Bioelectrochemical Reactor Technology for the Treatment of Alkaline Waste Streams of Alumina Industry

Total Page:16

File Type:pdf, Size:1020Kb

Bioelectrochemical Reactor Technology for the Treatment of Alkaline Waste Streams of Alumina Industry Department of Civil Engineering Bioelectrochemical Reactor Technology for the Treatment of Alkaline Waste Streams of Alumina Industry Tharanga Nimashanie Weerasinghe Mohottige This thesis is presented for the Degree of Doctor of Philosophy of Curtin University September 2017 Declaration To the best of my knowledge and belief, this thesis contains no material previously published by and other person except where due acknowledgement has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. Signature: Tharanga Nimashanie Weerasinghe Mohottige Date: 22nd September 2018 i Abstract Aluminium is one of the most commercially utilized metals in the world due to its light weight, high strength and excellent corrosion resistance. Aluminium does not occur in its metallic form and refining is required to produce aluminium from its mineral ore. Bauxite is the most commonly used aluminium ore and it is refined in Bayer process to produce alumina (Al2O3). In brief, the major steps of the Bayer process are (1) the digestion of bauxite in a hot concentrated caustic (NaOH) solution; (2) the recovery of aluminium hydroxide (Al(OH)3) with seeded precipitation at low temperature; and (3) the calcination of aluminium hydroxide to produce alumina. The accumulation of organic impurities into the process liquor is a major challenge in Bayer processing. Bauxite contains a range of organic substances, which are extracted into process liquor during the digestion step. After precipitation of aluminium hydroxide, the liquor part (spent liquor) is recycle back to digestion step for reuse of the remaining caustic. However, this recirculation of the spent liquor increases the organics concentration of the process liquor. Among the organic impurities, sodium oxalate (Na2C2O4) is detrimental, as oxalate co-precipitates with Al(OH)3 and reduces the product quality and process efficiency. In Western Australia typical alumina refinery can produce approximately 40 t/d oxalate, which requires environmentally feasible treatment option. Biological processes have been considered as an environmentally sustainable solution for complete degradation of sodium oxalate. The commercial scale aerobic bioreactors are in operation at some refineries in Western Australia. Although the aerobic biodegradation of oxalate is a proven treatment solution, it does not allow the recovery of caustic soda. Therefore, the main objective of this study was to investigate an alternative technology, as bioelectrochemical systems (BES), to biodegrade oxalate and recover caustic soda from solutions that represent Bayer liquor in its alkalinity, salinity and oxalate concentration. The other objective of this research was to investigate the use of nitrogen fixing bacteria in both aerobic bioreactors and BES reactor to alleviate the need for external nitrogen supplementation for oxalate biodegradation. A series of laboratory scale experiments were carried out to: 1) prove the concept of organics removal in BES using alkaline and saline solution under both N- ii supplemented and N-deficient conditions, 2) investigate and compare the caustic recovery under N-supplemented and N-deficient conditions, 3) enrich a haloalkaliphilic oxalate degrading biofilm in an aerobic reactor under both N- supplemented and N-deficient conditions, 4) optimise the aerobic process under different operational parameters (pH, dissolve oxygen concentration (DO) and oxalate cocnentration) and 5) investigate the oxalate degradation in BES using aerobically acclimatised biofilm. Comparative analysis of N-deficient systems vs. N- supplemented systems was conducted to evaluate whether nitrogen fixing microorganisms provide competitive performance as compared to N-supplemented microbial communities. During the entire study, a synthetic solution that stimulate the Bayer liquor alkalinity, salinity and oxalate content was used as the feed solution. As the proof of concept, the feasibility of using BES to oxidise oxalate in the anodic chamber of BES at alkaline and saline conditions with and without N source (reactor R1 with N source, reactor R2 without N source) was investigated. Two identical duel chamber laboratory scale BES reactors (operated > 300 days) filled with graphite granules as the anode and cathode material were used in this experiment. Activated sludge was used as the inoculum source to establish an electrochemically active haloalkaliphilic biofilms. Even though the biofilms in R1 and R2 were unable to anodically oxidise oxalate under the operating conditions (pH 9.0, NaCl 25 g/L and anode potential +200 mV vs. Ag/AgCl), acetate and formate were readily oxidised in the BES. After adding sodium acetate as a co-substrate, the R1 and R2 biofilms produced maximum currents of 227±6.5 mA (Chemical oxygen demand (COD) removal 31%, organic loading rate (OLR) 15.3 kg COD/m3.d) and 135±4 mA (COD removal 38 %, OLR 5.1 kg COD/m3.d), respectively. However, the oxalate removal efficiency was very low (< 5%) compared to complete acetate removal regardless of N supplementation. Further, the results showed that although the bioanode potentials in both R1 and R2 were mostly maintained at +200 mV vs. Ag/AgCl during the start- up, both biofilms were able to generate maximal anodic current at a much lower anode potentials (-300 mV vs. Ag/AgCl for R1; -200 mV vs Ag/AgCl for R2). The microbial community analysis revealed that the inefficient oxalate removal was likely due to the lack of oxalotrophic