Systematic Index

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Index Systematic index The index is arranged in alphabetical order of the species. Species written in bold font are valid taxa discussed in the present paper, page and table numbers in bold font are the locations where the main information concerning the respective taxon is found. (Incorrect spellings of species names used in the literature have been included in the index on purpose. They are usually marked by underlining the erroneous characters.) Species mentioned in differential diagnoses or in the discussion have been included in the index too. Authorships, dates and open nomenclature symbols (aff., cf.) have been omitted in sake of easier searching. Abatus 162 angulata, Echinolampas 115, Tab. 4 abeli, Brissus 167-169, Figs. 76- angulatus, Clypeaster 58-59, Tab. 5 77; Pl. 73, Figs. 1-4, angulatus oblongus, Clypeaster 58-59, Tab. 4, Tab. 5 Tab. 2 angulatus, Echinolampas 113 abeli, Plagiobrissus 167-169 angulatus, Schizechinus 33 aberti, Abertella 91 angulosa, Milletia 133, 135, Tab. 5 abnormalis, Echinoneus 44-45, Fig. 22b, Fig. angulosus, Echinanthus 135, 138 22c, Fig. 23; Pl. 48, angulosus, Pliolampas 133 Figs. 4-5, Tab. 2 angulosus, Tristomanthus Tab. 3 acclivis, Clypeaster 47, 53, 71, Tab. 5 angustipetalus, Echinolampas 111, Tab. 5 Acroechinoidea 18 angustistellatus, Echinolampas 117, 118, 119-120, acuminata, Echinolampas 119, 121 121, Tab. 4 acuminatus, Clypeaster 54, 57-58, Fig. 28, angustus, Clypeaster 102, Tab. 3 Tab. 4, Tab. 5 anteroalta, Lovenia 188 acuminatus devians, Clypeaster 57 antillarum, Diadema 5, 34, 147 acuminatus robustus, Clypeaster 56, 57-58, Tab. 5 Aplospatangus 144 acuminatus, Hypsoheteroclypus 133 Aporiocidaris 11 aegyptiacus, Brissus 168 Araeosoma 142, Fig. 11, Tab. 8 aequizonatus, Echinolampas 133, Tab. 5 Arbacia 129 affinis, Cidaris 2, 14 Arbacina sp. 21, 31, 34, 39, 42, affinis, Pericosmus 143, 157, 158, 159, Tab. 5 Tab. 4 Arbacina 21 affinis, Stylocidaris 14 aremorica, Studeria 137 agassizi, Clypeaster 54-55, Tab. 5 aremoricus, Tristomanthus Tab. 3 agassizi, Parmulechinus 96 Asterostomatidae 165 agassizi, Pericosmus 143 Asthenosoma 14, Fig. 11, Tab. 8 agassizi, Scutella 94 Astriclypeidae 97 aguayoi, Brissopsis 173 Atelospatangus 196 aichnoi, Aliaster 157, 159 Atelostomata 138 airaghi, Clypeaster 70, Tab. 5 atlantica, Brissopsis 173 airaghii, Centrostephanus 18, 19, 20, Tab. 5 atrophus podoloicus, Echinolampas 114, 116, Tab. 5 airaghii, Clypeaster 102, Tab. 4 attnangensis, Brissopsis 169 airaghii, Pericosmus 197, Tab. 3 australis, Brissopsis 173 airaghii, Prospatangus 180 australis, Protenaster 163, 166 airaghii, Trachyaster 157 austriacus, Prospatangus 177, 182, 183 Aliaster 156 austriacus, Spatangus 117, 177-181, 181- almerai parva, Scutella 86, 87, 91 182 (cf.), 183, 184, almerai, Aliaster ? 158, 159 187, 198, Figs. 83, almerai, Clypeaster 58-59, Tab. 5 84, 85.A, C, 86.A-B; almerai, Opissaster 157, 159 Pl. 75, Figs. 1-3, alpinus, Prenaster 163 Pl. 76, Figs. 1-4; Fig. alticostatus, Clypeaster 53, 60-61, Tab. 4 86.C, 87; Pl. 77, altum, Scutum 54 Figs. 1-3 (cf.); Tab. 2 altum campanulatum, Scutum 54 avenionensis, Cidaris 1, 13 altus conicus, Clypeaster 54, Tab. 4 avenionensis, Cyathocidaris 1, 2, 6, 8, 13 altus, Clypeaster 53, 54, 55, 57, 59, avenionensis, Prionocidaris 2, 13 60, 61, 69, 70, 71, balillai, Clypeaster 62, Tab. 5 74, 101, Tab. 4 baquiei, Amphiope 98 Amphidetus sp. 196 barcinensis, Clypeaster 50, 53, 63, 67, 69, Amphiope sp. 98, Tab. 4 73, 101-102, Pl. 