Poison Frogs, Defensive Alkaloids, and Sleepless Mice: Critique of a Toxicity Bioassay

Total Page:16

File Type:pdf, Size:1020Kb

Poison Frogs, Defensive Alkaloids, and Sleepless Mice: Critique of a Toxicity Bioassay Poison frogs, defensive alkaloids, and sleepless mice: critique of a toxicity bioassay Paul J. Weldon Chemoecology Evolution and mechanisms of the chemical base of ecological interactions ISSN 0937-7409 Volume 27 Number 4 Chemoecology (2017) 27:123-126 DOI 10.1007/s00049-017-0238-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing AG. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Chemoecology (2017) 27:123–126 DOI 10.1007/s00049-017-0238-0 CHEMOECOLOGY COMMENTARY Poison frogs, defensive alkaloids, and sleepless mice: critique of a toxicity bioassay Paul J. Weldon1 Received: 11 May 2017 / Accepted: 5 June 2017 / Published online: 16 June 2017 Ó Springer International Publishing AG 2017 Abstract In studies of defensive allomones, appropriate chemicals and quantified measures of responses by preda- methods of presenting chemicals and measuring their tors that detract from their success. deterrent effects on consumers are essential for under- standing the contributions that chemicals make to the Keywords Alkaloids Á Chemical defense Á Dendrobatidae Á survivorship of potential prey. However, unnatural chem- Poison frogs Á Toxicity bioassay ical presentations and/or ambiguous bioassay responses occasionally have left open questions on some allelo- chemical effects. This discussion critiques a toxicity Introduction bioassay of Neotropical poison frogs (Dendrobatidae), a group whose skins are known to possess a diverse array of Chemicals that deter consumers play pivotal roles in inter- bioactive alkaloids. The problematic bioassay entails actions throughout nature. Appropriate methods of injecting laboratory mice with the skin extracts of frogs and presenting chemicals and measuring their deterrent effects monitoring the time taken for mice to fall back to sleep to against predation are essential if the contributions that estimate extract toxicity, where longer latencies of sleep chemicals make to survivorship are to be properly evaluated onset were claimed to reflect greater toxicity. Dendrobatids and their ecological significance understood. Documentation do not invasively deliver skin alkaloids to offenders, hence throughout the literature of the repellence of predators or the method of injecting mice with skin extracts does not their post-attack rejections of prey and prey-derived chem- correspond to the frogs’ natural defense mechanisms. icals attests to the use of defensive allomones in many Neither does the injection of frog extracts permit gas- interactions. However, unnatural chemical presentations trointestinal deactivation or clearance mechanisms that and/or ambiguous bioassay responses occasionally have left may reduce the bioavailability of toxins. Whether or not open questions on some allelochemical effects. Here, I dis- increased sleep latencies induced by injected skin extracts cuss these problems arising in investigations of Neotropical reflect toxicity, irritability or other effects, the ultimate poison frogs (Dendrobatidae), a group widely cited in dis- protective value for frogs of prolonging the wakefulness of cussions of chemical defense and a quintessential exemplar mice (or relevant predators) is unclear. Defensible bioas- among vertebrates for the dietary sequestration of defensive says entail both modes of chemical delivery consistent with chemicals (Savitzky et al. 2012). those by which would-be predators normally encounter Handling Editor: Michael Heethoff. Dendrobatids and their alkaloid arsenal & Paul J. Weldon The Dendrobatidae contains ca. 180 species of small frogs [email protected] that occur in leaf litter to forest canopy habitats from Nicaragua south through northern South America to Boli- 1 Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA via (Frost 2017). Many dendrobatids are brightly colored, 22630, USA an aposematic feature related to the noxious skin chemicals 123 Author's personal copy 124 P. J. Weldon that they primarily sequester from their diet of ants, mites, dendrobatids. One concern pertains to predator proxies and other arthropods. More than 550 alkaloids representing being injected with skin extracts; although some