Medical Aspects of Biological Warfare

Total Page:16

File Type:pdf, Size:1020Kb

Medical Aspects of Biological Warfare Staphylococcal Enterotoxin B and Related Toxins Chapter 17 STAPHYLOCOCCAL ENTEROTOXIN B AND RELATED TOXINS PRODUCED BY STAPHYLOCOCCUS AUREUS AND STREPTOCOCCUS PYOGENES KAMAL U. SAIKH, PhD*; ROBERT G. ULRICH, PhD†; and TERESA KRAKAUER, PhD‡ INTRODUCTION CHARACTERIZATION OF TOXINS HOST RESPONSE AND ANIMAL MODELS CLINICAL DISEASE Fever Respiratory Symptoms Headache Nausea and Vomiting Other Signs and Symptoms DETECTION AND DIAGNOSIS MEDICAL MANAGEMENT VACCINES DEVELOPMENT OF THERAPEUTICS SUMMARY *Microbiologist, Department of Immunology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702 †Microbiologist, Department of Immunology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702 ‡Microbiologist, Department of Immunology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702 403 244-949 DLA DS.indb 403 6/4/18 11:58 AM Medical Aspects of Biological Warfare INTRODUCTION Staphylococcus aureus and Streptococcus pyogenes are shock syndrome (TSS) may result from exposure to any ubiquitous, gram-positive cocci that play an important of the superantigens through a nonenteric route. High role in numerous human illnesses such as food poison- dose, microgram-level exposures to staphylococcal en- ing, pharyngitis, toxic shock, autoimmune diseases, terotoxin B (SEB) will result in fatalities, and inhalation and skin and soft tissue infections. These common bac- exposure to nanogram or lower levels may be severely teria readily colonize humans via numerous virulence incapacitating as well as fatal.3 In addition, the severe factors that facilitate their survival and dissemination. perturbation of the immune system caused by supe- Among these factors, staphylococcal enterotoxins rantigen exposure may lower the infectious or lethal (SEs), toxic shock syndrome toxin-1 (TSST-1), and dose of replicating agents, such as influenza virus.4 streptococcal pyrogenic exotoxins (SPEs) share a com- SEB is a prototype enterotoxin and potential biologi- mon three-dimensional protein fold characteristic of cal threat agent produced by many isolates of S aureus. these bacterial exotoxins called “superantigens” due During the 1960s, SEB was studied extensively as a to their potency in activating cells of the immune biological incapacitant in the US offensive program. system.1,2 Picomolar concentrations of these bacterial Recent studies on countermeasures and diagnostics superantigens activate specific Vβ-bearing T cells by have focused on SEB because of its effectiveness as binding to and cross-linking the major histocompat- a biological weapon, especially by inhalation. How- ibility complex (MHC) class II molecules on antigen- ever, SEB represents many related biologically active presenting cells (APC) and the T-cell receptor (TCR). superantigens that are readily isolated and manipu- Activated T cells proliferate and, together with APC, lated by recombinant DNA (deoxyribonucleic acid) produce proinflammatory mediators that, in elevated techniques. Moreover, the coadministration of SEB or quantities, can induce fever, hypotension, and lethal related toxins with replicating pathogens or pathogen- shock. Most strains of S aureus and S pyogenes exam- associated molecules can lower the lethal dose of toxin ined harbor genes for superantigens and are likely to by thousands fold. Pathogen-associated molecules produce at least one of these toxins. Strains that lack the such as endotoxins bind to toll-like receptors (TLRs) ability to produce superantigens are usually attenuated present on many cell types and activate similar intra- in virulence. The staphylococcal enterotoxins are most cellular signaling pathways as SEB, accounting for the frequently associated with food poisoning, yet not all synergy between these molecules and SEB in inducing superantigens are enterotoxins. Life-threatening toxic pathophysiological effects.5 CHARACTERIZATION OF TOXINS Genes encoding superantigens of S aureus and S The bacterial superantigens are 19- to 30-kD single- pyogenes arise from a common ancestral gene. Most of chain proteins with two major domains, containing the streptococcal superantigens are encoded by mobile β-sheet and α-helix structures, separated by a shallow genetic elements. SPE-A, SPE-C, SEA, and SEE are all groove.1,9 Based on amino acid sequences and struc- phage-borne, while SED is plasmid-encoded. A chro- tural homology, superantigens can be compiled into mosomal cluster of SE and SE-like genes are present in five different groups.10 TSST-1 is the most distantly strains of S aureus.6 Transcriptional control of TSST-1, related and lacks a “disulfide loop” commonly found SEB, SEC, and SED is mediated through the accessory in SEs, whereas SEs with emetic