The Oligocene-Miocene Boundary in the South Pacific

Total Page:16

File Type:pdf, Size:1020Kb

The Oligocene-Miocene Boundary in the South Pacific The Oligocene-Miocene boundary in the South Pacific M. S. SRINIVASAN* Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island 02881 J. P. KENNETT ABSTRACT sydrax, the last important forms of which During the last two decades, there have disappeared during earliest Miocene. been several attempts to biostratigraphi- Qualitative and quantitative planktonic Evolution of Gq. dehiscens effectively cally define the Oligocene-Miocene bound- foraminiferal trends have been examined heralds the beginning of major evolutionary ary, but no widely accepted criteria have across the Oligocene-Miocene transition in radiations in planktonic foraminifera that yet emerged. To some extent, this has three Deep Sea Drilling Project sites led to the distinctive Neogene phylogenies. resulted from inadequacies of the type (DSDP 289, 208, 206) in the South Pacific Appearance of this form was followed by European sections of latest Oligocene and ranging from the equator to temperate evolutionary radiation of Globigerinoides earliest Miocene age. There is no stratotype regions. Primary objectives were to deter- into a number of species; initial evolution of boundary section; the latest Oligocene mine main changes in planktonic foraminif- Globorotaiia (Globoconella) incognita, Chattian Stage is located in the Chattian eral assemblages over the Oligocene-Mio- which forms the earliest ancestral form of region of Kassel-Doberg, Germany, with no cene transition. Globoconella: evolution of the Globigerina directly overlying lower Miocene sequence, Of available planktonic foraminiferal woodi group; Sphaeroidinellopsis disjuncta and the earliest Miocene Aquitanian Stage datums in the South Pacific sequences, (the ancestral stock of the Sphaeroidinel- is located in southern France, with no Globoquadrina dehiscens is the most useful lopsis-Sphaeroidinelìa lineage); Globorota- underlying continuous Oligocene sequence. for designation and correlation of the iia (Fohsella) peripheroronda from Gr. (F.) Instead, the base of the Aquitanian strato- Oligocene-Miocene boundary. The strato- kugleri (representing the continued devel- type (within planktonic foraminiferal zone type Aquitanian stage (earliest Miocene) in opment toward the classic Fohsella forms); N4) is marked by an unconformity resting France contains Gq. dehiscens. Although and typical forms of the Dentoglobigerina directly upon middle Oligocene strata. Fur- the base of the Aquitanian stratotype is stock represented by Dentoglobigerina thermore, the sequences are represented by marked by an unconformity, biostrati- altispira. These evolutionary radiations are shallow-water facies and contain few plank- graphic data elsewhere within the basin reflected by a general increase in simple spe- tonic microfossils of value in international suggest that the evolutionary appearance of cies diversity through early Miocene. At all correlation. Little wonder, therefore, that Gq. dehiscens occurred close to the time of three sites, species diversity is lowest in the precise correlation is very difficult with the the oldest stratotypic sediments. Therefore, interval near the Oligocene-Miocene bound- European type stages and that placement of the evolutionary appearance of Gq. dehis- ary. Among the three sites examined, the boundary outside Europe has been cens seems to represent one of the most reli- diversity is highest in warm-subtropical Site tentative. able datums for interregional correlation of 208, because at this latitude faunas include Availability of deep-sea sequences from the Oligocene-Miocene boundary, one that both tropical and temperate forms. the Deep Sea Drilling Project (DSDP) has occurs within the biostratigraphic range of The earliest Miocene is marked by high led to an extraordinary increase in biostra- Glohorotalia (Fohsella) kugleri and marks frequencies of Gr. (F) kugleri in tropical tigraphic study of microfossils. Biostrati- the boundary between zones N4A and N4B. areas and Gq. dehiscens in warm-subtrop- graphic sequences are now becoming better Globigerinoides first evolved during the late ical to temperate areas. known over the Oligocene-Miocene transi- Oligocene and is not coincident with the tion and a firmer placement of the bound- Oligocene-Miocene boundary. INTRODUCTION