amphib- over 20 compound classes have been isolated from the skin ians, including anurans, possess skeletal elements that of dendrobatids (Saporito et al. 2012). Some of these protrude through their integument and subcutaneously compounds, tested singly, exhibit toxicity in investigations deliver skin toxins to offenders (Jared et al. 2015), den- of their pharmacological mode of action, e.g., binding to drobatids do not. Hence, the method of injecting mice with types of neurotransmitter receptors (Santos et al. 2016). skin extracts does not correspond to the frogs’ natural Several compounds, notably pumiliotoxins, are known to defense mechanisms. act as contact toxins against insects, penetrating their Neither does the injection of frog extracts permit gas- cuticle and inducing convulsions, leg autotomy, immobil- trointestinal deactivation nor clearance mechanisms that ity, and death (Weldon et al. 2006, 2013). may reduce the bioavailability of toxins (e.g., Gavhane and Yadav 2012). As Williams et al. (2002) stated, under- standing the relationship between the effects of a toxin The bioassay and its purported significance administered orally and through injection is critical if an oral dose is the exclusive natural mode of exposure. The In a series of studies of anti-predator defense and sexual skin and other organs of newts (Taricha spp.), for example, signaling of dendrobatids, Cummings and colleagues com- contain tetrodotoxin (TTX), an alkaloid that blocks volt- pared the skin toxicities of different frog species or morphs age-gated sodium channels and inhibits the propagation of (Darst and Cummings 2006; Darst et al. 2006; Maan and action potentials in muscles and nerves. North American Cummings 2012; Cummings and Crothers 2013). To obtain deer mice (Peromyscus maniculatus) treated with newt skin extracts, frogs were euthanized by topically applying ben- extracts (Brodie 1968), and laboratory mice and garter zocaine to their head and venter, their skin was removed, and snakes (Thamnophis sirtalis) treated with measured doses skin chemicals were extracted with methanol. The extracts of TTX (Williams et al. 2002), required significantly were evaporated to dryness and the residues were re-dis- greater oral doses of these substances to induce toxicosis solved in saline solution. The extracts from (usually five) than when they were administered by intraperitoneal individual frogs of each species or morph were then injected injections. Williams et al. (2002) hypothesized that TTX subcutaneously into (usually five) sleeping female mice administered orally may be degraded by stomach acidity. (Harlan Laboratories, outbred strain CD-1), one frog extract Darst et al. (2006) cited Daly and Myers (1967) for per mouse, awakened for treatment. Saline solution and, in establishing the skin extract injection of laboratory mice as some experiments (Maan and Cummings 2012), the skin ‘‘a standard protocol’’ for assessing frog toxicity. However, extracts of the Talamanca rocket frog (Allobates talaman- Daly and Myers (1967) injected mice to assess the lethality cae), an alkaloid-free dendrobatid, served as controls. The of different frogs’ extracts, an outcome obviously more time taken for mice to fall back to sleep was used to estimate pertinent both to toxicity and to frog defense (mode of extract toxicity, where longer latencies of sleep onset were chemical delivery notwithstanding) than is latency of sleep claimed to reflect greater toxicity. On the basis of this onset. Maan and Cummings (2012) asserted that their bioassay, referred to here as the sleepless mouse bioassay method represents a ‘‘more sensitive toxicity assay’’ than (SMB), the relative toxicities of frogs were assigned in that used by Daly and Myers (1967). Darst et al. (2006: purported demonstrations of (1) the correlation between frog 5856) had clarified that they actually ‘‘use the term ‘toxi- toxicity and skin color brightness (Darst et al. 2006; Maan city’ to refer to relative irritant effect of frog skin and Cummings 2012; cf. Daly and Myers 1967), (2) the alkaloids’’. establishment of learned avoidances by predators of Batesian Apart from toxicity and/or irritancy, the potential mimic and model frogs (Darst and Cummings 2006; Darst insomnolent effects of dendrobatid skin alkaloids cannot be et al. 2006), and (3) the interaction of natural and sexual dismissed as confounding the SMB. Many plant alkaloids, selection in the evolution of aposematism and signaling e.g., caffeine and nicotine, are documented stimulants, related to female mate choice and male–male competition increasing the latency of sleep onset in mammals (Sh- (Cummings and Crothers 2013). neerson 2005). Nicotine also occurs
