110 Misconceptions About the Ocean Oceanography B Y R O B Ert J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methane Cold Seeps As Biological Oases in the High‐
LIMNOLOGY and Limnol. Oceanogr. 00, 2017, 00–00 VC 2017 The Authors Limnology and Oceanography published by Wiley Periodicals, Inc. OCEANOGRAPHY on behalf of Association for the Sciences of Limnology and Oceanography doi: 10.1002/lno.10732 Methane cold seeps as biological oases in the high-Arctic deep sea Emmelie K. L. A˚ strom€ ,1* Michael L. Carroll,1,2 William G. Ambrose, Jr.,1,2,3,4 Arunima Sen,1 Anna Silyakova,1 JoLynn Carroll1,2 1CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway 2Akvaplan-niva, FRAM – High North Research Centre for Climate and the Environment, Tromsø, Norway 3Division of Polar Programs, National Science Foundation, Arlington, Virginia 4Department of Biology, Bates College, Lewiston, Maine Abstract Cold seeps can support unique faunal communities via chemosynthetic interactions fueled by seabed emissions of hydrocarbons. Additionally, cold seeps can enhance habitat complexity at the deep seafloor through the accretion of methane derived authigenic carbonates (MDAC). We examined infaunal and mega- faunal community structure at high-Arctic cold seeps through analyses of benthic samples and seafloor pho- tographs from pockmarks exhibiting highly elevated methane concentrations in sediments and the water column at Vestnesa Ridge (VR), Svalbard (798 N). Infaunal biomass and abundance were five times higher, species richness was 2.5 times higher and diversity was 1.5 times higher at methane-rich Vestnesa compared to a nearby control region. Seabed photos reveal different faunal associations inside, at the edge, and outside Vestnesa pockmarks. Brittle stars were the most common megafauna occurring on the soft bottom plains out- side pockmarks. -
Hydrothermal Vents. Teacher's Notes
Hydrothermal Vents Hydrothermal Vents. Teacher’s notes. A hydrothermal vent is a fissure in a planet's surface from which geothermally heated water issues. They are usually volcanically active. Seawater penetrates into fissures of the volcanic bed and interacts with the hot, newly formed rock in the volcanic crust. This heated seawater (350-450°) dissolves large amounts of minerals. The resulting acidic solution, containing metals (Fe, Mn, Zn, Cu) and large amounts of reduced sulfur and compounds such as sulfides and H2S, percolates up through the sea floor where it mixes with the cold surrounding ocean water (2-4°) forming mineral deposits and different types of vents. In the resulting temperature gradient, these minerals provide a source of energy and nutrients to chemoautotrophic organisms that are, thus, able to live in these extreme conditions. This is an extreme environment with high pressure, steep temperature gradients, and high concentrations of toxic elements such as sulfides and heavy metals. Black and white smokers Some hydrothermal vents form a chimney like structure that can be as 60m tall. They are formed when the minerals that are dissolved in the fluid precipitates out when the super-heated water comes into contact with the freezing seawater. The minerals become particles with high sulphur content that form the stack. Black smokers are very acidic typically with a ph. of 2 (around that of vinegar). A black smoker is a type of vent found at depths typically below 3000m that emit a cloud or black material high in sulphates. White smokers are formed in a similar way but they emit lighter-hued minerals, for example barium, calcium and silicon. -
Introduction to Co2 Chemistry in Sea Water
INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps CO Program Last updated August 2016 2 ? 410 400 390 380 370 2008; ~385 ppm 360 350 Concentration (ppm) 2 340 CO 330 1974; ~330 ppm 320 310 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Year EFFECT OF ADDING CO2 TO SEA WATER 2− − CO2 + CO3 +H2O ! 2HCO3 O C O CO2 1. Dissolves in the ocean increase in decreases increases dissolved CO2 carbonate bicarbonate − HCO3 H O O also hydrogen ion concentration increases C H H 2. Reacts with water O O + H2O to form bicarbonate ion i.e., pH = –lg [H ] decreases H+ and hydrogen ion − HCO3 and saturation state of calcium carbonate decreases H+ 2− O O CO + 2− 3 3. Nearly all of that hydrogen [Ca ][CO ] C C H saturation Ω = 3 O O ion reacts with carbonate O O state K ion to form more bicarbonate sp (a measure of how “easy” it is to form a shell) M u l t i p l e o b s e r v e d indicators of a changing global carbon cycle: (a) atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa (19°32´N, 155°34´W – red) and South Pole (89°59´S, 24°48´W – black) since 1958; (b) partial pressure of dissolved CO2 at the ocean surface (blue curves) and in situ pH (green curves), a measure of the acidity of ocean water. -
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats. -
World Ocean Thermocline Weakening and Isothermal Layer Warming
applied sciences Article World Ocean Thermocline Weakening and Isothermal Layer Warming Peter C. Chu * and Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-831-656-3688 Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020 Abstract: This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer. -
Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future
Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future As more and more states are incorporating projections of sea-level rise into coastal planning efforts, the states of California, Oregon, and Washington asked the National Research Council to project sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account the many factors that affect sea-level rise on a local scale. The projections show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections; north of that point, sea-level rise is projected to be less than global projections because seismic strain is pushing the land upward. ny significant sea-level In compliance with a rise will pose enor- 2008 executive order, mous risks to the California state agencies have A been incorporating projec- valuable infrastructure, devel- opment, and wetlands that line tions of sea-level rise into much of the 1,600 mile shore- their coastal planning. This line of California, Oregon, and study provides the first Washington. For example, in comprehensive regional San Francisco Bay, two inter- projections of the changes in national airports, the ports of sea level expected in San Francisco and Oakland, a California, Oregon, and naval air station, freeways, Washington. housing developments, and sports stadiums have been Global Sea-Level Rise built on fill that raised the land Following a few thousand level only a few feet above the years of relative stability, highest tides. The San Francisco International Airport (center) global sea level has been Sea-level change is linked and surrounding areas will begin to flood with as rising since the late 19th or to changes in the Earth’s little as 40 cm (16 inches) of sea-level rise, a early 20th century, when climate. -
Beach Safety in Atypical Rip Current Systems: Testing Traditional Beach Safety Messages in Non-Traditional Settings
Beach safety in atypical rip current systems: testing traditional beach safety messages in non-traditional settings Benjamin Robert Van Leeuwen A thesis in fulfilment of the requirements for the degree of Master of Science School of Biological, Earth and Environmental Science (BEES) Faculty of Science Supervisors: Associate Professor Robert Brander, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, 2052, Australia Professor Ian Turner, Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Australia, Manly Vale, NSW, 2093, Australia July 2015 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Van Leeuwen First name: Benjamin Other name/s: Robert Abbreviation for degree as given in the University calendar: MSc School: School of Biological, Earth and Environmental Sciences Faculty: Science Title: Beach safety in atypical rip current systems: testing traditional beach safety messages in non-traditional settings Abstract 350 words maximum: (PLEASE TYPE) As a major coastal process and hazard, rip currents are a topic of considerable interest from both a scientific and safety perspective. Collaborations between these two areas are a recent development, yet a scientific basis for safety information is crucial to better understanding how to avoid and mitigate the hazard presented by rip currents. One such area is the field of swimmer escape strategies. Contemporary safety advice is divided on the relative merits of a ‘Stay Afloat’ versus ‘Swim Parallel’ strategy, yet conceptual understanding of both these strategies is largely based on an idealised model of rip current morphology and flow dynamics where channels are incised in shore-connected bars. -
Marine Science Virtual Lesson Biological Oceanography Photo Credit: Getty Images
Marine Science Virtual Lesson Biological Oceanography Photo credit: Getty Images • The study of how plants and animals interact with What is each other and their marine environment. • How organisms affect and are affected by chemical, Biological physical, and geological oceanography Oceanography? • Studies life in the ocean from tiny algae to giant blue whales Marine Environment Photo credit: Getty Images Biological Pump Some CO2 is • Carbon sink is part of the released through biological pump respiration • The pump includes upwelling that brings nutrient back up the water column • Releasing some CO2 through respiration Upwelling of nutrients Photosynthesis • Sunlight and CO2 is used to make sugar and oxygen • Can be used as fuel for an organism's movement and biological processes • Such as: circulatory system, digestive system, and respiration Where Can You Find Life in the Ocean • Plants and algae are found in the euphotic zone of the ocean • Where light reaches • Animals are found at all depths of the ocean • Most live-in the euphotic zone where there is more prey • 90% of species live and rely in euphotic zones • the littoral (close to shore) and sublittoral (coastal areas) zones Photo credit: libretexts.org Photo credit: Christian Sardet/CNRS/Tara Expéditions Plankton • Drifting animals • Follow the ocean currents (don’t swim) • Holoplankton • Spend entire lives in water column • Meroplankton • Temporary residents of plankton community • Larvae of benthic organisms Plankton 2.0 • Phytoplankton • Autotrophic (photosynthetic) Photo -
Causes of Sea Level Rise