ary is required, even if it cannot be Unlike the Eocene-Oligocene boundary, accurately correlated with the European the Oligocene-Miocene boundary is not Biostratigraphic placement of the Olig- succession. marked by a crisis in the Oligocene plank- ocene-Miocene boundary is of interest in In recent years, a number of workers have tonic foraminiferal assemblages. Most international correlation and chronology. examined late Oligocene through early Oligocene forms continue their range up- The transition from Oligocene to Miocene Miocene sequences recovered by the DSDP ward into the early Miocene, where most represents a time of increasing diversity of from the Atlantic (Blow, 1970; Berggren are replaced by typical Neogene forms. planktonic microfossils and of development and Amdurer, 1973; Bolli and Premoli The only important Oligocene phylogenetic of assemblages characteristic of the Neo- Silva, 1973; Boersma, 1977; Jenkins, 1978; lineage to be essentially eliminated during gene. After a long interval of global plank- Poore, 1979; Krasheninnikov, 1979), Pacific the Oligocene-Miocene transition is Catap- tonic biogeographic sameness, paleoceano- (Beckmann, 1971; Jenkins and Orr, 1972; graphic and paleoclimatic conditions began Bronnimann and Resig, 1971; Kennett, *Present address: Geology Department, Baña- to change to those of the Neogene, marked 1973; Saito, in Andrews, Packham, and ras Hindu University, Varanasi. India. by more distinct latitudinal differentiation. others, 1975; Ujiie, 1975; Quilty, 1976; Geological Society of America Bulletin, v. 94, p. 798-812, 5 figs., 1 table, June 1983. 798 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/94/6/798/3434654/i0016-7606-94-6-798.pdf by guest on 30 September 2021 OLIGOCENE-MIOCENE BOUNDARY IN SOUTH PACIFIC 799 Keller, 1980, 1981a, 1981b; Srinivasan and nition of the Oligocene-Miocene boundary gren, 1971; Groupe français d'Étude du Kennett, 1981a, 1981b; Bizon and Muller, (Berggren, 1969; Blow, 1969). The base of Néogenè, 1974). Consequently, the Globige- 1979), and Indian Oceans (McGowran, the Aquitanian has since been accepted as rinoides datum (base of zone N4) does not 1974; Fleisher, 1974, 1975, 1977; Vincent, the base of the Miocene (George and others, mark the base of the Miocene but is of latest 1977; Bizon and Muller, 1979). However, 1969). The designated stratotype of the Oligocene age. only a few DSDP sites contain a complete Aquitanian Stage is located in the Aqui- In summary, the stratotype Aquitanian carbonate sequence across the Oligocene- taine basin along the Saucat River at Mou- contains both Globoquadrina dehiscens and Miocene boundary. Keller (1980, 1981a, lin de Bernachon, France, where Mayer- Globigerinoides (Jenkins, 1966). Its base is 1981b) provided the first quantitative data Eymer (who established the Aquitanian) an unconformity that normally is taken as on planktonic foraminiferal assemblages reported the best outcrops (Berggren, 1971; the Oligocene-Miocene boundary. Else- across the Oligocene-Miocene boundary in Van Couvering, 1978). where in the Aquitaine basin are the Escor- equatorial Pacific sites, but he made no firm Blow (1969) correlated the base of foram- nebeôu assemblages that contain Globiger- placement of the boundary. We have gener- iniferal zone N4, defined by the first evo- inoides but lack Gq. dehiscens and that are ated further quantitative planktonic foram- lutionary appearance of Globigerinoides considered by Eames ( 1970) to be older than iniferal data across the Oligocene-Mio- primordius (the Globigerinoides datum), the stratotype Aquitanian and younger than cene boundary in three South Pacific with the base of the Aquitanian Stage. Fol- zone PI9. According to the zonation of Sri- DSDP sequences ranging from the equator- lowing Blow (1969), the Globigerinoides nivasan and Kennett (1981b), based on ial to cool-subtropical areas (Sites 289, 208, datum (base of zone N4) came to be equated South Pacific sequences, the presence of 206). These data have been critically re- with the Oligocene-Miocene boundary in Globigerinoides and lack of Gq. dehiscens viewed in terms of placement of the Olig- oceanic sequences (Berggren, 1971; Bizon indicate zone N4A. The presence of both ocene-Miocene boundary. and others, 1972; McGowran, 1974; Stain- Globoquadrina dehiscens and Globigeri- Taxonomic and phylogenetic schemes forth and others, 1975). noides in