32, Amphiope 97 Fig. 4 angulare altum, Scutum 53, Tab. 4 barcinensis, Echinolampas 104-110, 112, 118, angularia, Scuta 64 121, Figs. 43.1, 44; SYSTEMATIC INDEX 201 Pl. 49, Figs. 1-2; campanulatus f. pyramidalis, Clyp. 60, Pl. 24; Figs. 1-2 Pl. 50, Figs. 1a-c, campanulatus acuminatus, Clypeaster 57 Tab. 2 campanulatus carapezzai, Clypeaster 68, 69, Tab. 5 barcinensis, Schizaster 148, Tab. 5 campanulatus declinatus, Clypeaster 55, Tab. 5 bassanii, Clypeaster 57 campanulatus neudorfensis, Clypeaster 68, 69 bastiae, Brissus 168 campanulatus partschi, Clypeaster 55, 71 beaumonti, Clypeaster 62, Tab. 5 campanulatus reidii, Clypeaster 59 bellardi, Schizaster 149, Tab. 5 campanulatus rotundus, Clypeaster 55, Tab. 5 bellardii, Schizaster 149 campanulatus sphaericus, Clypeaster 55, Tab. 5 biaense, Echinocardium 190, 196 campanulatus, Echinites 53 bioculata, Amphiope 97-101, Fig. 42.A-B; canaliculata, Prionocidaris 3 Pl. 46, Figs. 5a-b; canaliferus, Schizaster 145 Pl. 47, Figs. 1a-b; canaliferus, Spatangus 144 Pl. 48, Figs. 1-3, capederi, Schizaster 145, 147 Tab. 2 caralitana, Studeria 137 bioculata montezemoloi, Amphiope 98 carapezzai, Clypeaster 68, 69 bioculata, Scutella 97-101 Cardiotaxis 129 bisperforatus, Echinodiscus Fig. 42c Cassiduloida 103 bleicheri, Opissaster ? 141 catenata, Arbacina 21-22, 23, 41, bouillei, Echinocyamus 81 Pl. 11, Figs. 1-2, boulei, Amphiope 99 Tab. 2 bouziguensis, Schizaster 148, 149 catenata, Genocidaris 21, 23, 24, Tab. 4 Brisopsis 174 catenatus, Echinus 21 Brissidae 166 catenatus, Psammechinus 21 Brissomorpha 165, 169 cavernosus, Schizaster 145 Brissopsis sp. 169, 174, 181, Tab. 2 Centrostephanus sp. 18, 20, Tab. 4 Brissopsis 169 Centrostephanus 20 brissus unicolor, Spatangus 166 cevensis, Linthia 162 Brissus 166 chateleti, Schizechinus 33, 41, Tab. 5 Brissus 45 chiassi, Clypeaster 71, Tab. 5 Brochopleurus sp. 23, Tab. 4 Cidaridae indet. 9, 12 brunnichi, Araeosoma 18 Cidaridae 1 Bryssopsis 174 Cidariden-Stachel 9 bufo, Spatangus 138 Cidarinae sp. 1 3, 4, 10-12, Pl. 1, bunopetalus, Clypeaster 70, 72, 74 Figs. 6-10; Pl. 2, burdigalensis, Linthia 162 Figs. 7-8; Pl. 5, cabrerai, Brissus 164 Figs. 1-26, Tab. 2 calabra, Linthia 162 Cidarinae 2 calabrus, Clypeaster 47-51, 53, 58, 63, Cidaris sp. 2, 6, 10, 12, 18, 20 65, 66, 67, 69, 73, cidaris, Cidaris 5, 14 101, 103, Pl. 31, Cidarisstachel 10, 12 Figs. 1-3; Pl. 32, Cidaris-Stachel 10, 12 Figs. 1-3, Tab. 2 Cidariten 12 calarensis, Centrostephanus 18, 19, 20, Tab. 5 Cidaritenstachel 12 calariense, Centrostephanus 18 Cidariten-Stachel 12 calariensis, Centrostephanus 18 Cidaroida indet. 12-13, Tab. 2 calariensis, Echinocyamus 79, 81, 84, Pl. 38, Cidaroida 1 Figs. 2a-c, Tab. 3 Cidaroidea 1 calariensis, Fibularia 79, 84 circularis, Echinocyamus 78-79, Tab. 5 calceolus, Schizaster (Aplospatangus) 148 Clypeaster sp. 54, 64, 71, 75-76, calceolus, Schizaster 145, 148, 149, 152, Tab. 2 Tab. 5 Clypeaster 45 Calveriosoma 14, Fig. 11, Tab. 8 Clypeasteridae indet. 76-77, Tab. 2 Camarodonta 21 Clypeasteridae 45 camerinensis, Echinanthus 138 Clypeasterina 45 campanulatus, Clypeaster 50, 52-62, 63, 65, Clypeasteroida 45 67, 69, 73, 101, collombi, Pygorhynchus 133, 135 103, Pl. 22 to 27, compactus, Schizaster 144, 150, 152 Tab. 2 compressa, Rhabdocidaris 9 campanulatus f. acuminatus, Clyp. 57-58, Fig. 28; compressus, Macropneustes 197, Tab. 3 Pl. 27; Figs. 1a-c confusus, Clypeaster 55, 57 campanulatus f. aff. gibbosus, Clyp. 59, Pl. 25; Figs. 1a-c Conoclypeus sp. 126, 133 campanulatus f. aff. reidii, Clypeaster 