Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga Pumilio Provide Variable Protection from Microbial Pathogens K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Resource Material Green and Black Poison Frog (Dendrobates Auratus)
Indicative 10 Project National Resource Material Green and Black Poison frog (Dendrobates auratus) Michelle T. Christy and Win Kirkpatrick 2017 Department of Primary Industries and Regional Development 3 Baron-Hay Court, South Perth, WA 6151 An Invasive Animals CRC Project Contents Summary ............................................................................. 2 Key Messages ................................................................... 2 Classification ................................................................... 2 Common names ................................................................ 3 Biology and Ecology ................................................................ 3 Identification ................................................................... 3 Behaviours and Traits ......................................................... 4 Food and Foraging ............................................................. 4 Reproduction and Lifecycle ................................................. 5 Habitat ......................................................................... 5 Global Range ........................................................................ 5 Potential for Introduction ........................................................ 6 Potential for Eradication.......................................................... 7 Impacts ............................................................................... 7 Economic ........................................................................ 7 Environmental -
Role of Secondary Metabolites in Defense Mechanisms of Plants
Review Article Biology and Medicine, 3 (2) Special Issue: 232-249, 2011 eISSN: 09748369, www.biolmedonline.com Role of secondary metabolites in defense mechanisms of plants *Mazid M1, Khan TA2, Mohammad F1 1 Plant Physiology Division, Department of Botany, Faculty of Life Sciences, AMU, Aligarh, India. 2 Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India. *Corresponding Author: [email protected] Abstract In all natural habitats, plants are surrounded by an enormous number of potential enemies (biotic) and various kinds of abiotic environmental stress. Nearly all ecosystems contain a wide variety of bacteria, viruses, fungi, nematodes, mites, insects, mammals and other herbivorous animals, greatly responsible for heavy reduction in crop productivity. By their nature, plants protect themselves by producing some compounds called as secondary metabolites. Secondary metabolites, including terpenes, phenolics and nitrogen (N) and sulphur (S) containing compounds, defend plants against a variety of herbivores and pathogenic microorganisms as well as various kinds of abiotic stresses. This review presents an overview about some of the mechanisms by which plants protect themselves against herbivory, pathogenic microbes and various abiotic stresses as well as specific plant responses to pathogen attack, the genetic control of host-pathogen interactions. Keywords: Secondary metabolites; defense mechanism; phytoalexins; terpenes; alkaloids; phenolics; cynogenic glucosides. Abbreviations: GST, glucosinolate synthase transferase; SIR, systematic induced resistance; GSL, glucosinolates; GSH, glutathione; HCN, hydrogen cyanide. Introduction (Schaller et al., 1996). Once infected, some In natural systems, plants face a plethora of plants also develop immunity to subsequent antagonists and thus posses a myriad of microbial attacks (Putnam and Heisey, 1983; defense and have evolved multiple defense Putnam and Tang, 1986; Bernays, 1989; mechanisms by which they are able to cope Elakovich, 1987). -
Stingless Bee Nesting Biology David W
Stingless bee nesting biology David W. Roubik To cite this version: David W. Roubik. Stingless bee nesting biology. Apidologie, Springer Verlag, 2006, 37 (2), pp.124-143. hal-00892207 HAL Id: hal-00892207 https://hal.archives-ouvertes.fr/hal-00892207 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 37 (2006) 124–143 124 c INRA/DIB-AGIB/ EDP Sciences, 2006 DOI: 10.1051/apido:2006026 Review article Stingless bee nesting biology* David W. Ra,b a Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá, República de Panamá b Unit 0948, APO AA 34002-0948, USA Received 2 October 2005 – Revised 29 November 2005 – Accepted 23 December 2005 Abstract – Stingless bees diverged since the Cretaceous, have 50 times more species than Apis,andare both distinctive and diverse. Nesting is capitulated by 30 variables but most do not define clades. Both architectural features and behavior decrease vulnerability, and large genera vary in nest habit, architecture and defense. Natural stingless bee colony density is 15 to 1500 km−2. Symbionts include mycophagic mites, collembolans, leiodid beetles, mutualist coccids, molds, and ricinuleid arachnids. -
Venom Week 2012 4Th International Scientific Symposium on All Things Venomous
17th World Congress of the International Society on Toxinology Animal, Plant and Microbial Toxins & Venom Week 2012 4th International Scientific Symposium on All Things Venomous Honolulu, Hawaii, USA, July 8 – 13, 2012 1 Table of Contents Section Page Introduction 01 Scientific Organizing Committee 02 Local Organizing Committee / Sponsors / Co-Chairs 02 Welcome Messages 04 Governor’s Proclamation 08 Meeting Program 10 Sunday 13 Monday 15 Tuesday 20 Wednesday 26 Thursday 30 Friday 36 Poster Session I 41 Poster Session II 47 Supplemental program material 54 Additional Abstracts (#298 – #344) 61 International Society on Thrombosis & Haemostasis 99 2 Introduction Welcome to the 17th World Congress of the International Society on Toxinology (IST), held jointly with Venom Week 2012, 4th International Scientific Symposium on All Things Venomous, in Honolulu, Hawaii, USA, July 8 – 13, 2012. This is a supplement to the special issue of Toxicon. It contains the abstracts that were submitted too late for inclusion there, as well as a complete program agenda of the meeting, as well as other materials. At the time of this printing, we had 344 scientific abstracts scheduled for presentation and over 300 attendees from all over the planet. The World Congress of IST is held every three years, most recently in Recife, Brazil in March 2009. The IST World Congress is the primary international meeting bringing together scientists and physicians from around the world to discuss the most recent advances in the structure and function of natural toxins occurring in venomous animals, plants, or microorganisms, in medical, public health, and policy approaches to prevent or treat envenomations, and in the development of new toxin-derived drugs. -
The Raison D'tre of Chemical Ecology
ESA CENTENNIAL PAPER Ecology, 96(3), 2015, pp. 617–630 Ó 2015 by the Ecological Society of America The raison d’eˆtre of chemical ecology 1,5 2,3 3 4 2 ROBERT A. RAGUSO, ANURAG A. AGRAWAL, ANGELA E. DOUGLAS, GEORG JANDER, ANDRE´KESSLER, 3 2,3 KATJA POVEDA, AND JENNIFER S. THALER 1Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853 USA 2Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853 USA 3Department of Entomology, Cornell University, Ithaca, New York 14853 USA 4Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853 USA Abstract. Chemical ecology is a mechanistic approach to understanding the causes and consequences of species interactions, distribution, abundance, and diversity. The promise of chemical ecology stems from its potential to provide causal mechanisms that further our understanding of ecological interactions and allow us to more effectively manipulate managed systems. Founded on the notion that all organisms use endogenous hormones and chemical compounds that mediate interactions, chemical ecology has flourished over the past 50 years since its origin. In this essay we highlight the breadth of chemical ecology, from its historical focus on pheromonal communication, plant–insect interactions, and coevolution to frontier themes including community and ecosystem effects of chemically mediated species interactions. Emerging approaches including the -omics, phylogenetic ecology, the form and function of microbiomes, and network analysis, as well as emerging challenges (e.g., sustainable agriculture and public health) are guiding current growth of this field. Nonetheless, the directions and approaches we advocate for the future are grounded in classic ecological theories and hypotheses that continue to motivate our broader discipline. -