the stratotype Aquitanian is indic- follow those of Kennett and Srinivasan A different view was presented by Eames ative of an age no older than N4B. There- (1983). (1970), who suggested the presence of Mio- fore, the Escornebeôu assemblages fall cene beds (but which are not of Oligocene within zone N4A, whereas the stratotype Oligocene-Miocene Boundary in Europe age) in Europe that are older than the Aqui- Aquitanian correlates with zone N4B. This tanian stratotype. These sediments repre- suggests that little time is unrepresented in The primary subdivisions of the Tertiary sent the Bormidian Stage of northern Italy sediment between the upper part of the including the Miocene (Lyell, 1833) and the (Lorenz, 1965). Both Blow (1969) and Escornebeôu assemblages and the base of Oligocene (Beyrich, 1854) were initially Eames (1970) recognized
Recommended publications
  • Chapter 30. Latest Oligocene Through Early Miocene Isotopic Stratigraphy
    Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), 1997 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 154 30. LATEST OLIGOCENE THROUGH EARLY MIOCENE ISOTOPIC STRATIGRAPHY AND DEEP-WATER PALEOCEANOGRAPHY OF THE WESTERN EQUATORIAL ATLANTIC: SITES 926 AND 9291 B.P. Flower,2 J.C. Zachos,2 and E. Martin3 ABSTRACT Stable isotopic (d18O and d13C) and strontium isotopic (87Sr/86Sr) data generated from Ocean Drilling Program (ODP) Sites 926 and 929 on Ceara Rise provide a detailed chemostratigraphy for the latest Oligocene through early Miocene of the western Equatorial Atlantic. Oxygen isotopic data based on the benthic foraminifer Cibicidoides mundulus exhibit four distinct d18O excursions of more than 0.5ä, including event Mi1 near the Oligocene/Miocene boundary from 23.9 to 22.9 Ma and increases at about 21.5, 18 and 16.5 Ma, probably reßecting episodes of early Miocene Antarctic glaciation events (Mi1a, Mi1b, and Mi2). Carbon isotopic data exhibit well-known d13C increases near the Oligocene/Miocene boundary (~23.8 to 22.6 Ma) and near the early/middle Miocene boundary (~17.5 to 16 Ma). Strontium isotopic data reveal an unconformity in the Hole 926A sequence at about 304 meters below sea ßoor (mbsf); no such unconformity is observed at Site 929. The age of the unconfor- mity is estimated as 17.9 to 16.3 Ma based on a magnetostratigraphic calibration of the 87Sr/86Sr seawater curve, and as 17.4 to 15.8 Ma based on a biostratigraphic calibration. Shipboard biostratigraphic data are more consistent with the biostratigraphic calibration.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • 21. BRYOZOA from SITE 282 WEST of TASMANIA Robin E
    21. BRYOZOA FROM SITE 282 WEST OF TASMANIA Robin E. Wass and J. J. Yoo, Department of Geology and Geophysics, University of Sydney, Australia ABSTRACT More than 15,000 bryozoan fragments have been identified from 17 samples in the late Miocene and late Pleistocene sediments at Site 282, Leg 29, Deep Sea Drilling Project, off the west coast of Tas- mania (lat 42°14.76'S, long 143°29.18'E). Bryozoa are referable to the Orders Cyclostomata and Cheilostomata and represent 79 species belonging to 48 genera. Both late Miocene and late Pleisto- cene assemblages are closely related to assemblages found in the Tertiary of southern Australia, and the Recent of the southern Aus- tralian continental shelf. INTRODUCTION The bryozoan fauna is small relative to that found in the late Pleistocene sediments and relative to records of Recent and Tertiary bryozoan faunas from southern late Miocene Bryozoa from southeastern Australia. The Australia have been documented for more than a late Miocene Bryozoa in the Tertiary of southeastern century. The dominant works have been by MacGilli- Australia are also greatly diminished when compared vray (1879, 1895), Maplestone (1898), Stach (1933), and with the middle Miocene faunas. Few studies have been Brown (1958). Brown's monograph (1952) on the New made of Pliocene bryozoa in southeastern Australia, but Zealand Tertiary Bryozoa, recorded genera and species apparently bryozoans are fewer in number than in the from the Recent and Tertiary of southern Australia. late Miocene. While a great deal of work has been done, there are still The fauna observed at Site 282 is composed almost a large number of studies which have to be completed entirely of four zoarial types—catenicelliform, cellari- before the bryozoan faunas are properly understood.