Recommended publications
  • Universidade Vila Velha Programa De Pós-Graduação Em Ecologia De Ecossistemas
    UNIVERSIDADE VILA VELHA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA DE ECOSSISTEMAS MODELOS DE NICHO ECOLÓGICO E A DISTRIBUIÇÃO DE PHYLLODYTES (ANURA, HYLIDAE): UMA PERSPECTIVA TEMPORAL DE UM GÊNERO POTENCIALMENTE AMEAÇADO DE EXTINÇÃO POR MUDANÇAS CLIMÁTICAS E INTERAÇÕES BIOLÓGICAS MARCIO MAGESKI MARQUES VILA VELHA FEVEREIRO / 2018 UNIVERSIDADE VILA VELHA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA DE ECOSSISTEMAS MODELOS DE NICHO ECOLÓGICO E A DISTRIBUIÇÃO DE PHYLLODYTES (ANURA, HYLIDAE): UMA PERSPECTIVA TEMPORAL DE UM GÊNERO POTENCIALMENTE AMEAÇADO DE EXTINÇÃO POR MUDANÇAS CLIMÁTICAS E INTERAÇÕES BIOLÓGICAS Tese apresentada a Universidade Vila Velha, como pré-requisito do Programa de Pós- Graduação em Ecologia de Ecossistemas, para obtenção do título de Doutor em Ecologia. MARCIO MAGESKI MARQUES VILA VELHA FEVEREIRO / 2018 À minha esposa Mariana e meu filho Ângelo pelo apoio incondicional em todos os momentos, principalmente nos de incerteza, muito comuns para quem tenta trilhar novos caminhos. AGRADECIMENTOS Seria impossível cumprir essa etapa tão importante sem a presença do divino Espírito Santo de Deus, de Maria Santíssima dos Anjos e Santos. Obrigado por me fortalecerem, me levantarem e me animarem diante das dificultades, que foram muitas durante esses quatro anos. Agora, servirei a meu Deus em mais uma nova missão. Muito Obrigado. À minha amada esposa Mariana que me compreendeu e sempre esteve comigo me apoiando durante esses quatro anos (na verdade seis, se contar com o mestrado) em momentos de felicidades, tristezas, ansiedade, nervosismo, etc... Esse período nos serviu para demonstrar o quanto é forte nosso abençoado amor. Sem você isso não seria real. Te amo e muito obrigado. Ao meu amado filho, Ângelo Miguel, que sempre me recebia com um iluminado sorriso e um beijinho a cada vez que eu chegava em casa depois de um dia de trabalho.
    [Show full text]
  • Anura: Dendrobatidae) EN EL BOSQUE PLUVIAL TROPICAL EN EL DEPARTAMENTO DEL CHOCÓ, COLOMBIA*
    BOLETÍN CIENTÍFICO bol.cient.mus.hist.nat. 23 (1), enero-junio, 2019. 85-97. ISSN: 0123-3068 (Impreso) ISSN: 2462-8190 (En línea) CENTRO DE MUSEOS MUSEO DE HISTORIA NATURAL COMPOSICIÓN DIETARIA DE DOS ESPECIES DEL GÉNERO Andinobates (Anura: Dendrobatidae) EN EL BOSQUE PLUVIAL TROPICAL EN EL DEPARTAMENTO DEL CHOCÓ, COLOMBIA* Lucellis Maria Rivas1, Jhon Brayan García2, Jhon Tailor Rengifo3 Resumen Objetivo: Determinar la composición dietaría de Andinobates en zonas de bosque pluvial tropical en el departamento del Chocó, Colombia, para incrementar el conocimiento de los Dendrobatidae en la región pacifica colombiana. Metodología: Se utilizó el método de relevamiento por encuentros visuales (VES); además se calculó el índice de importancia relativa, el índice de jerarquización y la diversidad trófica. Resultados: Se identificaron de acuerdo a la nomenclatura taxonómica un total de 140 individuos repartidos en dos phylum, tres clases y cinco ordenes, siendo el orden Hy- menoptera el más abundante para las dos especies; por otro lado, no se predijeron más novedades tróficas. Conclusiones: Los índices permiten inferir que las especies estudiadas consumen una amplia variedad de invertebrados, por ello estas especies pueden ser especialistas o generalistas. Palabras clave: dieta, Chocó, diversidad trófica, contenidos estomacales Hymenoptera. DIETARY COMPOSITION OF TWO SPECIES OF THE GENRE Andinobates (Anura: Dendrobatidae) IN THE TROPICAL PLUVIAL FOREST IN THE CHOCÓ DEPARTMENT, COLOMBIA Abstract Objectives: To determine the dietary composition of Andinobates in tropical rain forest areas in the Department of Chocó, Colombia, to increase the knowledge of dendrobatids in the Colombian Pacific region. Methodology: The visual encounter survey method (VES) was used. In addition, the relative importance index, the hierarchy index, and the trophic diversity were calculated.
