, think underlying systemic disease. If only one eye is affected, rule out infection, tear film What are important clues to the severity of the deficiencies, an irritant, anatomical abnormality, condition? With conjunctivitis, the inflammation or deeper ocular disease. should be limited to the conjunctiva. Hyperemic conjunctival vessels are superficial, branching, In dogs, conjunctivitis can result from anatomical and bright red. They are movable over the deeper disorders, irritants, infection (usually bacterial), or episcleral vessels and can be blanched with topical atopy. Most bacterial infections are secondary dilute phenylephrine. With glaucoma and uveitis, the conditions, most often to allergies. In cats, herpes- episcleral vessels are engorged; they are dark red, virus and Chlamydophila felis are the most common deep, straight, and immobile and do not blanch with causes of conjunctivitis. Atopy can also be topical dilute phenylephrine. With conjunctivitis, an issue in cats. the Schirmer tear test and intraocular pressures are normal. And the cornea should be clear and no aqueous flare should be present. The pupil and Addressing the Problem pupillary responses are normal and intraocular structures should be visible. -
Polymyxin B & Colistin Dosing Tip Sheet
Stanford Antimicrobial Safety & Sustainability Program Polymyxin B & Colistin Dosing Tip Sheet What: Polymyxin B is preferred over Colistin (polymyxin E) for infections due to multidrug resistant gram- negative bacilli at Stanford Health Care. SHC formulary restriction criteria – Polymyxin B 1. Infectious Disease Consultation and ID recommendation for use 2. Cystic Fibrosis team SHC formulary restriction criteria – Colistin 1. Treatment of urinary tract infections 2. Inhalation route Why: Polymyxin B and Colistin have the same spectrum of activity. However, Polymyxin B has favorable clinical pharmacologic properties compared to Colistin o Polymyxin B is an active drug, whereas Colistin is administered as the prodrug colistimethate sodium (CMS) and has variable and slow (hours) conversion to the active moiety o Polymyxin B may be less nephrotoxic How: Polymyxin B and Colistin dosing is NOT interchangeable o Polymyxin B is usually dosed by “unit”, not “mg” o Note that with Polymyxin B, each 500,000 units is diluted in 300-500mL: a typical dose may result in 1L of fluid o Consult ID pharmacists if MIC ≥ 2 for alternative dosing strategies Dosing 50-79 30-49 10-29 IHD Route ≥80 mL/min mL/min mL/min mL/min CRRT Polymyxin B No Data; Use actual body IV 7,500 – 12,500 units/kg Q12H Consult ID weight; adjusted body wt for obese pharmacist 2.5 mg/kg 1.5 mg/kg 5 mg/kg/day 1.25–1.9 mg/kg Q24H 1.5 mg/kg Q24-48h Colistin IV in 2-3 divided -OR- Use ideal body Q12H Q36H 2.5 mg/kg weight doses 1.25 mg/kg Q12h Q12-24H Doses expressed in colistin base activity Inhalation 150 mg inhalation Q12H Conversions: Colistimethate sodium 1 mg = ~12,500 units of colistimethate sodium Colistimethate sodium ~2.67 mg = 1 mg of colistin base activity 1 mg colistin base activity (CBA) = 30,000 IU colistin 1 mg polymyxin B = 10,000 IU polymyxin B Orig date: 2/23/2015 LM, EM Stanford Antimicrobial Safety & Sustainability Program References: Micromedex online, accessed 2/17/2016 Nelson, Brian C., et al. -
Farrukh Javaid Malik
I Farrukh Javaid Malik THESIS PRESENTED TO OBTAIN THE GRADE OF DOCTOR OF THE UNIVERSITY OF BORDEAUX Doctoral School, SP2: Society, Politic, Public Health Specialization Pharmacoepidemiology and Pharmacovigilance By Farrukh Javaid Malik “Analysis of the medicines panorama in Pakistan – The case of antimicrobials: market offer width and consumption.” Under the direction of Prof. Dr. Albert FIGUERAS Defense Date: 28th November 2019 Members of Jury M. Francesco SALVO, Maître de conférences des universités – praticien hospitalier, President Université de Bordeaux M. Albert FIGUERAS, Professeur des universités – praticien hospitalier, Director Université Autonome de Barcelone Mme Antonia AGUSTI, Professeure, Vall dʹHebron University Hospital Referee Mme Montserrat BOSCH, Praticienne hospitalière, Vall dʹHebron University Hospital Referee II Abstract A country’s medicines market is an indicator of its healthcare system, the epidemiological profile, and the prevalent practices therein. It is not only the first logical step to study the characteristics of medicines authorized for marketing, but also a requisite to set up a pharmacovigilance system, thus promoting rational drug utilization. The three medicines market studies presented in the present document were conducted in Pakistan with the aim of describing the characteristics of the pharmaceutical products available in the country as well as their consumption at a national level, with a special focus on antimicrobials. The most important cause of antimicrobial resistance is the inappropriate consumption of antimicrobials. The results of the researches conducted in Pakistan showed some market deficiencies which could be addressed as part of the national antimicrobial stewardship programmes. III Résumé Le marché du médicament d’un pays est un indicateur de son système de santé, de son profil épidémiologique et des pratiques [de prescription] qui y règnent. -
Belgian Veterinary Surveillance of Antibacterial Consumption National
Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2020 Publication : 22 June 2021 1 SUMMARY This annual BelVet-SAC report is now published for the 12th time and describes the antimicrobial use (AMU) in animals in Belgium in 2020 and the evolution since 2011. For the third year this report combines sales data (collected at the level of the wholesalers-distributors and the compound feed producers) and usage data (collected at farm level). This allows to dig deeper into AMU at species and farm level in Belgium. With a consumption of 87,6 mg antibacterial compounds/kg biomass an increase of +0.2% is seen in 2020 in comparison to 2019. The increase seen in 2020 is spread over both pharmaceuticals (+0.2%) and antibacterial premixes (+4.0%). This unfortunately marks the end of a successful reduction in antibacterial product sales that was seen over the last 6 years resulting in a cumulative reduction of -40,2% since 2011. The gap seen in the coverage of the sales data with the Sanitel-Med collected usage data increased substantially compared to 2019, meaning continuous efforts need to be taken to ensure completeness of the collected usage data. When looking at the evolution in the number of treatment days (BD100) at the species level, as calculated from the SANITEL- MED use data, use increased in poultry (+5,0%) and veal calves (+1,9%), while it decreased in pigs (-3,1%). However, the numerator data for this indicator remain to be updated for 2020, potentially influencing the reliability of the result. -
Neomycin and Polymyxin B Sulfates and Bacitracin Zinc Ophthalmic Ointment, USP)
NDA 50-417/S-011 Page 3 NEOSPORIN® Ophthalmic Ointment Sterile (neomycin and polymyxin B sulfates and bacitracin zinc ophthalmic ointment, USP) Description: NEOSPORIN Ophthalmic Ointment (neomycin and polymyxin B sulfates and bacitracin zinc ophthalmic ointment) is a sterile antimicrobial ointment for ophthalmic use. Each gram contains: neomycin sulfate equivalent to 3.5 mg neomycin base, polymyxin B sulfate equivalent to 10,000 polymyxin B units, bacitracin zinc equivalent to 400 bacitracin units, and white petrolatum, q.s. Neomycin sulfate is the sulfate salt of neomycin B and C, which are produced by the growth of Streptomyces fradiae Waksman (Fam. Streptomycetaceae). It has a potency equivalent of not less than 600 µg of neomycin standard per mg, calculated on an anhydrous basis. The structural formulae are: [Structure] Polymyxin B sulfate is the sulfate salt of polymyxin B 1 and B 2 , which are produced by the growth of Bacillus polymyxa (Prazmowski) Migula (Fam. Bacillaceae). It has a potency of not less than 6,000 polymyxin B units per mg, calculated on an anhydrous basis. The structural formulae are: [Structure] Bacitracin zinc is the zinc salt of bacitracin, a mixture of related cyclic polypeptides (mainly bacitracin A) produced by the growth of an organism of the licheniformis group of Bacillus subtilis var Tracy. It has a potency of not less than 40 bacitracin units per mg. The structural formula is: [Structure] CLINICAL PHARMACOLOGY: A wide range of antibacterial action is provided by the overlapping spectra of neomycin, polymyxin B sulfate, and bacitracin. Neomycin is bactericidal for many gram-positive and gram-negative organisms. -
(ESVAC) Web-Based Sales and Animal Population
16 July 2019 EMA/210691/2015-Rev.2 Veterinary Medicines Division European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) Sales Data and Animal Population Data Collection Protocol (version 3) Superseded by a new version Superseded Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021. Reproduction is authorised provided the source is acknowledged. Table of content 1. Introduction ....................................................................................................................... 3 1.1. Terms of reference ........................................................................................................... 3 1.2. Approach ........................................................................................................................ 3 1.3. Target groups of the protocol and templates ......................................................................... 4 1.4. Organization of the ESVAC project ...................................................................................... 4 1.5. Web based delivery of data ................................................................................................ 5 2. ESVAC sales data ............................................................................................................... 5 2.1. -
Polymyxin B April 2019 Background Polymyxin B Injection Is Available
Polymyxin B April 2019 Background . Polymyxin B injection is available for inpatient use. This product is being used by the irrigation mode of administration. The proposal is to implement the intravenous route of administration with restrictions for use. Several changes were made to the FDA drug approval process in the 1960s which is after the time (1951) when polymyxin B was originally approved by the FDA.1,2 The approval process for polymyxin B was different than medications that are approved today. Thus, there is a lack of robust clinical trials on polymyxin B’s efficacy, safety and pharmacokinetics. Efficacy Polymyxin B was FDA approved for acute infections caused by susceptible strains of Pseudomonas aeruginosa and for serious infections caused by the following organisms (if susceptible) when other less toxic drugs are ineffective or contraindicated: H. influenzae (meningeal, IT route), Escherichia coli (UTI), Aerobacter (Klebsiella) aerogenes (bacteremia), Klebsiella pneumoniae (bacteremia).3 It should be noted that this drug did not go through the modern drug development process and thus, pharmacokinetic evidence since its approval has indicated that it is not appropriate for UTIs. Guidelines indicate that polymyxin B is the preferred polymyxin therapy for systemic use in invasive infections other than UTIs.5 Safety Polymyxin B has several black box warnings (BBW): administration by the IM and IT routes should only be done in hospitalized patients, nephrotoxicity and neurotoxicity can occur, safe use in pregnancy has not been established, -