strains responsible for catalysing the decarboxylation of oxalate. The same two BES reactors were used to investigate the cathodic caustic production under N-supplemented and N-deficient conditions. The BES anodic compartments iii were fed continuously with oxalate and acetate containing saline and alkaline solution simulating the salinity and alkalinity of Bayer liquor (0.4 M NaCl, pH 10), and the anolyte was actively maintained at pH 9 by dosing NaOH. Cathodes were operated in fed-batch mode with 0.4 M NaCl (2 L) as the catholyte. Na+ transfer % to catholyte was higher in N-deficient BES reactor (95.8%) compared to N-supplemented BES (94.9%). Both reactors were able to produce coulombic efficiency (CE) of >75% for caustic generation. The energy input for the caustic production was lower than reported in previous studies conducted by using BES for caustic recovery. To overcome the difficulty in oxalate oxidation for established biofilm inoculated with activated sludge in BES reactors, two aerobic bioreactors were setup to enrich oxalate degrading biofilms. Two packed bed column reactors filled with graphite granules as biofilm carriers were used as aerobic bioreactors (operated > 265 days) for the experiments. Soil samples collected from coastal sediments and rhizosphere from a nature reserve were used as an inoculum source. The graphite granules (conductive material) were used as the biofilm carriers with the aim to use the granules as anode material for later BES experiments. Comparative analysis was carried out to characterise and optimise different operational parameters with N-supplemented and N-deficient conditions. In one set of experiments, oxalate degradation rates and oxygen uptake rates (OUR) were determined at different bulk water DO set-points. The results revealed that oxalate removal rates (33 – 111 mg/h.g biomass) linearly correlated with OUR (0 – 70 mg O2/h.g biomass) in the N-supplemented reactor. However, in the N-deficient reactor, a linear increase of oxalate removal was recorded only with DO up to ≤ 3 mg/L. Surprisingly, anaerobic oxalate removal was evident even in the presence of up to 8 mg/L DO in both reactors. Further investigation revealed formate, acetate and methane as by-products of anaerobic oxalate removal in both reactors. Although an N-deficient culture appears beneficial (no requirements to supplement N) this culture is yet to be fully characterised and compared against the N-supplemented cultures used by the industry. As Bayer liquor is an alkaline solution, the knowledge about the influence of pH is necessary for the industry to consider and adopt haloalkaliphilic nitrogen fixers as a preferable microbial culture. Hence, the influence of pH on oxalate removal efficiencies of two biofilms enriched under N-deficient and supplemented conditions was comparatively examined. Although, N-deficient biofilm iv was acclimatised at pH 9, the highest oxalate removal rate was over a pH range of 7 to 8 possibly due to the inhibition of nitrogenase activity at pH > 8. In contrast, the N- supplemented reactor showed the highest removal rate at pH 9. Further, the effect of other simple organic compounds (sodium acetate, sodium formate, sodium succinate and sodium malonate) present in Bayer process on aerobic oxalate oxidation was evaluated and the results suggested that no influence from the other organics on oxalate oxidation in aerobic reactor regardless of N availability. Until now, there has been paucity of information available on oxalate degradation kinetics, although it is a key design factor for developing bioreactor processes. In this study, Michaelis-Menten kinetics was used to determine the oxalate degradation kinetics in N-deficient and N-supplemented cultures. The N-deficient reactor had a higher affinity (Km) towards oxalate and showed higher maximum specific oxalate oxidation rates (Vmax) compared to the N-supplemented reactor. The derived kinetic parameters were used to propose a novel two step treatment process to remove oxalate
Recommended publications
  • Thiobacillus Denitrificans
    Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate by Han Zhou A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Han Zhou 2014 ii Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate Han Zhou Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract This study explores the possibility of utilizing bioleaching techniques for nickel extraction from a mixed sulfide ore deposit with high magnesium content. Due to the ultramafic nature of this material, well-studied bioleaching technologies, which rely on acidophilic bacteria, will lead to undesirable processing conditions. This is the first work that incorporates nitrate-dependent bacteria under pH 6.5 environments for bioleaching of base metals. Experiments with both defined bacterial strains and indigenous mixed bacterial cultures were conducted with nitrate as the electron acceptor and sulfide minerals as electron donors in a series of microcosm studies. Nitrate consumption, sulfate production, and Ni released into the aqueous phase were used to track the extent of oxidative sulfide mineral dissolution; taxonomic identification of the mixed culture community was performed using 16S rRNA gene sequencing. Nitrate-dependent microcosms that contained indigenous sulfur- and/or iron-oxidizing microorganisms were cultured, characterized, and provided a proof-of-concept basis for further bioleaching studies. iii Acknowledgments I would like to extend my most sincere gratitude toward both of my supervisors Dr. Vladimiros Papangelakis and Dr. Elizabeth Edwards. This work could not have been completed without your brilliant and patient guidance.