58-59, Pl. 25; Conoclypus sp. 126, 130 Figs. 2a-c Conolampas ? sp. 133, Tab. 2 campanulatus f. campanulatus, Clyp. 53-55, Pl. 22; Conolampas 125 Figs. 1a-c consobrinus, Brissopsis 139, 169, 173, Tab. 5 campanulatus f. partschii, Clypeaster 55-57, 61, Pl. 23; Conulus 129 Figs. 1-2; Pl. 26, convexus, Clypeaster 57, Tab. 5 Figs. 1a-c coranguinum, Gregoryaster 159 campanulatus f. portentosus, Clyp. 60-61, Pl. 22; Figs. cordatus, Echinocardium 190 2-3 cordatus, Echinus 188 202 SYSTEMATIC INDEX SYSTEMATIC INDEX 203 cordieri, Brissus 168 desori, Diadema 18-21, Tab. 4 coronalis, Clypeaster 64-65, 102, Tab. 3 desori, Schizaster 147, 151, 155, 196- coronatus, Echinus 8 197, Tab. 3 corsica, Studeria 135, 136-139, destefanii, Spatangus 180 Fig. 59; Pl. 62, deydieri major, Spatangus 186 Figs. 3-4, Tab. 2 deydieri, Amphiope 98 corsicus, Brissus 165-167 deydieri, Dorocidaris 9 corsicus, Echinanthus 135, 136, 137, 138 deydieri, Echinolampas 112 corsicus, Prospatangus 198 deydieri, Mariania 186-187, Fig. 91; corsicus, Pseudobrissus 164, 165-167, Pl. 80, Figs. 1a-e, Fig. 74-75; Pl. 70, Tab. 2 Figs. a-d, Tab. 2 deydieri, Scutella 93 corsicus, Spatangus 183, 197, Tab. 3 deydieri, Spatangus (Mariania) 186 corsicus, Tristomanthus 135, 136 deydieri, Spatangus 186 cotteaui, Aliaster (Opissaster) 157 Diadema 18, 20 cotteaui, Hemiaster (Trachyaster) 157 Diadematidae indet. 18-21, Pl. 8, Figs. 1- cotteaui, Hemiaster 157 25, Tab. 2 cotteaui, Opissaster 157 Diadematidae 18 cotteaui, Trachyaster 157 Diadematoida 18 cotteauii, Aliaster 140, 143, 157-160, digitalis, Clypeaster 70, 72, 73, Tab. 5 Fig. 69; Pl. 64, diomedeae, Conolampas 126 Figs. 2-3, Tab. 2 Ditremaster 139 cotteauii, Hemiaster 141, 157, 159 diversicostatus, Clypeaster 67 cotteauii, Heteroclypeus 126 doma, Hypsoclypus 125 cotteri, Ditremaster 141 dubius ?, Psammechinus 25, 28 cotteri, Opissaster 141, 159 dubius dubius, Psammechinus 25-26, 27, Pl. 14, cottreaui, Brissus 168 Figs. 1-4, Tab. 2 crassa, Echinolampas 104 dubius gauthieri, Psammechinus 26-27, Figs. 14-15; crassicostatus, Clypeaster 51, 55, 56, 64-65, Pl. 15, Figs. 1-3, 70-71, 74, 102, Tab. 2 Tab. 4 dubius laqueatus, Psammechinus 28 crassis, Clypeaster 70 dubius, Echinus 25 crassus, Clypeaster 47, 50, 51, 70-71, duciei, Brissopsis 173 74, Tab. 5 duciei, Echinus 31, Tab. 4 crescenticus, Brissopsis 169, 173, 195 duciei, Psammechinus. 31, 34, 43, Tab. 4 cruciata, Meoma 175-176 duciei, Schizechinus 33, 34, Tab. 4 cruciatus, Brissus 175 dumasi, Echinolampas 124-125, Tab. 3 cruciatus, Schizobrissus 175, Tab. 5 duncani, Lovenia 188, 191, 193 Ctenocidaris 11 dux, Echinus 31-34, 42, Tab. 4 cucurbites, Echinus 42, Tab. 4 dux, Schizechinus 31-34, Tab. 4 cureti, Plegiocidaris 9, Tab. 5 Echinacea indet. 39-41, Pl. 21, curtus, Schizaster 197, Tab. 5 Figs. 1-8, Tab. 2 Cyathocidaris 2 Echinacea 21 cyclostomus, Echinoneus 44, 45, Fig. 22a Echinidae 25 Cyphosoma sp. 43, Tab. 5 Echinocardium sp. 190-191, Pl. 80, dacica, Echinolampas 125, Tab. 3 Figs. 3a-c, Tab. 2 dacica humilis, Echinolampas 125, Tab. 3 Echinocardium 58 dacicus, Clypeaster 57-58, Tab. 5 Echinocorys 129 danubicus, Clypeaster 47, 50, 73, Tab. 5 Echinocyamus sp. A 82, Fig.
Recommended publications
  • Parks Victoria Technical Series No
