Marine Science

Total Page:16

File Type:pdf, Size:1020Kb

Marine Science Western Indian Ocean JOURNAL OF Marine Science Volume 17 | Issue 1 | Jan – Jun 2018 | ISSN: 0856-860X Chief Editor José Paula Western Indian Ocean JOURNAL OF Marine Science Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal Copy Editor Timothy Andrew Editorial Board Louis CELLIERS Blandina LUGENDO South Africa Tanzania Lena GIPPERTH Aviti MMOCHI Serge ANDREFOUËT Sweden Tanzania France Johan GROENEVELD Nyawira MUTHIGA Ranjeet BHAGOOLI South Africa Kenya Mauritius Issufo HALO Brent NEWMAN South Africa/Mozambique South Africa Salomão BANDEIRA Mozambique Christina HICKS Jan ROBINSON Australia/UK Seycheles Betsy Anne BEYMER-FARRIS Johnson KITHEKA Sérgio ROSENDO USA/Norway Kenya Portugal Jared BOSIRE Kassim KULINDWA Melita SAMOILYS Kenya Tanzania Kenya Atanásio BRITO Thierry LAVITRA Max TROELL Mozambique Madagascar Sweden Published biannually Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) region, in particular on the sustainable use of coastal and marine resources. This is central to the goal of supporting and promoting sustainable coastal development in the region, as well as contributing to the global base of marine science. The journal publishes original research articles dealing with all aspects of marine science and coastal manage- ment. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between humans and the coastal and marine environment. In addition, Western Indian Ocean Journal of Marine Science features state-of-the-art review articles and short communications. The journal will, from time to time, consist of special issues on major events or important thematic issues. Submitted articles are subjected to standard peer-review prior to publication. Manuscript submissions should be preferably made via the African Journals Online (AJOL) submission plat- form (http://www.ajol.info/index.php/wiojms/about/submissions). Any queries and further editorial corre- spondence should be sent by e-mail to the Chief Editor, [email protected]. Details concerning the preparation and submission of articles can be found in each issue and at http://www.wiomsa.org/wio-journal-of-marine- science/ and AJOL site. Disclaimer: Statements in the Journal reflect the views of the authors, and not necessarily those of WIOMSA, the editors or publisher. Copyright © 2018 —Western Indian Ocean Marine Science Association (WIOMSA) No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without permission in writing from the copyright holder. ISSN 0856-860X Cover image: Maputo (© Jose Paula, 2010) WIO Journal of Marine Science 17 (1 ) 2018 111-124 Original Article 111 Marine Biodiversity of La Reunion Island: Echinoderms Chantal Conand 1,2, Sonia Ribes-Beaudemoulin 3, Florence Trentin 4, Thierry Mulochau 5, Emilie Boissin 6 1 UMR ENTROPIE, La Reunion 2 Muséum National Histoire 3 Conservatrice Museum 4 Vie Océane, La Reunion, University, Saint Denis, Naturelle, Paris, de La Reunion, France France France France 5 BIORECIF La Reunion, 6 EPHE-UPVD-CNRS, * Corresponding author: France USR3278-CRIOBE, [email protected] Laboratoire d’Excellence «CORAIL», Perpignan, France Abstract The inventories of marine species of La Reunion (South West Indian Ocean) are still incomplete for several phylum including the Echinodermata. The present knowledge for the five classes is reported here, in the habitats below (1) and above (2) 50 m depth. The overall diversity for (1) is 136 species and for (2), 48 species. On the whole, as in the broader western Indian Ocean, the Holothuroidea and the Ophiuroidea are the dominant classes. Several new spe- cies have been described and many still need further research. Keywords: sea stars, brittle stars, sea urchins, sea cucumbers, feather stars, SWIO Introduction Tallon, 2005; FAO, 