    [Show full text]
  • 55Th Annual W.W.O.A. Conference October 5-8, 2021 La Crosse Convention Center, La Crosse Inside This Issue… 2021- 2022 W.W.O.A
    VOL. 241, JUNE 2021 WISCONSIN WASTEWATER OPERATORS’ ASSOCIATION, INC. Aerial view of Jefferson Wastewater Treatment Plant, Jefferson, Wisconsin 55th Annual W.W.O.A. Conference October 5-8, 2021 La Crosse Convention Center, La Crosse Inside This Issue… 2021- 2022 W.W.O.A. OFFICIAL DIRECTORY • Presidents message / Page 3 Don Lintner Jenny Pagel President Director (2021) N2511 State Rd 57 Wastewater Foreman • Tribute to Tim Nennig / Page 4 New Holstein, WI 53061 City of Clintonville Cell: 920-418-3869 N9055 Cty Road M [email protected] Shiocton WI 54170 • City of Jefferson Wastewater / Page 6 Work: 715-823-7675 Rick Mealy Cell: 920-606-4634 President Elect [email protected] Independent Contractor Lab • Board meeting minutes & Regulatory Assistance April 2 and 3, 2020 / Page 17 319 Linden Lane Marc Stephanie Delavan WI 53115 Director (2020) Cell: 608-220-9457 Director of Public Works • Collection System seminars / Page 24 [email protected] Village of Valders 1522 Puritan Rd New Holstein WI 53061 Jeremy Cramer Work: 920-629-4970 • Board meeting minutes Vice President Wastewater Treatment Cell: 920-251-8100 March 19, 2020 / Page 25 Director [email protected] City of Sun Prairie Joshua Voigt 300 E Main Street • Reminder: Director (2022) Sun Prairie WI 53590 Direct Sales Representative Awards nominations / Page 26 Work: 608-825-0731 Flygt a Xylem Brand Cell: 608-235-9280 3894 Lake Drive jcramer@ Hartford WI 53027 • Troubleshooting Corner: cityofsunprairie.com Work: 262-506-2343 Zoogloea and Thauera / Page 27 Cell: 414-719-5567 [email protected] Jeff Smudde • Index of advertisers / Page 30 Past President Nate Tillis Director of Environmental Director (2022) Programs Maintenance Supervisor NEW Water (GBMSD) City of Waukesha 2231 N Quincy St.
    [Show full text]
  • First Draft Genome Sequence of a Strain Belonging to the Zoogloea Genus and Its Gene Expression in Situ Emilie E
    Muller et al. Standards in Genomic Sciences (2017) 12:64 DOI 10.1186/s40793-017-0274-y EXTENDED GENOME REPORT Open Access First draft genome sequence of a strain belonging to the Zoogloea genus and its gene expression in situ Emilie E. L. Muller1,3†, Shaman Narayanasamy1†, Myriam Zeimes1, Cédric C. Laczny1,4, Laura A. Lebrun1, Malte Herold1, Nathan D. Hicks2, John D. Gillece2, James M. Schupp2, Paul Keim2 and Paul Wilmes1* Abstract The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and annotation together with a general physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater. Keywords: Genome assembly, Genomic features, Lipid metabolism, Metatranscriptomics, Poly-hydroxyalkanoate, Wastewater treatement plant Introduction Zoogloea species and thus, limited information is avail- Zoogloea spp. are chemoorganotrophic bacteria often able with regards to the genomic potential of the genus. found in organically enriched aquatic environments and Here we report the genome of a newly isolated Zoogloea are known to be able to accumulate intracellular gran- sp. strain as a representative of the genus, with a focus ules of poly-β-hydroxyalkanoate [1]. The combination of on its biotechnological potential in particular for the these two characteristics renders this genus particulary production of biodiesel or bioplastics.