    [Show full text]
  • Mammal Footprints from the Miocene-Pliocene Ogallala
    Mammalfootprints from the Miocene-Pliocene Ogallala Formation, easternNew Mexico by ThomasE. Williamsonand SpencerG. Lucas, New Mexico Museum of Natural History and Science,1801 Mountain Road NW Albuquerque, New Mexico 87104-7375 Abstract well-develooed mudcracks. The track- ways are diveloped on the mudstone Mammal trackways preserved in the drape but are preserved as infillings at the Miocene-Pliocene Ogallala Formation of base of the overlying conglomerate (Figs. eastern New Mexico represent the first 2-4). Most tracks are preserved on the report of mammal fossils-from this unit in underside of a single, thick conglomerate New Mexico. These trackwavs are Dre- block (Fig. 3). A few isolated mammal served as infillings in a conglomerate near the base of the Ogallala Formation. At least prints were also observed on the under- four mammalian ichnotaxa are represented, side of adjacent blocks.he depth of the including a single trackway of a large camel infillings suggest that tracks were made in (Gambapessp. A), several prints of an uncer- a relatively soft substrate. Some prints are tain family of artiodactyl (Gambapessp B), a accompanied by marks indicating slip- single trackway of a large feloid carnivoran page on a slick, wet substrate (Fig. 5C). (Bestiopeda sp.), and several indistinct im- Infillings of mudcracks and narrow, cylin- pressions, probably representing more than drical burrows and raindrop impressions one trackway of a small canid carnivoran are Dreserved over some areas of the (Chelipus sp ). The footprints are preserved in a channel-margin facies of an Ogallala tracliway slab. Mammal trackways repre- braided stream. sent at least four ichnotaxa.
    [Show full text]
  • Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3
    Contents Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3 Editorial 150 IUGS: 2008-2009 Status Report by Alberto Riccardi Articles 152 The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene) by F.J. Hilgen, H.A. Abels, S. Iaccarino, W. Krijgsman, I. Raffi, R. Sprovieri, E. Turco and W.J. Zachariasse 167 Using carbon, hydrogen and helium isotopes to unravel the origin of hydrocarbons in the Wujiaweizi area of the Songliao Basin, China by Zhijun Jin, Liuping Zhang, Yang Wang, Yongqiang Cui and Katherine Milla 177 Geoconservation of Springs in Poland by Maria Bascik, Wojciech Chelmicki and Jan Urban 186 Worldwide outlook of geology journals: Challenges in South America by Susana E. Damborenea 194 The 20th International Geological Congress, Mexico (1956) by Luis Felipe Mazadiego Martínez and Octavio Puche Riart English translation by John Stevenson Conference Reports 208 The Third and Final Workshop of IGCP-524: Continent-Island Arc Collisions: How Anomalous is the Macquarie Arc? 210 Pre-congress Meeting of the Fifth Conference of the African Association of Women in Geosciences entitled “Women and Geosciences for Peace”. 212 World Summit on Ancient Microfossils. 214 News from the Geological Society of Africa. Book Reviews 216 The Geology of India. 217 Reservoir Geomechanics. 218 Calendar Cover The Ras il Pellegrin section on Malta. The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Miocene) is now formally defined at the boundary between the more indurated yellowish limestones of the Globigerina Limestone Formation at the base of the section and the softer greyish marls and clays of the Blue Clay Formation.
    [Show full text]
  • The Phylogenetic and Palaeographic Evolution of the Miogypsinid Larger Benthic Foraminifera
    The phylogenetic and palaeographic evolution of the miogypsinid larger benthic foraminifera MARCELLE K. BOUDAGHER-FADEL AND G. DAVID PRICE Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK Abstract One of the notable features of the Oligocene oceans was the appearance in Tethys of American lineages of larger benthic foraminifera, including the miogypsinids. They were reef-forming, and became very widespread and diverse, and so they play an important role in defining the Late Paleogene and Early Neogene biostratigraphy of the carbonates of the Mediterranean and the Indo-Pacific Tethyan sub-provinces. Until now, however, it has not been possible to develop an effective global view of the evolution of the miogypsinids, as the descriptions of specimens from Africa were rudimentary, and the stratigraphic ranges of genera of Tethyan forms appear to be highly dependent on palaeography. Here we present descriptions of new samples from offshore South Africa, and from outcrops in Corsica, Cyprus, Syria and Sumatra, which enable a systematic and biostratigraphic comparison of the miogypsinids from the Tethyan sub-provinces of the Mediterranean-West Africa and the Indo-Pacific, and for the first time from South Africa, which we show forms a distinct bio- province. The 116 specimens illustrated include 7 new species from the Far East, Neorotalia tethyana, Miogypsinella bornea, Miogypsina subiensis, M. niasiensis, M. regularia, M. samuelia, Miolepidocyclina banneri, 1 new species from Cyprus, Miogypsinella cyprea and 4 new species from South Africa, Miogypsina mcmillania, M. africana, M. ianmacmilliana, M. southernia. We infer that sea level, tectonic and climatic changes determined and constrained in turn the palaeogeographic distribution, evolution and eventual extinctions of the miogypsinid.