    Deakin Research Online This is the published version: Barton, Jan, Pope, Adam and Howe, Steffan 2012, Marine protected areas of the Flinders and Twofold Shelf bioregions Parks Victoria, Melbourne, Vic. Available from Deakin Research Online: http://hdl.handle.net/10536/DRO/DU:30047221 Reproduced with the kind permission of the copyright owner. Copyright: 2012, Parks Victoria. Parks Victoria Technical Paper Series No. 79 Marine Natural Values Study (Vol 2) Marine Protected Areas of the Flinders and Twofold Shelf Bioregions Jan Barton, Adam Pope and Steffan Howe* School of Life & Environmental Sciences Deakin University *Parks Victoria August 2012 Parks Victoria Technical Series No. 79 Flinders and Twofold Shelf Bioregions Marine Natural Values Study EXECUTIVE SUMMARY Along Victoria’s coastline there are 30 Marine Protected Areas (MPAs) that have been established to protect the state’s significant marine environmental and cultural values. These MPAs include 13 Marine National Parks (MNPs), 11 Marine Sanctuaries (MSs), 3 Marine and Coastal Parks, 2 Marine Parks, and a Marine Reserve, and together these account for 11.7% of the Victorian marine environment. The highly protected Marine National Park System, which is made up of the MNPs and MSs, covers 5.3% of Victorian waters and was proclaimed in November 2002. This system has been designed to be representative of the diversity of Victoria’s marine environment and aims to conserve and protect ecological processes, habitats, and associated flora and fauna. The Marine National Park System is spread across Victoria’s five marine bioregions with multiple MNPs and MSs in each bioregion, with the exception of Flinders bioregion which has one MNP.
    [Show full text]
  • Larval Development of the Tropical Deep-Sea Echinoid Aspidodiademajacobyi: Phylogenetic Implications
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2000 Marine Biological Laboratory. The final published version of this manuscript is available at http://www.biolbull.org/. This article may be cited as: Young, C. M., & George, S. B. (2000). Larval development of the tropical deep‐sea echinoid Aspidodiadema jacobyi: phylogenetic implications. The Biological Bulletin, 198(3), 387‐395. Reference: Biol. Bull. 198: 387-395. (June 2000) Larval Development of the Tropical Deep-Sea Echinoid Aspidodiademajacobyi: Phylogenetic Implications CRAIG M. YOUNG* AND SOPHIE B. GEORGEt Division of Marine Science, Harbor Branch Oceanographic Institution, 5600 U.S. Hwy. 1 N., Ft. Pierce, Florida 34946 Abstract. The complete larval development of an echi- Introduction noid in the family Aspidodiadematidaeis described for the first time from in vitro cultures of Aspidodiademajacobyi, Larval developmental mode has been inferredfrom egg a bathyal species from the Bahamian Slope. Over a period size for a large numberof echinodermspecies from the deep of 5 months, embryos grew from small (98-,um) eggs to sea, but only a few of these have been culturedinto the early very large (3071-pum)and complex planktotrophicechino- larval stages (Prouho, 1888; Mortensen, 1921; Young and pluteus larvae. The fully developed larva has five pairs of Cameron, 1989; Young et al., 1989), and no complete red-pigmented arms (preoral, anterolateral,postoral, pos- ontogenetic sequence of larval development has been pub- lished for invertebrate.One of the terodorsal,and posterolateral);fenestrated triangular plates any deep-sea species whose have been described et at the bases of fenestratedpostoral and posterodorsalarms; early stages (Young al., 1989) is a small-bodied sea urchin with a complex dorsal arch; posterodorsalvibratile lobes; a ring Aspidodiademajacobyi, flexible that lives at in the of cilia around the region of the preoral and anterolateral long spines bathyal depths eastern Atlantic 1).