    [Show full text]
  • Diversity and Function of the Microbial Community on Anodes of Sediment Microbial Fuel Cells Fueled by Root Exudates
    Diversity and Function of the Microbial Community on Anodes of Sediment Microbial Fuel Cells fueled by Root Exudates Doctoral thesis Submitted in partial fulfillment of the requirement for a doctoral degree “Doktorgrad der Naturwissenschaften (Dr. rer. nat.)” to the faculty of biology – Philipps-Universität Marburg by Angela Cabezas da Rosa from Montevideo, Uruguay Marburg / Lahn | 2010 The research for the completion of this work was carried out from April 2007 to September 2010 at the Max-Planck Institute for Terrestrial Microbiology under the supervision of Prof. Michael W. Friedrich Thesis was submitted to the Faculty of Biology, Philipps-Universität, Marburg Doctoral thesis accepted on: 24.11.2010 Date of oral examination: 26.11.2010 First reviewer: Prof. Dr. Michael W. Friedrich Second reviewer: Prof. Dr. Wolfgang Buckel The following manuscripts originated from this work and were published or are in preparation: De Schamphelaire L, Cabezas A, Marzorati M, Friedrich MW, Boon N & Verstraete W (2010) Microbial Community Analysis of Anodes from Sediment Microbial Fuel Cells Powered by Rhizodeposits of Living Rice Plants. Applied and Environmental Microbiology 76: 2002-2008. Cabezas A, de Schamphelaire L, Boon N, Verstraete W, Friedrich MW. Rice root exudates select for novel electrogenic Geobacter and Anaeromyxobacter populations on sediment microbial fuel cell anodes. In preparation. Cabezas A, Köhler T, Brune A, Friedrich MW. Identification of β-Proteobacteria and Anaerolineae as active populations degrading rice root exudates on
    [Show full text]
  • Table of 16S Rrna Gene Sequences of Test Strains
    Northumbria Research Link Citation: Lim, Jesmine (2014) Characterisation of the Prokaryotic community of Lake Suigetsu, Japan: towards a novel palaeoenvironment research biomarker. Doctoral thesis, Northumbria University. This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/27272/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html Characterisation of the Prokaryotic community of Lake Suigetsu, Japan: towards a novel palaeoenvironment research biomarker Jesmine Lim PhD 2014 Characterisation of the Prokaryotic community of Lake Suigetsu, Japan: towards a novel palaeoenvironment research biomarker Jesmine Lim Thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle for the degree of Doctor of Philosophy Research undertaken in the School of Life Sciences and in collaboration with Newcastle University, Newcastle upon Tyne. October 2014 Abstract Sediment cores from Lake Suigetsu, Japan are recognised as a key record of past climate reconstruction because of the finely laminated sediments that provide precise event stratigraphy.
    [Show full text]
  • UC Irvine Electronic Theses and Dissertations
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Understanding of Nitrifying and Denitrifying Bacterial Population Dynamics in an Activated Sludge Process Permalink https://escholarship.org/uc/item/1bd53495 Author Wang, Tongzhou Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE DISSERTATION Submitted in Partial Satisfaction of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in Engineering by Tongzhou Wang Dissertation Committee Professor Betty H. Olson, Chair Professor Diego Rosso Professor Sunny C. Jiang 2014 © 2014 Tongzhou Wang ii To My Family ii Table of Contents Page LIST OF FIGURES .................................................................................................................. ix LIST OF TABLES .................................................................................................................... xi ACKNOWLEDGEMENTS ..................................................................................................... xii CURRICULUM VITAE ......................................................................................................... xiv ABSTRACT OF THE DISSERTATION ............................................................................... xvii Chapter 1. ................................................................................................................................ Introduction ...................................................................................................................................................