2013), for the ophiuroids (Stohr et The South West Indian Ocean (SWIO) is recognized as al., 2008; Hoareau et al., 2013; Boissin et al., 2016; Bois- one of the marine biodiversity hotspots in the world, sin et al., 2017), and the asterids ( Jangoux and Aziz, because of high species richness and endemism (Rob- 1988; O’Loughlin and McKenzie, 2013). Other studies erts et al., 2002). While fishes and corals have long been have focused on the whole phylum in the region (Clark well documented from this area, other groups such as and Rowe, 1971; Rowe and Richmond, 2011), or groups Echinoderms needed further attention. Echinoderms of islands, such as the French programme BIORECIE are a very distinct five-rayed phylum, very important on the Îles Eparses (or Scattered islands) (Conand et al., in marine communities where they play critical roles 2010; Mulochau et al, 2014; Conand et al., 2015). (Purcell et al., 2016). The five extant classes, namely Asteroidea (sea stars), Ophiuroidea (brittle stars), Echi- The current knowledge on the diversity of the noidea (sea urchins), Holothuroidea (sea cucumbers) Echinoderms from La Reunion are reported in and Crinoidea (feather stars) account for more than 7 this paper. This young volcanic island (21.115°S and 000 described species for the world’s oceans (Byrne 55.536°E), is situated 800 km east of Madagascar. and O’ Hara, 2017). Its marine biodiversity needs to be evaluated given the increases of natural and man-induced threats Previous studies had been conducted in several coun- on the narrow fringing reefs, and the high density tries or islands of the SWIO region, on one class, as of human population. The Echinoderms have been for example for the holothurians (Conand and Muth- studied during the last forty years and several pub- iga, 2007; Muthiga and Conand, 2014; Conand, 2008; lications report the ecology of reef populations for Eriksson et al., 2015; Samyn et al., 2006; Samyn and several abundant species of the different classes. 112 WIO Journal of Marine Science 17 (1 ) 2018 111-124 | C. Conand et al. The whole phylum has also been focused on in differ- The total number of littoral species (1) is 136, while the ent programmes conducted during this period, such number of the deep species (2) is 48. as BIOTAS (ANR-06-BDIV-002) (Hoareau et al. 2013; Boissin et al., 2016; Boissin et al., 2017), and BIOLAVE, Diversity by classes on the underwater lava flows of the volcano Piton de Asteroidea diversity la Fournaise (Bollard et al., 2013). Recently, the book Table 2 presents the list of the Asteroidea collected ‘Oursins, Etoiles de mer & autres échinodermes’ and/or observed. The forty-six species belong to six (2016) has been published in French by the authors orders and sixteen families. A few specimens from of the present paper, with many photos and details. the family Ophidiasteridae, Leiaster and Ophidiaster, It is important to present this updated inventory to remain undetermined. the scientific audience and therefore assist in identi- fying new species and allow comparisons with other Twenty-two species are from littoral zones (Table 2 islands or countries in the SWIO. (1)) collected on the coral reefs or from other sandy and rocky biotopes, but are mostly from sparse indi- Methods viduals. During the BIOLAVE programme, 6 species The data from the previous publications on the differ- where collected, including the recently described ent classes have been gathered and updated. Aquilonastra conandae (Bollard et al., 2013). An Anthe- noides aff. marleyi has been found very well conserved The first inventory in English is presented here, for in the stomach of a tiger shark Galeocerdo cuvier caught the five Echinoderm classes, taking into account the at 25 m depth; it was probably recently ingested as it littoral