    [Show full text]
  • Redalyc.Echinoids of the Pacific Waters of Panama: Status Of
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Lessios, H.A. Echinoids of the Pacific Waters of Panama: Status of knowledge and new records Revista de Biología Tropical, vol. 53, núm. 3, -diciembre, 2005, pp. 147-170 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44919815009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Echinoids of the Pacific Waters of Panama: Status of knowledge and new records H.A. Lessios Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama; Fax: 507-212-8790; [email protected] Received 14-VI-2004. Corrected 09-XII-2004. Accepted 17-V-2005. Abstract: This paper is primarily intended as a guide to researchers who wish to know what echinoid species are available in the Bay of Panama and in the Gulf of Chiriqui, how to recognize them, and what has been published about them up to 2004. Fifty seven species of echinoids have been reported in the literature as occurring in the Pacific waters of Panama, of which I have collected and examined 31, including two species, Caenopedina diomediae and Meoma frangibilis, that have hitherto only been mentioned in the literature from single type specimens. For the 31 species I was able to examine, I list the localities in which they were found, my impression as to their relative abundance, the characters that distinguish them, and what is known about their biology and evolution.
    [Show full text]
  • Echinodermata: Echinoidea)Del Mar Caribe Colombiano Biota Colombiana, Vol
    Biota Colombiana ISSN: 0124-5376 [email protected] Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Colombia Borrero Pérez, Giomar Helena; Solano, Oscar David; Benavides Serrato, Milena Lista revisada de los erizos(Echinodermata: Echinoidea)del Mar Caribe Colombiano Biota Colombiana, vol. 3, núm. 1, junio, 2002, pp. 141-148 Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Bogotá, Colombia Disponible en: http://www.redalyc.org/articulo.oa?id=49103104 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto MoraBiota Colombiana & Orozco 3 (1) 141 - 148, 2002 Cestrum of Colombia -141 Lista revisada de los erizos (Echinodermata: Echinoidea) del Mar Caribe Colombiano Giomar Helena Borrero-Pérez1, Oscar David Solano2 y Milena Benavides-Serrato3 Instituto de Investigaciones Marinas y Costeras, INVEMAR, A.A. 1016. Cerro de Punta Betín. Santa Marta. Colombia 1Bióloga Marina. Museo de Historia Natural Marina de Colombia. INVEMAR. [email protected]. 2Biólogo Marino M Sc. Coordinador de la Línea de Investigación Biología de Ecosistemas y de la Oficina de Servicios Científicos. INVEMAR. odsolano@ invemar.org.co. 3Bióloga Marina. Museo de Historia Natural Marina de Colombia. INVEMAR. mbenavides@ invemar.org.co. Palabras Clave: Erizos, Echinoidea, Echinodermata, Caribe colombiano, Lista de especies. L os erizos son un grupo de invertebrados exclusiva- El inventario se ha complementado con registros realizados mente marinos que comprende unas 900 especies vivientes en Islas del Rosario, donde Caycedo (1979) colectó a distribuidas desde los polos hasta el Ecuador y desde la Lytechinus williamsi y Clypeaster rosaceus y en el Parque zona intermareal hasta profundidades mayores a 5000 m.