    [Show full text]
  • Groundwater Chemistry and Microbiology in a Wet
    GROUNDWATER CHEMISTRY AND MICROBIOLOGY IN A WET-TROPICS AGRICULTURAL CATCHMENT James Stanley B.Sc. (Earth Science). Submitted in fulfilment of the requirements for the degree of Master of Philosophy School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty. Queensland University of Technology 2019 Page | 1 ABSTRACT The coastal wet-tropics region of north Queensland is characterised by extensive sugarcane plantations. Approximately 33% of the total nitrogen in waterways discharging into the Great Barrier Reef (GBR) has been attributed to the sugarcane industry. This is due to the widespread use of nitrogen-rich fertilisers combined with seasonal high rainfall events. Consequently, the health and water quality of the GBR is directly affected by the intensive agricultural activities that dominate the wet-tropics catchments. The sustainability of the sugarcane industry as well as the health of the GBR depends greatly on growers improving nitrogen management practices. Groundwater and surface water ecosystems influence the concentrations and transport of agricultural contaminants, such as excess nitrogen, through complex bio-chemical and geo- chemical processes. In recent years, a growing amount of research has focused on groundwater and soil chemistry in the wet-tropics of north Queensland, specifically in regard to mobile - nitrogen in the form of nitrate (NO3 ). However, the abundance, diversity and bio-chemical influence of microorganisms in our wet-tropics groundwater aquifers has received little attention. The objectives of this study were 1) to monitor seasonal changes in groundwater chemistry in aquifers underlying sugarcane plantations in a catchment in the wet tropics of north Queensland and 2) to identify what microbiological organisms inhabit the groundwater aquifer environment.
    [Show full text]
  • Updated Handbook for Wastewater Microscopy Applications and Filamentous Morphotype ID Methods Acknowledging Recent Genetic Findi
    Updated Handbook for Wastewater Microscopy Applications and Filamentous Morphotype ID Methods Acknowledging recent Genetic Findings Ryan Hennessy, Midwest Contract Operations Inc. 2020 ©2020 Midwest Contract Operations, All Rights Reserved. Table of Contents Content ......................................................................................................................................................... 3 Prelude ...................................................................................................................................................... 3 Terminology .............................................................................................................................................. 4 Explanations for Updated Training Methods ............................................................................................ 5 Explanations for New Filamentous Morphotype Listings ......................................................................... 6 Updated Morphotype Table ..................................................................................................................... 9 Currently Known Genetic Diversity within common Filamentous Morphotypes* ................................. 10 Morphology Traits (Visual Key at 1000x Oil Immersion) ........................................................................ 13 Other Morphology Traits ........................................................................................................................ 19 Filamentous Morphotype
    [Show full text]
  • Outline Release 7 7C
    Taxonomic Outline of Bacteria and Archaea, Release 7.7 Taxonomic Outline of the Bacteria and Archaea, Release 7.7 March 6, 2007. Part 4 – The Bacteria: Phylum “Proteobacteria”, Class Betaproteobacteria George M. Garrity, Timothy G. Lilburn, James R. Cole, Scott H. Harrison, Jean Euzéby, and Brian J. Tindall Class Betaproteobacteria VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.16162 Order Burkholderiales VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.1617 Family Burkholderiaceae VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.1618 Genus Burkholderia VP Yabuuchi et al. 1993. GOLD ID: Gi01836. GCAT ID: 001596_GCAT. Sequenced strain: SRMrh-20 is from a non-type strain. Genome sequencing is incomplete. Number of genomes of this species sequenced 2 (GOLD) 1 (NCBI). N4Lid DOI: 10.1601/nm.1619 Burkholderia cepacia VP (Palleroni and Holmes 1981) Yabuuchi et al. 1993. <== Pseudomonas cepacia (basonym). Synonym links through N4Lid: 10.1601/ex.2584. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 25416. High-quality 16S rRNA sequence S000438917 (RDP), U96927 (Genbank). GOLD ID: Gc00309. GCAT ID: 000301_GCAT. Entrez genome id: 10695. Sequenced strain: ATCC 17760, LMG 6991, NCIMB9086 is from a non-type strain. Genome sequencing is completed. Number of genomes of this species sequenced 1 (GOLD) 1 (NCBI). N4Lid DOI: 10.1601/nm.1620 Pseudomonas cepacia VP (ex Burkholder 1950) Palleroni and Holmes 1981. ==> Burkholderia cepacia (new combination). Synonym links through N4Lid: 10.1601/ex.2584. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 25416. High- quality 16S rRNA sequence S000438917 (RDP), U96927 (Genbank).