    [Show full text]
  • A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance
    Chapter 21 A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance Juan C. Santos , Rebecca D. Tarvin , and Lauren A. O’Connell 21.1 Introduction Chemical defense has evolved multiple times in nearly every major group of life, from snakes and insects to bacteria and plants (Mebs 2002 ). However, among land vertebrates, chemical defenses are restricted to a few monophyletic groups (i.e., clades). Most of these are amphibians and snakes, but a few rare origins (e.g., Pitohui birds) have stimulated research on acquired chemical defenses (Dumbacher et al. 1992 ). Selective pressures that lead to defense are usually associated with an organ- ism’s limited ability to escape predation or conspicuous behaviors and phenotypes that increase detectability by predators (e.g., diurnality or mating calls) (Speed and Ruxton 2005 ). Defended organisms frequently evolve warning signals to advertise their defense, a phenomenon known as aposematism (Mappes et al. 2005 ). Warning signals such as conspicuous coloration unambiguously inform predators that there will be a substantial cost if they proceed with attack or consumption of the defended prey (Mappes et al. 2005 ). However, aposematism is likely more complex than the simple pairing of signal and defense, encompassing a series of traits (i.e., the apose- matic syndrome) that alter morphology, physiology, and behavior (Mappes and J. C. Santos (*) Department of Zoology, Biodiversity Research Centre , University of British Columbia , #4200-6270 University Blvd , Vancouver , BC , Canada , V6T 1Z4 e-mail: [email protected] R. D. Tarvin University of Texas at Austin , 2415 Speedway Stop C0990 , Austin , TX 78712 , USA e-mail: [email protected] L.
    [Show full text]
  • Taxonomic Checklist of Amphibian Species Listed in the CITES
    CoP17 Doc. 81.1 Annex 5 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of Amphibian Species listed in the CITES Appendices and the Annexes of EC Regulation 338/97 Species information extracted from FROST, D. R. (2015) "Amphibian Species of the World, an online Reference" V. 6.0 (as of May 2015) Copyright © 1998-2015, Darrel Frost and TheAmericanMuseum of Natural History. All Rights Reserved. Additional comments included by the Nomenclature Specialist of the CITES Animals Committee (indicated by "NC comment") Reproduction for commercial purposes prohibited. CoP17 Doc. 81.1 Annex 5 - p. 1 Amphibian Species covered by this Checklist listed by listed by CITES EC- as well as Family Species Regulation EC 338/97 Regulation only 338/97 ANURA Aromobatidae Allobates femoralis X Aromobatidae Allobates hodli X Aromobatidae Allobates myersi X Aromobatidae Allobates zaparo X Aromobatidae Anomaloglossus rufulus X Bufonidae Altiphrynoides malcolmi X Bufonidae Altiphrynoides osgoodi X Bufonidae Amietophrynus channingi X Bufonidae Amietophrynus superciliaris X Bufonidae Atelopus zeteki X Bufonidae Incilius periglenes X Bufonidae Nectophrynoides asperginis X Bufonidae Nectophrynoides cryptus X Bufonidae Nectophrynoides frontierei X Bufonidae Nectophrynoides laevis X Bufonidae Nectophrynoides laticeps X Bufonidae Nectophrynoides minutus X Bufonidae Nectophrynoides paulae X Bufonidae Nectophrynoides poyntoni X Bufonidae Nectophrynoides pseudotornieri X Bufonidae Nectophrynoides tornieri X Bufonidae Nectophrynoides vestergaardi
    [Show full text]
  • F3999f15-C572-46Ad-Bbbe