    [Show full text]
  • Checklist of the Echinoderms of British Columbia (April 2007) by Philip
    Checklist of the Echinoderms of British Columbia (April 2007) by Philip Lambert, Curator Emeritus of Invertebrates Royal British Columbia Museum [email protected] This checklist is based on the information contained in three echinoderm books on Sea Stars, Sea Cucumbers and Brittle Stars (Lambert 1997, 2000; and Lambert and Austin 2007) as well as on unpublished data from the collections of the Royal BC Museum and from Dr. Bill Austin. Many references in the primary literature were consulted for distribution, and the classifications are based in part on the Treatise on Invertebrate Paleontology (Moore 1966); Austin (1985); crinoid monograph by A.H. Clark (1907 to 1967); asteroids by Fisher (1911 to 1930) and Smith Paterson and Lafay (1995) for ophiuroids. This is a work in progress as we process the deep water collections that Fisheries and Oceans Canada has collected over the last 6 years. Several new species have been recorded for BC and more are expected. Species in bold occur in less than 200 metres in BC. The stated depth range refers to the entire geographic range of the species. Species not yet recorded in BC but occurring nearby to the north and south of BC have been included in the list with *. CLASS CRINOIDEA (7 species in BC) Sea Lilies and Feather Stars Depth (metres) Order Hyocrinida Family Hyocrinidae 1. Ptilocrinus pinnatus A.H. Clark, 1907 Five-Armed Sea Lily 2904 Order Bourgueticrinida Family Bathycrinidae 2. Bathycrinus pacificus A.H. Clark, 1907 Ten-armed Abyssal Sea Lily 1655 Order Comatulida Family Pentametrocrinidae 3. Pentametrocrinus cf. varians (P.H.
    [Show full text]
  • Lower Pliocene Mollusks and Echinoids from the Los Angeles Basin, California
    UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mcndenhull, Director Professional Paper 190 LOWER PLIOCENE MOLLUSKS AND ECHINOIDS FROM THE LOS ANGELES BASIN, CALIFORNIA AND THEIR INFERRED ENVIRONMENT BY W. P. WOODRING UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1938 For sale by the Superintendent of Documents, Washington, D. C. ------ Trice 30 cents CONTENTS Page Abstract._____________----______-_-_-- Inferred environment of larger fossils Continued. Introduction __________-_-___-___---_-_ Inferred depth range of larger fossils______________ 13 New systematic names proposed_______-_ Interpretation of fossils of deep-water facies----.... 15 General features of Los Angeles Basin____ Distribution of fossils of different depth facies...... 16 Repetto formation of Los Angeles Basin __ Paleogeographic implications_____________________ 16 General features.___________________ Bearing on geologic history of Los Angeles Basin.__. 17 Outcrop localities._-_--____-_-_____ Comparison between Los Angeles Basin during Subsurface section.________________ Repetto time and modern deep-water basins on Larger fossils from Repetto formation____ Continental Shelf of southern California._________ 18 Outcrop localities._________________ Age relations of larger fossils.__________________'______ 18 Subsurface localities.---______.__-_- Fossils of deep-water facies__-____________________ 18 Fossils. _ _-____-____---___-_-______. Fossils of intermediate and shallow-water facies.____ 20 Inferred environment of larger fossils..... Descriptions of species_____-___--__-_-____-__-_.____ 22 Depth range of allied modern species. Index.______.________________________ 65 ILLUSTRATIONS Page Page PLATE 1. Relief map of California showing principal areas PLATE 7. Pliocene mollusks from Los Angeles Basin_____ 62 of marine Pliocene formations._____________ 2 8.
    [Show full text]
  • Revision of the Genus Zebrida White, 1847 (Crustacea: Decapoda: Brachyura: Eumedoni Dae)
    BULLETIN OF MARINE SCIENCE, 65(2): 481-495, 1999 REVISION OF THE GENUS ZEBRIDA WHITE, 1847 (CRUSTACEA: DECAPODA: BRACHYURA: EUMEDONI DAE) Peter K. L. Ng and Diana G. B. Chia ABSTRACT The eumedonid genus Zebrida White, 1847, members of which are obligate symbionts of sea urchins, is revised. Three species are now recognized: Z. adamsii White, 1847 (type species), Z. longispina Haswell, 1880 and Z. brevicarinata new species. Members of five genera of eumedonid crabs (Echinoecus, Eumedonus, Gonatonotus, Zebridonus and Zebrida) are known obligate symbionts on sea urchins. Of these, Zebrida White, 1847, has the most unusual appearance, with its long spines and distinctive col- oration. The general consensus is that the genus is monotypic, being represented by only one species, Z. adamsii White, 1847, which has a wide Indo-West Pacific distribution (Suzuki and Takeda, 1974). The present study shows that three species of Zebrida can in fact be recognized: Z. adamsii; Z. longispina Haswell, 1880 and Z. brevicarinata new species. METHODS AND MATERIALS Measurements provided are of the carapace length and width. The length of the carapace (cl) was measured from the tip of the rostrum to the posterior margin of the carapace. The carapace width (cb) was taken across the widest part. The inner supraorbital tooth is used in lieu of the lateral rostral lobule of some workers. The abbreviations G1 and G2 are used for the male first and second pleopods, respectively. Specimens examined are deposited in the following institutions: Australian Museum, Sydney (AM); Museum National d'Histoire Naturelle, Paris (MNHN); Natural History Museum [ex Brit- ish Museum (Natural History)], London (BMNH); National Museum of Victoria, Abbotsford, Aus- tralia (NMV); Northern Territory Museum of Arts and Sciences, Darwin (NTM); Queensland Mu- seum, Brisbane (QM); Institut Royale des Sciences Naturelles de Belgique, Brussels (IRSNB); Nationaal Natuurhistorisches Museum (formerly Rijksmuseum van Natuurlijke Histoire), Leiden (RMNH); Forschungs-Institut Senckenberg, Frankfurt-am-Main (SMF); U.S.