properties such as gene regulator (agr) locus,7 whereas SEA expression SEA, SEB, SEC, SED, and SEE all possess this loop appears to be independent of agr. Strains that are agr- structure. Despite significant sequence divergence, negative generally produce less toxin; however, there with similarities as low as 14%, overall protein folds are also considerable differences in production levels are similar among staphylococcal and streptococcal among agr-positive isolates. These toxins are synthe- superantigens. Cross-reactivities of polyclonal and sized during the late logarithmic to stationary phases monoclonal antibodies to SEs, TSST-1, and SPEs indi- of growth, and production of many SEs is dependent cate common epitopes among these superantigens.11 on glucose concentration and environmental pH. The The toxin genes have evolved by strong selective great diversity of superantigens and the highly mobile pressures to maintain receptor-binding surfaces by nature of their genetic elements suggest an accelerated preserving three-dimensional protein structure. The rate of evolution. Staphylococcal and streptococcal contact surfaces with MHC class II molecules involve strains that colonize domestic animals are potential ge- variations of conserved structural elements,12,13 which netic reservoirs for new toxin genes,8 and the transfer of include a ubiquitous hydrophobic surface loop, a these sequences may contribute to hybrid polypeptides. polar-binding pocket present in most superantigens, 404 244-949 DLA DS.indb 404 6/4/18 11:58 AM Staphylococcal Enterotoxin B and Related Toxins and one or more zinc-binding sites found in some toxins. Comparison of antibody recognition among superantigens11 suggests that antigenic variation is maximized while three-dimensional structures, and hence receptor-binding surfaces, are conserved. From a practical standpoint, this observation indicates that a large panel of antibody probes will be required for proper sample identification. Molecular details of the receptor interaction and biological actions of bacterial superantigens are well established. Superantigens target cells that mediate innate and adaptive immunity, resulting in an intense activation and subsequent pathology associated with aberrant host-immune responses. In contrast to “conventional” antigens, bacterial supe- rantigens bind on the outside of the peptide-binding groove of MHC class II molecules and exert their biological effects without being “processed.” Most superantigens share a common mode for binding MHC class II molecules, with additional stabiliz- ing interactions that are unique to each toxin.14 A second, zinc-dependent molecular binding mode for some superantigens increases T cell signaling and may impart greater toxicities in some cases. Figure 17-1. Molecular model of receptor binding. Staphy- In normal T-cell responses to peptide antigens, the lococcal enterotoxins and other bacterial superantigens CD4 molecule stabilizes interactions between TCR target the multireceptor communication between T cells and MHC class II molecules on APC (Figure 17-1). and antigen-presenting cells that is fundamental to initiat- Superantigens also cross-link TCR and MHC class ing pathogen-specific immune clearance. The superantigen II molecules, mimicking the CD4 molecule,15 and inserts itself between the antigen receptor of T cells and the hence stimulate large numbers of T cells. Recogni- major histocompatibility complex class II molecule display- ing peptides from potential pathogens. Toxin exposure tion of a superantigen by TCR is dependent on the results in hyperactivation of the immune system, and the pa- variable region of the β chain (Vβ) of the TCR. Each thology is mediated by tumor necrosis factor-α, interferon-γ, toxin binds to a distinct repertoire of TCR Vβ, thus and other cytokines. revealing the unique Vβ specificities of an individual HLA-DR: Human Leukocyte Antigen DR; SEB: staphylococ- superantigen.16 An intense and rapid release of cy- cal enterotoxin B; TCR: T-cell receptor tokines, such as interferon-g, interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) is responsible for the sys- transcytosis of toxin.20 Other studies suggest various temic effects of the toxins.17–19 Although SEB has en- binding regions of SEB to epithelial cell membrane terotoxic effects, the interaction of toxin with specific proteins.21,22 The release of histamine and cysteinyl cells and receptors of the gastrointestinal tract is less leukotriene from mast cells likely accounts for the well-defined. A specific region in SEB is involved in emetic effects of staphylococcal enterotoxins.23 HOST RESPONSE AND ANIMAL MODELS
Recommended publications
  • The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
    toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1].