    THE STATUTES OF THE REPUBLIC OF SINGAPORE ENDANGERED SPECIES (IMPORT AND EXPORT) ACT (CHAPTER 92A) (Original Enactment: Act 5 of 2006) REVISED EDITION 2008 (1st January 2008) Prepared and Published by THE LAW REVISION COMMISSION UNDER THE AUTHORITY OF THE REVISED EDITION OF THE LAWS ACT (CHAPTER 275) Informal Consolidation – version in force from 22/6/2021 CHAPTER 92A 2008 Ed. Endangered Species (Import and Export) Act ARRANGEMENT OF SECTIONS PART I PRELIMINARY Section 1. Short title 2. Interpretation 3. Appointment of Director-General and authorised officers PART II CONTROL OF IMPORT, EXPORT, ETC., OF SCHEDULED SPECIES 4. Restriction on import, export, etc., of scheduled species 5. Control of scheduled species in transit 6. Defence to offence under section 4 or 5 7. Issue of permit 8. Cancellation of permit PART III ENFORCEMENT POWERS AND PROCEEDINGS 9. Power of inspection 10. Power to investigate and require information 11. Power of entry, search and seizure 12. Powers ancillary to inspections and searches 13. Power to require scheduled species to be marked, etc. 14. Power of arrest 15. Forfeiture 16. Obstruction 17. Penalty for false declarations, etc. 18. General penalty 19. Abetment of offences 20. Offences by bodies corporate, etc. 1 Informal Consolidation – version in force from 22/6/2021 Endangered Species (Import and 2008 Ed. Export) CAP. 92A 2 PART IV MISCELLANEOUS Section 21. Advisory Committee 22. Fees, etc., payable to Board 23. Board not liable for damage caused to goods or property as result of search, etc. 24. Jurisdiction of court, etc. 25. Composition of offences 26. Exemption 27. Service of documents 28.
    [Show full text]
  • Patrones De Covariación Acústica, Genética Y Geográfica Entre Nueve Linajes De Andinobates (Anura: Dendrobatidae)
    Universidad de los Andes Facultad de Ciencias Departamento de Ciencias Biológicas Grupo de Ecofisiología, Comportamiento y Herpetología Patrones de covariación acústica, genética y geográfica entre nueve linajes de Andinobates (Anura: Dendrobatidae) SANTIAGO MESA MORA Trabajo de grado presentado como requisito para optar al título de Biólogo Director: ADOLFO AMÉZQUITA TORRES, PhD Bogotá D.C. Enero de 2016 Introducción Las ranas de la familia Dendrobatidae son un grupo monofilético de anfibios neotropicales y de vida terrestre. Estos organismos han despertado un enorme interés debido a características que los hacen llamativos a nivel fisiológico, etológico y evolutivo. Uno de estos aspectos, es la expresión de comportamientos como el cuidado parental, en donde uno de los padres se encarga de vigilar las posturas en tierra de los huevos y posteriormente llevar a los renacuajos a pequeños cuerpos de agua (Weygoldt, 1987). Por otra parte, un aspecto que ha hecho a los dendrobátidos ganar una enorme popularidad, es el hecho de que estas ranas se caracterizan por presentar una amplia gama de coloraciones y toxicidades (Summers & Clough, 2001). A pesar de lo llamativos que resultan estos anuros y del hecho de que han sido realizados extensos estudios en estos animales, la clasificación taxonómica dentro de la familia Dendrobatidae ha sido tradicionalmente compleja (Grant et al., 2006). Esta situación es ilustrada por géneros como Mannophryne y Nephelobates, que presentan dificultades en cuanto a su relación con los demás géneros de la familia; en el caso de los géneros Ameerega y Epipedobates, son inclusive desconocidas las sinapomorfías que permiten discriminarlos de otros dendrobátidos, lo que ha llevado a la discusión de si dichos géneros deberían ser considerados como parafiléticos o polifiléticos (Grant et al., 2006).