zone, to about 50 m depth, explored by free or was intact, while the other preys were partly digested. scuba diving (1), and deeper zones on the reef-slopes to about 1 000 m (2) which were earlier explored dur- A few species have been studied in more detail: ing different cruises by dredging, such as ‘MD32’ with 1) Acanthaster planci now mauritiensis (see discussion). the ‘Marion Dufresne’ (1982), and the La Reunion Following observations by divers, a study was under- Aquarium team with the ‘Explorer’ (2011-2014). The taken in 1998 based on the results of an inquiry dis- species validity has been checked using Miller et al. tributed to volunteers. From the 352 forms returned (2017), Stöhr et al. (2016) and WoRMS (2018). during two years, the observations by Emeras et al. (2004) concluded that: 1) the distribution was mostly Results on the western coast, with 17% on reef flats, 83% on Echinoderm diversity outer slopes, rarely seen under 20 meters; 2) the pop- The overall diversity for the Echinoderms of La Reun- ulation densities were low (less than 4 individuals per ion is presented in Table 1. 30 minutes dive) and declining from year 2000; 3) the modal size of the individuals was large (40 cm diame- The total number of species presently identified is ter). Only anecdotal observations have been made on 184; 4 specimens are identified at the genus level. the species in La Reunion since that study. Table 1. Echinodermata from La Réunion. Number of species in each class in the littoral zone (1) and the deeper zone (2). ‘Ni’ is number of genera with unidentified species. No. spp Ni spp No. spp Ni spp Total + Ni Littoral (1) Littoral Deep (2) Deep Asteroidea 22 1 24 1 46 +2 Ophiuroidea 38 1 16 54 +1 Echinoidea 34 7 41 Holothuroidea 38 1 38 +1 Crinoidea 4 1 4 +1 Total 136 3 48 1 184 +4 C. Conand et al. | WIO Journal of Marine Science 17 (1 ) 2018 111-124 113 Table 2. Asteroidea from La Réunion. Order Family Species Depth Brisingida Brisingidae Brisinga aff.
Recommended publications
  • (Echinodermata: Holothuroidea) from the Latest Cretaceous Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 285 Zitteliana 89 Short Communication First report of sea cucumbers (Echinodermata: Holothuroidea) from the latest Cretaceous of Paläontologie Bayerische Bavaria,GeoBio- Germany & Geobiologie Center Staatssammlung 1,2,3 LMU München für Paläontologie und Geologie LMUMike MünchenReich 1 n München, 01.07.2017 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 2 n Manuscript received Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, 30.12.2016; revision ac- Paläontologie und Geobiologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 3 cepted 21.01.2017 GeoBio-Center der Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany n ISSN 0373-9627 E-mail: [email protected] n ISBN 978-3-946705-00-0 Zitteliana 89, 285–289. Key words: fossil Holothuroidea; Cretaceous; Maastrichtian; Bavaria; Germany Schüsselwörter: fossile Holothuroidea; Kreide; Maastrichtium; Bayern; Deutschland The Bavarian Gerhardtsreit Formation (‶Gerhardts- 1993; Smith 2004) due to different reasons (Reich reiter Mergel″ / ‶Gerhardtsreiter Schichten″; cf. 2013). There are nearly 1,700 valid extant sea cucum- Böhm 1891; Hagn 1960; Wagreich et al. 2004), also ber species (Smiley 1994; Kerr 2003; Paulay pers. known as Gerhartsreit Formation (‶Gerhartsreiter comm.) known worldwide. The fossil record (since Schichten″; Hagn et al. 1981, 1992; Schwarzhans the Middle Ordovician; Reich 1999, 2010), by con- 2010; Pollerspöck & Beaury 2014) or ‶Gerhards- trast, is discontinuous in time and recorded ranges reuter Schichten″ (Egger 1899; Hagn & Hölzl 1952; of species with around 1,000 reported forms (Reich de Klasz 1956; Herm 1979, 2000) is exposed in Up- 2013, 2014, 2015b) since the early 19th century.