    [Show full text]
  • Tectono-Sedimentary Evolution of the Cenozoic Basins in the Eastern External Betic Zone (SE Spain)
    geosciences Review Tectono-Sedimentary Evolution of the Cenozoic Basins in the Eastern External Betic Zone (SE Spain) Manuel Martín-Martín 1,* , Francesco Guerrera 2 and Mario Tramontana 3 1 Departamento de Ciencias de la Tierra y Medio Ambiente, University of Alicante, 03080 Alicante, Spain 2 Formerly belonged to the Dipartimento di Scienze della Terra, della Vita e dell’Ambiente (DiSTeVA), Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy; [email protected] 3 Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy; [email protected] * Correspondence: [email protected] Received: 14 September 2020; Accepted: 28 September 2020; Published: 3 October 2020 Abstract: Four main unconformities (1–4) were recognized in the sedimentary record of the Cenozoic basins of the eastern External Betic Zone (SE, Spain). They are located at different stratigraphic levels, as follows: (1) Cretaceous-Paleogene boundary, even if this unconformity was also recorded at the early Paleocene (Murcia sector) and early Eocene (Alicante sector), (2) Eocene-Oligocene boundary, quite synchronous, in the whole considered area, (3) early Burdigalian, quite synchronous (recognized in the Murcia sector) and (4) Middle Tortonian (recognized in Murcia and Alicante sectors). These unconformities correspond to stratigraphic gaps of different temporal extensions and with different controls (tectonic or eustatic), which allowed recognizing minor sedimentary cycles in the Paleocene–Miocene time span. The Cenozoic marine sedimentation started over the oldest unconformity (i.e., the principal one), above the Mesozoic marine deposits. Paleocene-Eocene sedimentation shows numerous tectofacies (such as: turbidites, slumps, olistostromes, mega-olistostromes and pillow-beds) interpreted as related to an early, blind and deep-seated tectonic activity, acting in the more internal subdomains of the External Betic Zone as a result of the geodynamic processes related to the evolution of the westernmost branch of the Tethys.
    [Show full text]
  • Late Neogene Chronology: New Perspectives in High-Resolution Stratigraphy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Columbia University Academic Commons Late Neogene chronology: New perspectives in high-resolution stratigraphy W. A. Berggren Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 F. J. Hilgen Institute of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands C. G. Langereis } D. V. Kent Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964 J. D. Obradovich Isotope Geology Branch, U.S. Geological Survey, Denver, Colorado 80225 Isabella Raffi Facolta di Scienze MM.FF.NN, Universita ‘‘G. D’Annunzio’’, ‘‘Chieti’’, Italy M. E. Raymo Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 N. J. Shackleton Godwin Laboratory of Quaternary Research, Free School Lane, Cambridge University, Cambridge CB2 3RS, United Kingdom ABSTRACT (Calabria, Italy), is located near the top of working group with the task of investigat- the Olduvai (C2n) Magnetic Polarity Sub- ing and resolving the age disagreements in We present an integrated geochronology chronozone with an estimated age of 1.81 the then-nascent late Neogene chronologic for late Neogene time (Pliocene, Pleisto- Ma. The 13 calcareous nannoplankton schemes being developed by means of as- cene, and Holocene Epochs) based on an and 48 planktonic foraminiferal datum tronomical/climatic proxies (Hilgen, 1987; analysis of data from stable isotopes, mag- events for the Pliocene, and 12 calcareous Hilgen and Langereis, 1988, 1989; Shackle- netostratigraphy, radiochronology, and cal- nannoplankton and 10 planktonic foram- ton et al., 1990) and the classical radiometric careous plankton biostratigraphy.