    [Show full text]
  • Synthesis of a Poison Frog Bioactive Alkaloids Sara Mazeh
    Synthesis of a poison frog bioactive alkaloids Sara Mazeh To cite this version: Sara Mazeh. Synthesis of a poison frog bioactive alkaloids. Organic chemistry. Université Grenoble Alpes, 2019. English. NNT : 2019GREAV043. tel-02613846 HAL Id: tel-02613846 https://tel.archives-ouvertes.fr/tel-02613846 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES Spécialité : Chimie organique Arrêté ministériel : 25 mai 2016 Présentée par SARA MAZEH Thèse dirigée par Philippe DELAIR préparée au sein du Laboratoire Département de Pharmaco chimie Moléculaire dans l'École Doctorale Chimie et Sciences du Vivant Synthèse d'alcaloïdes bioactifs issus de batracien Synthesis of a poison frog bioactive alkaloids Thèse soutenue publiquement le 9 décembre 2019, devant le jury composé de : Madame MERCEDES AMAT PROFESSEUR, UNIVERSITE DE BARCELONE - ESPAGNE, Rapporteur Monsieur DAVID AITKEN PROFESSEUR DES UNIVERSITES, UNIVERSITE PARIS-SUD, Rapporteur Monsieur PETER GOEKJIAN PROFESSEUR DES UNIVERSITES, UNIVERSITE LYON 1, Examinateur Madame SANDRINE PY DIRECTRICE DE RECHERCHE, CNRS DELEGATION ALPES, Examinateur Monsieur OLIVIER RENAUDET PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES, Président Monsieur PHILIPPE DELAIR MAITRE DE CONFERENCES HDR, UNIVERSITE GRENOBLE ALPES, Directeur de thèse Dedicated to my parents, this simply wouldn’t exist without you.
    [Show full text]
  • An Arthropod Source for the Pumiliotoxin Alkaloids Of
    Formicine ants: An arthropod source for the SEE COMMENTARY pumiliotoxin alkaloids of dendrobatid poison frogs Ralph A. Saporito*, H. Martin Garraffo†, Maureen A. Donnelly*, Adam L. Edwards*, John T. Longino‡, and John W. Daly†§ *Department of Biological Sciences, Florida International University, Miami, FL 33199; †Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892; and ‡Evergreen State College, Olympia, WA 98505 Contributed by John W. Daly, April 5, 2004 A remarkable diversity of bioactive lipophilic alkaloids is present in ins (1) represent alkaloid classes (Fig. 2) that share certain the skin of poison frogs and toads worldwide. Originally discov- structural features with those of known ant alkaloids, and it is ered in neotropical dendrobatid frogs, these alkaloids are now expected that they will prove to be of myrmicine ant origin as known from mantellid frogs of Madagascar, certain myobatrachid well. All of the alkaloids in frog and toad skin that appear to frogs of Australia, and certain bufonid toads of South America. originate by sequestration from myrmicine ants contain un- Presumably serving as a passive chemical defense, these alkaloids branched carbon skeletons. Coccinellid beetles appear to be a appear to be sequestered from a variety of alkaloid-containing dietary source for the coccinellines and some of the structurally arthropods. The pumiliotoxins represent a major, widespread, related tricyclic alkaloids (5). Siphonotid millipedes are the group of alkaloids that are found in virtually all anurans that are putative dietary source for the spiropyrrolizidine oximes and chemically defended by the presence of lipophilic alkaloids.