    [Show full text]
  • Echinoderm (Echinodermata) Diversity in the Pacific Coast of Central America
    Mar Biodiv DOI 10.1007/s12526-009-0032-5 ORIGINAL PAPER Echinoderm (Echinodermata) diversity in the Pacific coast of Central America Juan José Alvarado & Francisco A. Solís-Marín & Cynthia G. Ahearn Received: 20 May 2009 /Revised: 17 August 2009 /Accepted: 10 November 2009 # Senckenberg, Gesellschaft für Naturforschung and Springer 2009 Abstract We present a systematic list of the echinoderms heterogeneity, Costa Rica and Panama are the richest places, of Central America Pacific coast and offshore island, based with Panama also being the place where more research has on specimens of the National Museum of Natural History, been done. The current composition of echinoderms is the Smithsonian Institution, Washington D.C., the Invertebrate result of the sampling effort made in each country, recent Zoology and Geology collections of the California Academy political history and the coastal heterogeneity. of Sciences, San Francisco, the Museo de Zoología, Universidad de Costa Rica, San José and published accounts. Keywords Eastern Tropical Pacific . Similarity. Richness . A total of 287 echinoderm species are recorded, distributed Taxonomic distinctness . Taxonomic list in 162 genera, 73 families and 28 orders. Ophiuroidea (85) and Holothuroidea (68) are the most diverse classes, while Panama (253 species) and Costa Rica (107 species) have the Introduction highest species richness. Honduras and Guatemala show the highest species similarity, also being less rich. Guatemala, The Pacific coast of Central America is located on the Honduras, El Salvador y Nicaragua are represented by the Panamic biogeographic province on the Eastern Tropical most common nearshore species. Due to their coastal Pacific (ETP), from the gulf of Tehuantepec, México, to the gulf of Guayaquil(16°N to 3°S), Ecuador (Briggs 1974).
    [Show full text]
  • Annotated Checklist of the Marine Flora and Fauna of the Kermadec Islands Marine Reserve and Northern Kermadec Ridge, New Zealand
    www.aucklandmuseum.com Annotated checklist of the marine flora and fauna of the Kermadec Islands Marine Reserve and northern Kermadec Ridge, New Zealand Clinton A.J. Duffy Department of Conservation & Auckland War Memorial Museum Shane T. Ahyong Australian Museum & University of New South Wales Abstract At least 2086 species from 729 families are reported from the insular shelf and upper slope of the Kermadec Islands Marine Reserve and north Kermadec Ridge. The best known groups are benthic Foraminifera, benthic macroalgae, Cnidaria, Mollusca, Crustacea, Bryozoa, Echinodermata, fishes and sea birds. However knowledge of the region’s biota remains superficial and even amongst these groups new species records are commonplace. Bacteria, most planktonic groups, sessile invertebrates (particularly Porifera and Ascidiacea), infaunal and interstitial invertebrates, and parasites are largely unstudied. INTRODUCTION is a relatively large, shallow area (50–500 m depth) of complex topography located c. 105 km southwest of The Kermadec Islands are located between 636 km L’Esperance Rock in the northern part of the Central (L’Esperance and Havre Rocks) and 800 km (Raoul domain. Volcanism in this and the Southern domain is Island) NNE of New Zealand. They are large, active located west of the ridge (Smith & Price 2006). South volcanoes that rise more than 1000 m above the Kermadec of 33.3° S the ridge crest is largely located below 1000 Ridge (Ewart et al. 1977; Smith & Price 2006). The oldest m depth, eventually dipping below the sediments of the known shallow water marine sedimentary sequences Raukumara Basin at more than 2400 m depth (Smith & reported from the Kermadec Islands date from the early Price 2006).