    [Show full text]
  • A Case for Formalizing Subseries (Subepochs) of the Cenozoic Era(A)
    22 by Martin J. Head1, Marie-Pierre Aubry2, Mike Walker3,4, Kenneth G. Miller2, and Brian R. Pratt5 A case for formalizing subseries (subepochs) of the Cenozoic Era(a) 1 Department of Earth Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada. Corresponding author, E-mail: [email protected] 2 Department of Earth and Planetary Sciences, Rutgers University, Piscataway NJ 08854, USA. E-mail: [email protected]; [email protected] gers.edu 3 School of Archaeology, History and Anthropology, Trinity Saint David, University of Wales, Lampeter, Wales, SA48 7ED, UK. E-mail: m. [email protected] 4 Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DB, UK 5 Department of Geological Sciences, University of Saskatchewan, Saskatoon SK7N 5E2, Canada. E-mail: [email protected] (Received: December 17, 2015; Revised accepted: August 12, 2016) http://dx.doi.org/10.18814/epiiugs/2017/v40i1/017004 Subseries/subepochs (e.g., Lower/Early Eocene, Upper/ into the Cenozoic time scale only in the 1970s, with the boundaries of Late Pleistocene) have yet to be formally defined despite stages adjusted to fit subseries, not the other way around. Aubry (2016) their wide use in the Cenozoic literature. This has led to provides a comprehensive history of the subdivision of series for the concerns about the stability of their definition and uncer- Cenozoic and their relationship to stages, the broader history of chro- tainty over their status that has led to inconsistencies in nostratigraphy having been outlined by Aubry et al. (1999) and Vai capitalization.
    [Show full text]
  • 2. the Miocene/Pliocene Boundary in the Eastern Mediterranean: Results from Sites 967 and 9691
    Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), 1998 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 160 2. THE MIOCENE/PLIOCENE BOUNDARY IN THE EASTERN MEDITERRANEAN: RESULTS FROM SITES 967 AND 9691 Silvia Spezzaferri,2 Maria B. Cita,3 and Judith A. McKenzie2 ABSTRACT Continuous sequences developed across the Miocene/Pliocene boundary were cored during Ocean Drilling Project (ODP) Leg 160 at Hole 967A, located on the base of the northern slope of the Eratosthenes Seamount, and at Hole 969B, some 700 km to the west of the previous location, on the inner plateau of the Mediterranean Ridge south of Crete. Multidisciplinary investiga- tions, including quantitative and/or qualitative study of planktonic and benthic foraminifers and ostracodes and oxygen and car- bon isotope analyses of these microfossils, provide new information on the paleoceanographic conditions during the latest Miocene (Messinian) and the re-establishment of deep marine conditions after the Messinian Salinity Crisis with the re-coloni- zation of the Eastern Mediterranean Sea in the earliest Pliocene (Zanclean). At Hole 967A, Zanclean pelagic oozes and/or hemipelagic marls overlie an upper Messinian brecciated carbonate sequence. At this site, the identification of the Miocene/Pliocene boundary between 119.1 and 119.4 mbsf, coincides with the lower boundary of the lithostratigraphic Unit II, where there is a shift from a high content of inorganic and non-marine calcite to a high content of biogenic calcite typical of a marine pelagic ooze. The presence of Cyprideis pannonica associated upward with Paratethyan ostracodes reveals that the upper Messinian sequence is complete.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • A Middle Eocene Lowland Humid Subtropical “Shangri-La” Ecosystem in Central Tibet
    A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet Tao Sua,b,c,1, Robert A. Spicera,d, Fei-Xiang Wue,f, Alexander Farnsworthg, Jian Huanga,b, Cédric Del Rioa, Tao Dengc,e,f, Lin Dingh,i, Wei-Yu-Dong Denga,c, Yong-Jiang Huangj, Alice Hughesk, Lin-Bo Jiaj, Jian-Hua Jinl, Shu-Feng Lia,b, Shui-Qing Liangm, Jia Liua,b, Xiao-Yan Liun, Sarah Sherlockd, Teresa Spicera, Gaurav Srivastavao, He Tanga,c, Paul Valdesg, Teng-Xiang Wanga,c, Mike Widdowsonp, Meng-Xiao Wua,c, Yao-Wu Xinga,b, Cong-Li Xua, Jian Yangq, Cong Zhangr, Shi-Tao Zhangs, Xin-Wen Zhanga,c, Fan Zhaoa, and Zhe-Kun Zhoua,b,j,1 aCAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; bCenter of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China; cUniversity of Chinese Academy of Sciences, 100049 Beijing, China; dSchool of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom; eKey Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China; fCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100101 Beijing, China; gSchool of Geographical Sciences and Cabot Institute, University of Bristol, Bristol, BS8 1TH, United Kingdom; hCAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, 100101 Beijing, China; iKey Laboratory of
    [Show full text]