    [Show full text]
  • Herpetology at the Isthmus Species Checklist
    Herpetology at the Isthmus Species Checklist AMPHIBIANS BUFONIDAE true toads Atelopus zeteki Panamanian Golden Frog Incilius coniferus Green Climbing Toad Incilius signifer Panama Dry Forest Toad Rhaebo haematiticus Truando Toad (Litter Toad) Rhinella alata South American Common Toad Rhinella granulosa Granular Toad Rhinella margaritifera South American Common Toad Rhinella marina Cane Toad CENTROLENIDAE glass frogs Cochranella euknemos Fringe-limbed Glass Frog Cochranella granulosa Grainy Cochran Frog Espadarana prosoblepon Emerald Glass Frog Sachatamia albomaculata Yellow-flecked Glass Frog Sachatamia ilex Ghost Glass Frog Teratohyla pulverata Chiriqui Glass Frog Teratohyla spinosa Spiny Cochran Frog Hyalinobatrachium chirripoi Suretka Glass Frog Hyalinobatrachium colymbiphyllum Plantation Glass Frog Hyalinobatrachium fleischmanni Fleischmann’s Glass Frog Hyalinobatrachium valeroi Reticulated Glass Frog Hyalinobatrachium vireovittatum Starrett’s Glass Frog CRAUGASTORIDAE robber frogs Craugastor bransfordii Bransford’s Robber Frog Craugastor crassidigitus Isla Bonita Robber Frog Craugastor fitzingeri Fitzinger’s Robber Frog Craugastor gollmeri Evergreen Robber Frog Craugastor megacephalus Veragua Robber Frog Craugastor noblei Noble’s Robber Frog Craugastor stejnegerianus Stejneger’s Robber Frog Craugastor tabasarae Tabasara Robber Frog Craugastor talamancae Almirante Robber Frog DENDROBATIDAE poison dart frogs Allobates talamancae Striped (Talamanca) Rocket Frog Colostethus panamensis Panama Rocket Frog Colostethus pratti Pratt’s Rocket
    [Show full text]
  • Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga Pumilio Provide Variable Protection from Microbial Pathogens
    John Carroll University Carroll Collected Masters Theses Theses, Essays, and Senior Honors Projects Summer 2016 SEQUESTERED ALKALOID DEFENSES IN THE DENDROBATID POISON FROG OOPHAGA PUMILIO PROVIDE VARIABLE PROTECTION FROM MICROBIAL PATHOGENS Kyle Hovey John Carroll University, [email protected] Follow this and additional works at: http://collected.jcu.edu/masterstheses Part of the Biology Commons Recommended Citation Hovey, Kyle, "SEQUESTERED ALKALOID DEFENSES IN THE DENDROBATID POISON FROG OOPHAGA PUMILIO PROVIDE VARIABLE PROTECTION FROM MICROBIAL PATHOGENS" (2016). Masters Theses. 19. http://collected.jcu.edu/masterstheses/19 This Thesis is brought to you for free and open access by the Theses, Essays, and Senior Honors Projects at Carroll Collected. It has been accepted for inclusion in Masters Theses by an authorized administrator of Carroll Collected. For more information, please contact [email protected]. SEQUESTERED ALKALOID DEFENSES IN THE DENDROBATID POISON FROG OOPHAGA PUMILIO PROVIDE VARIABLE PROTECTION FROM MICROBIAL PATHOGENS A Thesis Submitted to the Office of Graduate Studies College of Arts & Sciences of John Carroll University in Partial Fulfillment of the Requirements for the Degree of Master of Science By Kyle J. Hovey 2016 Table of Contents Abstract ................................................................................................................................1 Introduction ..........................................................................................................................3 Methods
    [Show full text]
  • Myers 1987:304. Dendrobates Bombetes: Jungfer, Lötters, And