FACT SHEET Causes of Sea OUR COASTAL COMMUNITIES AT RISK Level Rise What the Science Tells Us HIGHLIGHTS From the rocky shoreline of Maine to the busy trading port of New Orleans, from Roughly a third of the nation’s population historic Golden Gate Park in San Francisco to the golden sands of Miami Beach, lives in coastal counties. Several million our coasts are an integral part of American life. Where the sea meets land sit some of our most densely populated cities, most popular tourist destinations, bountiful of those live at elevations that could be fisheries, unique natural landscapes, strategic military bases, financial centers, and flooded by rising seas this century, scientific beaches and boardwalks where memories are created. Yet many of these iconic projections show. These cities and towns— places face a growing risk from sea level rise. home to tourist destinations, fisheries, Global sea level is rising—and at an accelerating rate—largely in response to natural landscapes, military bases, financial global warming. The global average rise has been about eight inches since the centers, and beaches and boardwalks— Industrial Revolution. However, many U.S. cities have seen much higher increases in sea level (NOAA 2012a; NOAA 2012b). Portions of the East and Gulf coasts face a growing risk from sea level rise. have faced some of the world’s fastest rates of sea level rise (NOAA 2012b). These trends have contributed to loss of life, billions of dollars in damage to coastal The choices we make today are critical property and infrastructure, massive taxpayer funding for recovery and rebuild- to protecting coastal communities. -
The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes
1 Surveys in Geophysics Archimer November 2011, Volume 40, Issue 6, Pages 1563-1601 https://doi.org/10.1007/s10712-019-09557-5 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00509/62046/ The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes Dodet Guillaume 1, *, Melet Angélique 2, Ardhuin Fabrice 6, Bertin Xavier 3, Idier Déborah 4, Almar Rafael 5 1 UMR 6253 LOPSCNRS-Ifremer-IRD-Univiversity of Brest BrestPlouzané, France 2 Mercator OceanRamonville Saint Agne, France 3 UMR 7266 LIENSs, CNRS - La Rochelle UniversityLa Rochelle, France 4 BRGMOrléans Cédex, France 5 UMR 5566 LEGOSToulouse Cédex 9, France *Corresponding author : Guillaume Dodet, email address : [email protected] Abstract : Surface gravity waves generated by winds are ubiquitous on our oceans and play a primordial role in the dynamics of the ocean–land–atmosphere interfaces. In particular, wind-generated waves cause fluctuations of the sea level at the coast over timescales from a few seconds (individual wave runup) to a few hours (wave-induced setup). These wave-induced processes are of major importance for coastal management as they add up to tides and atmospheric surges during storm events and enhance coastal flooding and erosion. Changes in the atmospheric circulation associated with natural climate cycles or caused by increasing greenhouse gas emissions affect the wave conditions worldwide, which may drive significant changes in the wave-induced coastal hydrodynamics. Since sea-level rise represents a major challenge for sustainable coastal management, particularly in low-lying coastal areas and/or along densely urbanized coastlines, understanding the contribution of wind-generated waves to the long-term budget of coastal sea-level changes is therefore of major importance. -
Oceans in Motion TCS 2018
TCS Marine Biology C. Woodward Oceans in Motion TCS 2018 Oceans in Motion Oceans in Motion – TIDES (“la marea”) • Caused by gravitational forces between moon & Earth • Also influenced by sun, tilt of Earth, topography, and other factors DAILY TIDE CYCLE • 2 high tides, 2 low tides per 24 hrs (due to Earth’s rotation) • Tides get ~1 hr later each day gravitational pull of moon See Figs. Oceans in Motion - TIDES MONTHLY TIDE CYCLE • Due to moon’s orbit around Earth, and gravitational pull of moon & sun • 2 spring and 2 neap tides per month Fig. 3.33 Catherine Woodward 1 of 6 Tropical Conservation Semester 1 TCS Marine Biology C. Woodward Oceans in Motion TCS 2018 Oceans in Motion – WAVES (“las olas”) SURFACE WATER MOVEMENT is wind driven Waves = upper surface; move water only to ≈1/2 wavelength (λ) Nybakken Fig 1.10 See C&H Fig. 3.27 Oceans in Motion Water movement is circular But circles not closed, especially in big waves and shallow water. Stoke’s Drift = displacement of water in the direction of wave movement Oceans in Motion SWELLS Wave size determined by: • Wind speed • Fetch • Duration See C&H Fig. 3.29 Longer waves move faster Catherine Woodward 2 of 6 Tropical Conservation Semester 2 TCS Marine Biology C. Woodward Oceans in Motion TCS 2018 Oceans in Motion – CURRENTS (“la corriente”) NEAR-SHORE CURRENTS • Created by wind (= waves) and shore topography • Longshore current, undertow, rip current Undertow: The seaward return of water along the bottom underneath breaking waves Oceans in Motion NEAR-SHORE CURRENTS • Created by wind (= waves) and shore topography • Longshore current, undertow, rip current Longshore current: Results when waves hit shore at an angle, pushing water and material down the shore.