    [Show full text]
  • A Total-Evidence Dated Phylogeny of Echinoids and the Evolution of Body
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.947796; this version posted February 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A Total-Evidence Dated Phylogeny of Echinoids and the Evolution of Body 2 Size across Adaptive Landscape 3 4 Nicolás Mongiardino Koch1* & Jeffrey R. Thompson2 5 1 Department of Geology & Geophysics, Yale University. 210 Whitney Ave., New Haven, CT 6 06511, USA 7 2 Research Department of Genetics, Evolution and Environment, University College London, 8 Darwin Building, Gower Street, London WC1E 6BT, UK 9 * Corresponding author. Email: [email protected]. Tel.: +1 (203) 432-3114. 10 Fax: +1 (203) 432-3134. 11 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.947796; this version posted February 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. MONGIARDINO KOCH & THOMPSON 12 Abstract 13 Several unique properties of echinoids (sea urchins) make them useful for exploring 14 macroevolutionary dynamics, including their remarkable fossil record that can be incorporated 15 into explicit phylogenetic hypotheses. However, this potential cannot be exploited without a 16 robust resolution of the echinoid tree of life. We revisit the phylogeny of crown group 17 Echinoidea using both the largest phylogenomic dataset compiled for the clade, as well as a 18 large-scale morphological matrix with a dense fossil sampling.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1990 Springer. This manuscript is an author version with the final publication available at http://www.springerlink.com and may be cited as: McClintock, J. B., Cameron, J. L., & Young, C. M. (1990). Biochemical and energetic composition of bathyal echinoids and an asteroid, holothuroid and crinoid from the Bahamas. Marine Biology, 105(2), 175‐183. doi:10.1007/BF01344284 ('!J' 1) Marine Biology 105. 175-183 (1990) Marine ==: Biology © Springer-Verlag 1990 Biochemical and energetic composition of bathyal echinoids and an asteroid, holothuroid and crinoid from the Bahamas J. B. McClintock 1, J. L. Cameron 2 and C. M. Young 2 1 Department of Biology. University of Alabama at Birmingham. University Station, Birmingham. Alabama 35294, USA 2 Department of Larval Ecology, Harbor Branch Oceanographic Institution. 5600 Old Dixie Highway. Fort Pierce. Florida 34946. USA Date of final manuscript acceptance: February 2, 1990. Communicated by 1. M. Lawrence. Tampa Abstract. The biochemical 'and energetic composition of Walker et al. (1987 a, b) reported on the biochemical and body components often species ofbathyal echinoids, and energy content ofcommon bathyal and abyssal elaspodid an asteroid, a holothuroid and a stalked crinoid were and aspidochirote holothurians from the Atlantic Ocean. determined from individuals sampled from a variety of These authors noted that dense populations of echino­ deep-water sites near the Bahamas (north Caribbean Sea) derms often dominate megafaunal biomass in deep At­ in October 1988. When compared with other studies of lantic Ocean waters.
    [Show full text]
  • 1 GLOSSARY for the ECHINOIDEA the Echinoidea, Similar to Other
    March 2011 Christina Ball Royal BC Museum Phil Lambert GLOSSARY FOR THE ECHINOIDEA The Echinoidea, similar to other echinoderm groups, have an ancient lineage dating back approximately 500 million years and includes the sea urchins, sand dollars and heart urchins. Today this globally distributed group comprises approximately 1000 species (Pearse et al. 2007). Nine species are known to occur in British Columbia (Lambert and Boutillier in press). Echinoids are found exclusively in the marine environment from the intertidal down into deep water and can be found on rocky, sandy or muddy substrates (Brusca and Brusca 1990). The echinoids have a variety of body shapes ranging from disc-like sand dollars to pyramidal deepwater species. While their morphology of the echinoids varies, the group shares several other characteristics. The echinoids have mutable collagenous tissue and a water vascular system. They also have a hard endoskeleton, called a test, that is made up of interlocking plates formed from fused ossicles. They have spines and pincher- like pedicellariae that attach to the outer surface of the test and a complex jaw structure called an Aristotle’s Lantern (Lambert and Austin 2007). There is also considerable colour variation within the Echinoidea. While colour can be a useful method for identifying otherwise similar species it is important to recognize that colour is a subjective trait. There can also be considerable colour variation within a species. Like all echinoderms the echinoids posses a unique tissue type called mutable collagenous tissue. This tissue can change rapidly, in less then a second to several minutes, from a rigid to a flaccid state.
    [Show full text]