Polymyxin B* Class: Polymyxins Overview Polymyxin B Is a Polypeptide Bactericidal Antibiotic. the Polymyxins Were Discovered In
Polymyxin B* Class: Polymyxins Overview Polymyxin B is a polypeptide bactericidal antibiotic. The polymyxins were discovered in 1947 and introduced to the medical community in the 1950s. Colistin, also called polymyxin E and its parenteral form, colistimethate, are related polymyxins. Polymyxins can be administered orally, topically or parenterally, including intrathecally and intraperitoneally. However parenteral administration is primarily used in life threatening infections caused by Gram-negative bacilli or Pseudomonas species that are resistant to other drugs. Polymyxins exert their effect on the bacterial cell membrane by affecting phospholipids and interfering with membrane function and permeability, which results in cell death. Polymyxins are more effective against Gram-negative than Gram- positive bacteria and are effective against all Gram-negative bacteria except Proteus species. These antibiotics act synergistically with potentiated sulfonamides, tetracyclines and certain other antimicrobials. Polymyxins also limit activity of endotoxins in body fluids and therefore, may be beneficial in therapy for endotoxemia. Polymyxins are not well absorbed into the blood after either oral or topical administration. Polymyxins bind to cell membranes, purulent exudates and tissue debris. The drugs are eliminated from the kidneys with approximately sixty percent of polymyxin B and ninety percent of colistin excreted unchanged. Polymyxins are considered nephrotoxic and neurotoxic and neuromuscular blockade is seen at higher concentrations. In reality, the potential for nephrotoxicity is minimal when the drugs are utilized properly, especially colistin. Polymyxin B is a potent releaser of histamines and hypersensitivity reactions can occur. Parenteral polymyxins are often characterized by intense pain at the injection site. Divalent cations, unsaturated fatty acids and quaternary ammonium compounds inhibit the activity of polymyxins. -
Sites of Persistence of Fusobacterium Necrophorum and Dichelobacter Nodosus Clifton, Rachel; Giebel, Katharina; Liu, Nicola L.B.H.; Purdy, Kevin; Green, Laura E
University of Birmingham Sites of persistence of Fusobacterium necrophorum and Dichelobacter nodosus Clifton, Rachel; Giebel, Katharina; Liu, Nicola L.B.H.; Purdy, Kevin; Green, Laura E. DOI: 10.1038/s41598-019-50822-9 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Clifton, R, Giebel, K, Liu, NLBH, Purdy, K & Green, LE 2019, 'Sites of persistence of Fusobacterium necrophorum and Dichelobacter nodosus: a paradigm shift in understanding the epidemiology of footrot in sheep', Scientific Reports, vol. 9, no. 1, 14429. https://doi.org/10.1038/s41598-019-50822-9 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. -
The Microbiome of the Footrot Lesion in Merino Sheep Is Characterized by a Persistent Bacterial Dysbiosis T ⁎ Andrew S
Veterinary Microbiology 236 (2019) 108378 Contents lists available at ScienceDirect Veterinary Microbiology journal homepage: www.elsevier.com/locate/vetmic The microbiome of the footrot lesion in Merino sheep is characterized by a persistent bacterial dysbiosis T ⁎ Andrew S. McPherson, Om P. Dhungyel, Richard J. Whittington Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden, New South Wales, 2570, Australia ARTICLE INFO ABSTRACT Keywords: Footrot is prevalent in most sheep-producing countries; the disease compromises sheep health and welfare and Footrot has a considerable economic impact. The disease is the result of interactions between the essential causative Merino agent, Dichelobacter nodosus, and the bacterial community of the foot, with the pasture environment and host Sheep resistance influencing disease expression. The Merino, which is the main wool sheep breed in Australia, is Microbiome particularly susceptible to footrot. We characterised the bacterial communities on the feet of healthy and footrot- Dichelobacter nodosus affected Merino sheep across a 10-month period via sequencing and analysis of the V3-V4 regions of the bacterial 16S ribosomal RNA gene. Distinct bacterial communities were associated with the feet of healthy and footrot- affected sheep. Infection with D. nodosus appeared to trigger a shift in the composition of the bacterial com- munity from predominantly Gram-positive, aerobic taxa to predominantly Gram-negative, anaerobic taxa. A total of 15 bacterial genera were preferentially abundant on the feet of footrot-affected sheep, several of which have previously been implicated in footrot and other mixed bacterial diseases of the epidermis of ruminants.