    [Show full text]
  • Molecular Phylogenetic Investigation of Microbial Diversity and Nitrogen Cycling in Lava Tubes Jennifer Jane Marshall Hathaway
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 5-1-2010 Molecular phylogenetic investigation of microbial diversity and nitrogen cycling in lava tubes Jennifer Jane Marshall Hathaway Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Hathaway, Jennifer Jane Marshall. "Molecular phylogenetic investigation of microbial diversity and nitrogen cycling in lava tubes." (2010). https://digitalrepository.unm.edu/biol_etds/48 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. MOLECULAR PHYLOGENETIC INVESTIGATION OF MICROBIAL DIVERSITY AND NITROGEN CYCLING IN LAVA TUBES BY JENNIFER J. MARSHALL HATHAWAY B.S., BIOLOGY, STANFORD UNIVERSITY 2001 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science Biology The University of New Mexico Albuquerque, New Mexico May, 2010 © 2010, Jennifer Jane Marshall Hathaway iii DEDICATION This work is dedicated to my parents, Bill and Jane Marshall, who taught me at a very young age to see the wonder of the natural world, and to ask questions about the way it works. And to my husband, Simon Hathaway, who teaches me every day about finding joy in both the little and big moments in my life. Thank you for allowing me to have this adventure. iv ACKNOWLEDGEMENTS I would like to acknowledge first and foremost my advisor, Dr. Diana Northup. She has a love of science that is infectious, and I am grateful that I was able to work with such an extraordinary mentor.
    [Show full text]
  • Motile Curved Bacteria Are Pareto-Optimal
    bioRxiv preprint doi: https://doi.org/10.1101/441139; this version posted November 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Motile curved bacteria are Pareto-optimal Authors: Rudi Schuech1*, Tatjana Hoehfurtner2, David Smith3, and Stuart Humphries4. Affiliations: 5 1School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, LN6 7DL, UK. ORCID 0000-0002-3533-0582 2School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, LN6 7DL, UK. ORCID 0000-0003-0518-5481 3School of Mathematics, Watson Building, University of Birmingham, B15 2TT, UK. 10 ORCID 0000-0002-3427-0936 4School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, LN6 7DL, UK. ORCID 0000-0001-9766-6404 *Correspondence to: [email protected], +1 6464729224, +44 7462460115 15 Classification: Physical Sciences: Biophysics and Computational Biology Biological Sciences: Evolution Keywords: motility, shape, morphology, swimming, evolution, morphospace, efficiency 20 1 bioRxiv preprint doi: https://doi.org/10.1101/441139; this version posted November 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: Curved-rods are a ubiquitous bacterial phenotype, but the fundamental question of why they are shaped this way remains unanswered. Through in silico experiments, we assessed freely swimming straight- and curved-rod bacteria of a wide diversity of equal-volume shapes parameterized by elongation and curvature, and predicted their performances in tasks likely to 5 strongly influence overall fitness.
    [Show full text]
  • Downloaded in GI List Format
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.046896; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with 2 large scale dilution-to-extinction cultivation 3 4 5 6 Michael W. Henson1,#, V. Celeste Lanclos1, David M. Pitre2, Jessica Lee Weckhorst2,†, Anna M. 7 Lucchesi2, Chuankai Cheng1, Ben Temperton3*, and J. Cameron Thrash1* 8 9 1Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, 10 U.S.A. 11 2Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, 12 U.S.A. 13 3School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K. 14 #Current affiliation: Department of Geophysical Sciences, University of Chicago, Chicago, IL 15 60637, U.S.A. 16 †Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, 17 TX 77030, U.S.A. 18 19 *Correspondence: 20 21 J. Cameron Thrash 22 [email protected] 23 24 Ben Temperton 25 [email protected] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Running title: Evaluation of large-scale DTE cultivation 40 41 42 Keywords: dilution-to-extinction, cultivation, bacterioplankton, LSUCC, microbial ecology, 43 coastal microbiology 44 45 46 Page 1 of 43 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.046896; this version posted April 18, 2020.
    [Show full text]