    [Show full text]
  • Catalogue Customer-Product
    AQUATIC DESIGN CENTRE 26 Zennor Trade Park Balham ¦ London ¦ SW12 0PS Shop Enquiries Tel: 020 7580 6764 Email: [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY In Stock Yes/No Marine Invertebrates and Corals Anemones Common name Scientific name Atlantic Anemone Condylactis gigantea Atlantic Anemone - Pink Condylactis gigantea Beadlet Anemone - Red Actinea equina Y Bubble Anemone - Coloured Entacmaea quadricolor Y Bubble Anemone - Common Entacmaea quadricolor Bubble Anemone - Red Entacmaea quadricolor Caribbean Anemone Condylactis spp. Y Carpet Anemone - Coloured Stichodactyla haddoni Carpet Anemone - Common Stichodactyla haddoni Carpet Anemone - Hard Blue Stichodactyla haddoni Carpet Anemone - Hard Common Stichodactyla haddoni Carpet Anemone - Hard Green Stichodactyla haddoni Carpet Anemone - Hard Red Stichodactyla haddoni Carpet Anemone - Hard White Stichodactyla haddoni Carpet Anemone - Mini Maxi Stichodactyla tapetum Carpet Anemone - Soft Blue Stichodactyla gigantea Carpet Anemone - Soft Common Stichodactyla gigantea Carpet Anemone - Soft Green Stichodactyla gigantea Carpet Anemone - Soft Purple Stichodactyla gigantea Carpet Anemone - Soft Red Stichodactyla gigantea Carpet Anemone - Soft White Stichodactyla gigantea Carpet Anemone - Soft Yellow Stichodactyla gigantea Carpet Anemone - Striped Stichodactyla haddoni Carpet Anemone - White Stichodactyla haddoni Curly Q Anemone Bartholomea annulata Flower Anemone - White/Green/Red Epicystis crucifer Malu Anemone - Common Heteractis crispa Malu Anemone - Pink Heteractis
    [Show full text]
  • Larvae of Marine Bivalves and Echinoderms
    V.L. KflSVflNOV>G.fl. KRVUCHKOVfl VAKUUKOVfl-LAIVICDVCDevn Scientific Cditor Dovid L pQiuson LARVAE OF MARINE BIVALVES AND ECHINODERMS V.L. KASYANOV, G.A. KRYUCHKOVA, V.A. KULIKOVA AND L. A. MEDVEDEVA Scientific Editor David L. Pawson SMITHSONIAN INSTITUTION LIBRARIES Washington, D.C. 1998 Smin B87-101 Lichinki morskikh dvustvorchatykh moUyuskov i iglokozhikh Akademiya Nauk SSSR Dal'nevostochnyi Nauchnyi Tsentr Institut Biologii Morya Nauka Publishers, Moscow, 1983 (Revised 1990) Translated from the Russian © 1998, Oxonian Press Pvt. Ltd., New Delhi Library of Congress Cataloging-in-Publication Data Lichinki morskikh dvustvorchatykh moUiuskov i iglokozhikh. English Larvae of marine bivalves and echinodermsA^.L. Kasyanov . [et al.]; scientific editor David L. Pawson. p. cm. Includes bibliographical references. 1. Bivalvia — Larvae — Classification. 2. Echinodermata — Larvae — Classification. 3. Mollusks — Larvae — Classification. 4. Bivalvia — Lar- vae. 5. Echinodermata — Larvae. 6. Mollusks — Larvae. I. Kas'ianov, V.L. II. Pawson, David L. (David Leo), 1938-III. Title. QL430.6.L5313 1997 96-49571 594'.4139'0916454 — dc21 CIP Translated and published under an agreement, for the Smithsonian Institution Libraries, Washington, D.C., by Amerind Publishing Co. Pvt. Ltd., 66 Janpath, New Delhi 110001 Printed at Baba Barkha Nath Printers, 26/7, Najafgarh Road Industrial Area, NewDellii-110 015. UDC 591.3 This book describes larvae of bivalves and echinoderms, living in the Sea of Japan, which are or may be economically important, and where adult forms are dominant in benthic communities. Descriptions of 18 species of bivalves and 10 species of echinoderms are given, and keys are provided for the iden- tification of planktotrophic larvae of bivalves and echinoderms to the family level.