    [Show full text]
  • Biological Toxins As the Potential Tools for Bioterrorism
    International Journal of Molecular Sciences Review Biological Toxins as the Potential Tools for Bioterrorism Edyta Janik 1, Michal Ceremuga 2, Joanna Saluk-Bijak 1 and Michal Bijak 1,* 1 Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] (E.J.); [email protected] (J.S.-B.) 2 CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-(0)426354336 Received: 3 February 2019; Accepted: 3 March 2019; Published: 8 March 2019 Abstract: Biological toxins are a heterogeneous group produced by living organisms. One dictionary defines them as “Chemicals produced by living organisms that have toxic properties for another organism”. Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and extraction equipment dedicated to plant toxins are cheap and easily available, and can even be constructed at home. Many toxins affect the nervous systems of mammals by interfering with the transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower than chemical warfare agents. For these reasons we decided to prepare this review paper which main aim is to present the high potential of biological toxins as factors of bioterrorism describing the general characteristics, mechanisms of action and treatment of most potent biological toxins.
    [Show full text]
  • Medical Management of Biologic Casualties Handbook
    USAMRIID’s MEDICAL MANAGEMENT OF BIOLOGICAL CASUALTIES HANDBOOK Fourth Edition February 2001 U.S. ARMY MEDICAL RESEARCH INSTITUTE OF INFECTIOUS DISEASES ¨ FORT DETRICK FREDERICK, MARYLAND 1 Sources of information: National Response Center 1-800-424-8802 or (for chem/bio hazards & terrorist events) 1-202-267-2675 National Domestic Preparedness Office: 1-202-324-9025 (for civilian use) Domestic Preparedness Chem/Bio Help line: 1-410-436-4484 or (Edgewood Ops Center - for military use) DSN 584-4484 USAMRIID Emergency Response Line: 1-888-872-7443 CDC'S Bioterrorism Preparedness and Response Center: 1-770-488-7100 John's Hopkins Center for Civilian Biodefense: 1-410-223-1667 (Civilian Biodefense Studies) An Adobe Acrobat Reader (pdf file) version and a Palm OS Electronic version of this Handbook can both be downloaded from the Internet at: http://www.usamriid.army.mil/education/bluebook.html 2 USAMRIID’s MEDICAL MANAGEMENT OF BIOLOGICAL CASUALTIES HANDBOOK Fourth Edition February 2001 Editors: LTC Mark Kortepeter LTC George Christopher COL Ted Cieslak CDR Randall Culpepper CDR Robert Darling MAJ Julie Pavlin LTC John Rowe COL Kelly McKee, Jr. COL Edward Eitzen, Jr. Comments and suggestions are appreciated and should be addressed to: Operational Medicine Department Attn: MCMR-UIM-O U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) Fort Detrick, Maryland 21702-5011 3 PREFACE TO THE FOURTH EDITION The Medical Management of Biological Casualties Handbook, which has become affectionately known as the "Blue Book," has been enormously successful - far beyond our expectations. Since the first edition in 1993, the awareness of biological weapons in the United States has increased dramatically.