    1 AMPHIBIA: ANURA: DENDROBATIDAE Andinobates bombetes Catalogue of American Amphibians and Minyobates bombetes: Myers 1987:304. Reptiles 926 Dendrobates bombetes: Jungfer, Lötters, and Jörgens 2000:11. F. Vargas-Salinas, M. A. Atehortua-Vallejo, L. Ranitomeya bombetes: Grant, Frost, Caldwell, F. Arcila-Pérez, G. M. Jiménez-Vargas, Gagliardo, Haddad, Kok, Means, Noonan, C. González-Acosta, S. Casas-Cardona, Schargel, and Wheeler 2006:171. and A. Grajales-Echeverry. 2020. Andinobates bombetes: Brown, Twomey, Andinobates bombetes. Amézquita, de Souza, Caldwell, Lötters, May, Melo-Sampaio, Mejía-Vargas, Pe- Andinobates bombetes (Myers and Daly) rez-Peña, Pepper, Poelman, Sanchez-Ro- Rubí poison frog driguez, and Summers 2011:36. Dendrobates bombetes Myers and Daly CONTENT. No subspecies are recognized. 1980:2. Type locality: “mountains above south side of Lago de Calima, 1580–1600 DESCRIPTION. Individuals of Andinobates meters elevation, about 2 km.,{sic} airline bombetes have a body size (snout-vent length, southwest of Puente Tierra (village), De- SVL) between 16.7– 21.5 mm, with no sexual partment of Valle del Cauca, Colombia.” dimorphism in body size (males: mean SVL Holotype, American Museum of Natural = 17.8 ± 0.1 mm SD, range: 16.7–21.5 mm; History, AMNH 102601, adult female, N = 28; females: mean SVL = 18.6 ± 0.1 mm collected by C. W. Myers, J. W. Daly and SD, range: 17.2–19.8 mm; N = 19) (Myers and E. B. de Bernal on 21 November 1976 (not Daly 1980; Suárez-Mayorga 1999; Vargas-Sa- examined by authors). linas and Amézquita 2013). In adults of Andi- Figure 1. Male of Andinobates bombetes from Finca El Placer, in the municipality of Filandia, depart- ment of Quindío, Colombia.
    [Show full text]
  • © in This Web Service Cambridge University
    Cambridge University Press 978-1-107-40693-3 - Chemical Ecology of Vertebrates Dietland Müller-Schwarze Index More information index Aardvark (Orycteropus afer) 153 Air currents 6 Aardwolf (Proteles cristatus) 23, 31, 153, 154, Alarm 159 odors 191 Acacia responses, fish 192 fever tree (Acacia xanthophloea) 312 substance 192 umbrella thorn (A. tortilis) 312 “alarm signals, damage-released” 192 whistling thorn (A. drepanolobium) 333 Albatross Acanthochromis polyacanthus (see Damselfish) black-browed (Diomedea melanophris) 74, 352 Accipenser baeri (see Sturgeon, Siberian) black-footed (D. nigripes) 114, 350 Accipenser gueldenstaedtii (see Sturgeon, Russian) grey-headed (D. chrysostoma) 352 Accipenser stellatus (see Sturgeon, stellate) wandering (D. exulans) 352 Acetate esters 26 Alcelaphus cokii (see Hartebeest, Coke’s) Acetone 372 Alces alces (see Moose) 6-Acetonylisoxanthopterin 194 Aldehydes in coyote lures 411 Acetophenone 190 Alder, green (Alnus crispa) 299, 300, 309 Achillea ligustica (see Yarrow, Ligurian) induced defense 332 Achillea millefolium (see Yarrow) Alert odors 191 Acidification of water, effects 392 Alfalfa (Medicago sativa) 278, 286, 307 Acomastylis [Geum] rossii (see Aven, alpine) Algae (Shewanella sp.) 247 Acomys cahirinus (see Mouse, spiny) Alkaloids, Acomys russatus (see Mouse, golden spiny) bioaccumulation 253 Acrocephalus schoenobaenus (see Warbler, sedge) birds 50 Actinomycetes 66 poison dart frogs 49, 252 “Active signalers” 172 properties, occurrence 280 Active space 9, 33, 57 Alligator, American (Alligator mississipiensis) 349 Adaptations (herbivory) Allocholic acid 66, 172 defensive 315 Allomarking 148 offensive 315 Almond, bitter (Prunus amygdalus) 291 Adrenocortical effects, mice 220 Alnus crispa (see Alder, green) Aepyceros melampus (see Impala) Alouatta belzebul (see Monkey, red-handed Aeschna juncea (see Dragonfly) howler) Aeschna umbrosa (see Dragonfly) Alouatta palliata (see Monkey, howler) Aethia cristatella (see Auklet, crested) Alpaca (Lama pacos) 140 Agaricus sp.
    [Show full text]