    [Show full text]
  • Echinoidea: Diadematidae) to the Mediterranean Coast of Israel
    Zootaxa 4497 (4): 593–599 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4497.4.9 http://zoobank.org/urn:lsid:zoobank.org:pub:268716E0-82E6-47CA-BDB2-1016CE202A93 Needle in a haystack—genetic evidence confirms the expansion of the alien echinoid Diadema setosum (Echinoidea: Diadematidae) to the Mediterranean coast of Israel OMRI BRONSTEIN1,2 & ANDREAS KROH1 1Natural History Museum Vienna, Geological-Paleontological Department, 1010 Vienna, Austria. E-mails: [email protected], [email protected] 2Corresponding author Abstract Diadema setosum (Leske, 1778), a widespread tropical echinoid and key herbivore in shallow water environments is cur- rently expanding in the Mediterranean Sea. It was introduced by unknown means and first observed in southern Turkey in 2006. From there it spread eastwards to Lebanon (2009) and westwards to the Aegean Sea (2014). Since late 2016 spo- radic sightings of black, long-spined sea urchins were reported by recreational divers from rock reefs off the Israeli coast. Numerous attempts to verify these records failed; neither did the BioBlitz Israel task force encounter any D. setosum in their campaigns. Finally, a single adult specimen was observed on June 17, 2017 in a deep rock crevice at 3.5 m depth at Gordon Beach, Tel Aviv. Although the specimen could not be recovered, spine fragments sampled were enough to genet- ically verify the visual underwater identification based on morphology. Sequences of COI, ATP8-Lysine, and the mito- chondrial Control Region of the Israel specimen are identical to those of the specimen collected in 2006 in Turkey, unambiguously assigning the specimen to D.
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • The Dietary Preferences, Depth Range and Size of the Crown of Thorns Starfish (Acanthaster Spp.) on the Coral Reefs of Koh Tao, Thailand by Leon B
    The dietary preferences, depth range and size of the Crown of Thorns Starfish (Acanthaster spp.) on the coral reefs of Koh Tao, Thailand By Leon B. Haines Author: Leon Haines 940205001 Supervisors: New Heaven Reef Conservation Program: Chad Scott Van Hall Larenstein University of Applied Sciences: Peter Hofman 29/09/2015 The dietary preferences, depth range and size of the Crown of Thorns Starfish (Acanthaster spp.) on the coral reefs of Koh Tao, Thailand Author: Leon Haines 940205001 Supervisors: New Heaven Reef Conservation Program: Chad Scott Van Hall Larenstein University of Applied Sciences: Peter Hofman 29/09/2015 Cover image:(NHRCP, 2015) 2 Preface This paper is written in light of my 3rd year project based internship of Integrated Coastal Zone management major marine biology at the Van Hall Larenstein University of applied science. My internship took place at the New Heaven Reef Conservation Program on the island of Koh Tao, Thailand. During my internship I performed a study on the corallivorous Crown of Thorns starfish, which is threatening the coral reefs of Koh Tao due to high density ‘outbreaks’. Understanding the biology of this threat is vital for developing effective conservation strategies to protect the vulnerable reefs on which the islands environment, community and economy rely. Very special thanks to Chad Scott, program director of the New Heaven Reef Conservation program, for supervising and helping me make this possible. Thanks to Devrim Zahir. Thanks to the New Heaven Reef Conservation team; Ploy, Pau, Rahul and Spencer. Thanks to my supervisor at Van Hall Larenstein; Peter Hofman. 3 Abstract Acanthaster is a specialized coral-feeder and feeds nearly solely, 90-95%, on sleractinia (reef building corals), preferably Acroporidae and Pocilloporidae families.