    [Show full text]
  • SARS-Cov-2 As a Superantigen in Multisystem Inflammatory Syndrome in Children (MIS-C)
    SARS-CoV-2 as a superantigen in multisystem inflammatory syndrome in children (MIS-C) Theodore Kouo, Worarat Chaisawangwong J Clin Invest. 2021. https://doi.org/10.1172/JCI149327. Commentary In-Press Preview Multisystem Inflammatory Syndrome in Children (MIS-C) is a rare but deadly new disease in children that rapidly progresses to hyperinflammation, shock, and can lead to multiple organ failure if unrecognized. It has been found to be temporally associated with the COVID-19 pandemic and is often associated with SARS-CoV-2 exposure in children. In this issue of the JCI, Porritt, Paschold, and Rivas et al. identify restricted T cell receptor (TCR) β-chain variable domain (Vβ) usage in patients with severe MIS-C indicating a potential role for SARS-CoV-2 as a superantigen. These findings suggest that a blood test that determines the presence of specific TCR beta variable gene segments (TRBV) may identify patients at risk for severe MIS-C. Find the latest version: https://jci.me/149327/pdf SARS-CoV-2 as a superantigen in multisystem inflammatory syndrome in children (MIS-C) Theodore Kouo1 and Worarat Chaisawangwong2 1Department of Pediatrics, Division of Emergency Medicine, 2Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA. Address correspondence to: Theodore Kouo Johns Hopkins Children’s Center 1800 Orleans Street, G1509 Phone: 410-955-6146 Email: [email protected] COI Statement: The authors declare that no conflict of interest exists. Abstract Multisystem Inflammatory Syndrome in Children (MIS-C) is a rare but deadly new disease in children that rapidly progresses to hyperinflammation, shock, and can lead to multiple organ failure if unrecognized.
    [Show full text]
  • Medical Management of Biological Casualties Handbook
    USAMRIID’s MEDICAL MANAGEMENT OF BIOLOGICAL CASUALTIES HANDBOOK Sixth Edition April 2005 U.S. ARMY MEDICAL RESEARCH INSTITUTE OF INFECTIOUS DISEASES FORT DETRICK FREDERICK, MARYLAND Emergency Response Numbers National Response Center: 1-800-424-8802 or (for chem/bio hazards & terrorist events) 1-202-267-2675 National Domestic Preparedness Office: 1-202-324-9025 (for civilian use) Domestic Preparedness Chem/Bio Helpline: 1-410-436-4484 or (Edgewood Ops Center – for military use) DSN 584-4484 USAMRIID’s Emergency Response Line: 1-888-872-7443 CDC'S Emergency Response Line: 1-770-488-7100 Handbook Download Site An Adobe Acrobat Reader (pdf file) version of this handbook can be downloaded from the internet at the following url: http://www.usamriid.army.mil USAMRIID’s MEDICAL MANAGEMENT OF BIOLOGICAL CASUALTIES HANDBOOK Sixth Edition April 2005 Lead Editor Lt Col Jon B. Woods, MC, USAF Contributing Editors CAPT Robert G. Darling, MC, USN LTC Zygmunt F. Dembek, MS, USAR Lt Col Bridget K. Carr, MSC, USAF COL Ted J. Cieslak, MC, USA LCDR James V. Lawler, MC, USN MAJ Anthony C. Littrell, MC, USA LTC Mark G. Kortepeter, MC, USA LTC Nelson W. Rebert, MS, USA LTC Scott A. Stanek, MC, USA COL James W. Martin, MC, USA Comments and suggestions are appreciated and should be addressed to: Operational Medicine Department Attn: MCMR-UIM-O U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) Fort Detrick, Maryland 21702-5011 PREFACE TO THE SIXTH EDITION The Medical Management of Biological Casualties Handbook, which has become affectionately known as the "Blue Book," has been enormously successful - far beyond our expectations.
    [Show full text]
  • Free PDF Download
    European Review for Medical and Pharmacological Sciences 2021; 25: 1622-1630 Superantigens, superantigen-like proteins and superantigen derivatives for cancer treatment J.-Y. CHEN Xiehe Biology Group, Nobel Institute of Medicine, Shenzhen, Guangdong Province, China Abstract. – OBJECTIVE: Bacterial superanti- gesting a more complex mechanism of immune gens (SAgs) are proteins produced by few types response6. Indeed, the current view is that SAgs of bacteria that have been linked to several hu- bind to multiple coreceptors forming a costimu- man diseases. Due to their potent in vitro and in latory axis between coreceptors critical for T-cell vivo tumoricidal effects, they are extensively in- 7 vestigated for oncological applications either activation . CD28 is a homodimer expressed alone or in combination with classical antican- constitutively on T cells that interacts with its cer drugs. However, the intrinsic toxicity of nat- B7 coligands expressed on antigen-presenting ural SAgs stimulated the development of more cells, transducing the signal essential for T cell effective and less toxic SAg-based immunother- activation. The staphylococcal superantigen-like apy. This review summarizes our current knowl- protein 1 (SSL1) specifically binds to human edge on SAg-based immunotherapy including extracellular signal-regulated kinase 2 (hERK2), SAg-like proteins and SAg derivatives, as well as their potential alone or with other therapeu- an important stress-activated kinase in mito- 8 tic modalities including chemotherapy and ra- gen-activated protein kinase signaling pathways . diotherapy. It is now clearer that SAgs induce the release of cytokines and chemokines through multiple Key Words: pathways as it was recently observed in in vitro Superantigen, Superantigen derivative, Superanti- 9 gen-like, Cancer, Combination therapy experiments .
    [Show full text]
  • Penetration of Stratified Mucosa Cytolysins Augment Superantigen
    Cytolysins Augment Superantigen Penetration of Stratified Mucosa Amanda J. Brosnahan, Mary J. Mantz, Christopher A. Squier, Marnie L. Peterson and Patrick M. Schlievert This information is current as of September 25, 2021. J Immunol 2009; 182:2364-2373; ; doi: 10.4049/jimmunol.0803283 http://www.jimmunol.org/content/182/4/2364 Downloaded from References This article cites 76 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/182/4/2364.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Cytolysins Augment Superantigen Penetration of Stratified Mucosa1 Amanda J. Brosnahan,* Mary J. Mantz,† Christopher A. Squier,† Marnie L. Peterson,‡ and Patrick M. Schlievert2* Staphylococcus aureus and Streptococcus pyogenes colonize mucosal surfaces of the human body to cause disease. A group of virulence factors known as superantigens are produced by both of these organisms that allows them to cause serious diseases from the vaginal (staphylococci) or oral mucosa (streptococci) of the body.
    [Show full text]
  • Nasopharyngeal Infection by Streptococcus Pyogenes Requires Superantigen-Responsive Vβ-Specific T Cells
    Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells Joseph J. Zeppaa, Katherine J. Kaspera, Ivor Mohorovica, Delfina M. Mazzucaa, S. M. Mansour Haeryfara,b,c,d, and John K. McCormicka,c,d,1 aDepartment of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; bDepartment of Medicine, Division of Clinical Immunology & Allergy, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5A5, Canada; cCentre for Human Immunology, Western University, London, ON N6A 5C1, Canada; and dLawson Health Research Institute, London, ON N6C 2R5, Canada Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved July 14, 2017 (received for review January 18, 2017) The globally prominent pathogen Streptococcus pyogenes secretes context of invasive streptococcal disease is extremely dangerous, potent immunomodulatory proteins known as superantigens with a mortality rate of over 30% (10). (SAgs), which engage lateral surfaces of major histocompatibility The role of SAgs in severe human infections has been well class II molecules and T-cell receptor (TCR) β-chain variable domains established (5, 11, 12), and specific MHC-II haplotypes are known (Vβs). These interactions result in the activation of numerous Vβ- risk factors for the development of invasive streptococcal disease specific T cells, which is the defining activity of a SAg. Although (13), an outcome that has been directly linked to SAgs (14, 15). streptococcal SAgs are known virulence factors in scarlet fever However, how these exotoxins contribute to superficial disease and and toxic shock syndrome, mechanisms by how SAgs contribute colonization is less clear.
    [Show full text]
  • Production of Superantigens in Staphylococcus Aureus From
    Superantigen and Toxin Information Production of ● Staphylococcal Enterotoxins (SEs) ○ Category B select agents ○ Resistant to heat and acid Superantigens in ○ Express emetic activity ■ Throwing up ● Staphylococcal Enterotoxin A (SEA) Staphylococcus ○ Most common in staph related food poisoning ● Staphylococcal Enterotoxin C 4 (SEC4) ○ Seen in non-menstrual Toxic Shock Syndrome aureus from healthy (TSS) ○ Produced mainly by pathogenic or MRSA strains ● Toxic Shock Syndrome Toxin-1 (TSST-1) individuals ○ Cause of menstrual TSS and half of non-menstrual TSS Skye Martin, Dr. Mandy Staphylococcus aureus isolated from ○ Has the ability to cross mucosal barriers ● Alpha Brosnahan and Dr. Taylor Mach ○ Pore-forming toxin (only one that isn’t a superantigen on our list) Background: anterior nares of healthy individuals typically ■ Causes cell lysis, specifically hemolysis ● The study has collected nasal swabs from healthy ○ Associated with pulmonary edema (excess of fluid individuals on Concordia St. Paul Campus (CSP) and in lungs) at the Minnesota State fair (D2D) don’t have the TSST-1 toxin but have alpha ● Staphylococcal Enterotoxin-like X (SEl-X) ● Staphylococcus aureus is a commensal and ○ Only SE to attack the innate (neutrophils) and opportunistic bacteria adaptive (T-cells) immune system ● Those swabs are tested to determine if they are S. ○ Associated with toxic shock syndrome and aureus and SEl-X toxins. necrotizing pneumonia Alpha toxin run 1 gel image: ● Positive isolates are then tested for 5 toxins (SEA, SEC4, TSST-1, Alpha and SEl-X ● s0### = isolate labeling ● Bands at the same base pair as the positive control is a positive result ● No bands or bands at different base pairs as the positive control is a negative result ● Total of 139 isolates tested since Fall 2019 Acknowledgements: Methods: Special thanks to Dr.
    [Show full text]
  • Botulinum Toxin Ricin Toxin Staph Enterotoxin B
    Botulinum Toxin Ricin Toxin Staph Enterotoxin B Source Source Source Clostridium botulinum, a large gram- Ricinus communis . seeds commonly called .Staphylococcus aureus, a gram-positive cocci positive, spore-forming, anaerobic castor beans bacillus Characteristics Characteristics .Appears as grape-like clusters on Characteristics .Toxin can be disseminated in the form of a Gram stain or as small off-white colonies .Grows anaerobically on Blood Agar and liquid, powder or mist on Blood Agar egg yolk plates .Toxin-producing and non-toxigenic strains Pathogenesis of S. aureus will appear morphologically Pathogenesis .A-chain inactivates ribosomes, identical interrupting protein synthesis .Toxin enters nerve terminals and blocks Pathogenesis release of acetylcholine, blocking .B-chain binds to carbohydrate receptors .Staphylococcus Enterotoxin B (SEB) is a neuro-transmission and resulting in on the cell surface and allows toxin superantigen. Toxin binds to human class muscle paralysis complex to enter cell II MHC molecules causing cytokine Toxicity release and system-wide inflammation Toxicity .Highly toxic by inhalation, ingestion Toxicity .Most lethal of all toxic natural substances and injection .Toxic by inhalation or ingestion .Groups A, B, E (rarely F) cause illness in .Less toxic by ingestion due to digestive humans activity and poor absorption Symptoms .Low dermal toxicity .4-10 h post-ingestion, 3-12 h post-inhalation Symptoms .Flu-like symptoms, fever, chills, .24-36 h (up to 3 d for wound botulism) Symptoms headache, myalgia .Progressive skeletal muscle weakness .18-24 h post exposure .Nausea, vomiting, and diarrhea .Symmetrical descending flaccid paralysis .Fever, cough, chest tightness, dyspnea, .Nonproductive cough, chest pain, .Can be confused with stroke, Guillain- cyanosis, gastroenteritis and necrosis; and dyspnea Barre syndrome or myasthenia gravis death in ~72 h .SEB can cause toxic shock syndrome + + + Gram stain Lipase on Ricin plant Castor beans S.
    [Show full text]
  • Lipopolysaccharide-Induced Neuroinflammation As A
    International Journal of Molecular Sciences Review Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration 1, 1, 2 Carla Ribeiro Alvares Batista y , Giovanni Freitas Gomes y, Eduardo Candelario-Jalil , 3, , 1, , Bernd L. Fiebich * y and Antonio Carlos Pinheiro de Oliveira * y 1 Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil; [email protected] (C.R.A.B.); [email protected] (G.F.G.) 2 Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; ecandelario@ufl.edu 3 Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany * Correspondence: bernd.fi[email protected] (B.L.F.); [email protected] or [email protected] (A.C.P.d.O.); Tel.: +49-761-270-68980 (B.L.F.); +55-31-3409-2727 (A.C.P.d.O.); Fax: +49-761-270-69170 (B.L.F.); +55-31-3409-2695 (A.C.P.d.O.) These authors contributed equally to this work. y Received: 4 April 2019; Accepted: 5 May 2019; Published: 9 May 2019 Abstract: A large body of experimental evidence suggests that neuroinflammation is a key pathological event triggering and perpetuating the neurodegenerative process associated with many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS activates various intracellular molecules, which alter the expression of a plethora of inflammatory mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative processes.
    [Show full text]
  • Ricin Poisoning Results from the Inhalation, Ingestion, Or Subcutaneous Injection of Very Small Quantities of Ricin, a Natural Product of the Castor Bean
    Intoxicação por óleo de rícino e outros rícinos da mamona : papel salvador dos bloqueadores da ECA Ricin poisoning results from the inhalation, ingestion, or subcutaneous injection of very small quantities of ricin, a natural product of the castor bean. Less than 1 mg is sufficient to kill an average adult. Ricin is a 65 kD heterodimeric glycoprotein consisting of two chains, the A and the B chain, covalently linked by a disulfide (cystine) bond. Ricin is glycosylated, containing some 15 moles of mannose and 8 moles of N-acetylglucosamine per mole of ricin. The B chain binds to galactose-containing glycolipids and glycoproteins on the cell surface, and induces endocytosis of the holoprotein. Once inside the cell, ricin undergoes reverse transport from the Golgi to the ER. In the ER, the A chain unfolds and is translocated into the cytoplasm for degradation, as part of the ER-assisted degradation (ERAD) pathway. The A chains that elude proteasomal degradation in the cytoplasm bind to 28S rRNA on the large subunit of the ribosome, and depurinate it, removing adenine bases specifically. The net effect is that the large ribosomal subunit loses its tertiary structure, and protein synthesis (elongation) is halted. This is sufficient to induce apoptosis of the cell. Ricin is extremely potent; it is estimated that a single molecule can kill a cell. Ricin at smaller doses has a laxative effect, and is the active ingredient of castor oil, long used as a laxative. Death from ricin requires a lag period of 12-24 hours. Ricin affects the reticuloendothelial system primarily.
    [Show full text]