    [Show full text]
  • OCS Study BOEM 2017-024
    OCS Study BOEM 2017-024 Deepwater Reconnaissance of Potentially Sensitive Biological Features Surrounding Shelf-Edge Topographical Banks in the Northern Gulf of Mexico U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region OCS Study BOEM 2017-024 Deepwater Reconnaissance of Potentially Sensitive Biological Features Surrounding Shelf-Edge Topographical Banks in the Northern Gulf of Mexico Author Paul Sammarco Prepared under BOEM Contract M11AC00005 by Louisiana Universities Marine Consortium 8124 Highway 56 Baton Rouge, LA 70344-2110 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management February 2017 Gulf of Mexico OCS Region DISCLAIMER This report was prepared under contract between the Bureau of Ocean Energy Management (BOEM) and Louisiana Universities Marine Consortium (LUMCON). This report has been technically reviewed by BOEM, and it has been approved for publication. Approval does not necessarily signify that the contents reflect the views and policies of BOEM, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this Gulf of Mexico OCS Region report, go to the U.S. Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program Information System website and search on OCS Study BOEM 2017-024. This report can be viewed at select Federal Depository Libraries. It can also be obtained from the National Technical Information Service; the contact information is below. U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd. Springfield, Virginia 22312 Phone: (703) 605-6000, 1(800)553-6847 Fax: (703) 605-6900 Website: http://www.ntis.gov/ CITATION Sammarco, Paul W.
    [Show full text]
  • Parvulastra Parvivipara and P. Vivipara)
    Research Ideas and Outcomes 4: e29766 doi: 10.3897/rio.4.e29766 Research Article A note on life-history traits and conservation concerns for viviparous Australian seastars (Parvulastra parvivipara and P. vivipara) Kiran Liversage‡§, Maria Byrne ‡ Estonian Marine Institute, University of Tartu, Tallinn, Estonia § The University of Sydney, Sydney, Australia Corresponding author: Kiran Liversage ([email protected]) Reviewed v1 Received: 14 Sep 2018 | Published: 11 Oct 2018 Citation: Liversage K, Byrne M (2018) A note on life-history traits and conservation concerns for viviparous Australian seastars (Parvulastra parvivipara and P. vivipara). Research Ideas and Outcomes 4: e29766. https://doi.org/10.3897/rio.4.e29766 Abstract The asterinid seastars Parvulastra parvivipara and P. vivipara share atypical viviparous reproductive modes that have made them of interest for research on life-history evolution and population genetics. This article briefly reviews life-history traits of these endemic Australian species and information on distribution and rarity, as well as providing some additional new analysis. Almost exclusive self-fertilisation has led to extreme genetic poverty in both species and viviparity limits dispersal potential causing relatively small geographical ranges. There is some evidence that the number of intertidal boulder-fields harbouring P. parvivipara, and the overall geographical range, may have become reduced in recent years. In addition, approximately 25 % of boulder-fields with P. parvivipara have been colonised by invasive oysters (Magallana gigas). To understand potential effects of oysters on P. parvivipara, we tested for correlations between P. parvivipara abundances and cover of oyster encrustations that included this invader (native + non-native oyster shells were assessed together because they produced similar encrustations and largely could not be differentiated).
    [Show full text]
  • (Asteroidea: Acanthaster): a Review of Names and Comparison to Recent Molecular Data
    Zootaxa 3841 (2): 271–284 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3841.2.6 http://zoobank.org/urn:lsid:zoobank.org:pub:750B7776-4BFD-4EF2-AE1A-2671658A0985 An integrative approach to the taxonomy of the crown-of-thorns starfish species group (Asteroidea: Acanthaster): A review of names and comparison to recent molecular data GERHARD HASZPRUNAR1,2 & MARTIN SPIES1 1SNSB - Zoologische Staatssammlung München, Münchhausenstr. 21, D-81247 München, Germany. E-mail: [email protected] 2Dept. Biology II and GeoBio-Center of LMU Munich, Germany Abstract The scientific names published for species and subspecies in the genus Acanthaster Gervais (Asteroidea: Valvatida: Acan- thasteridae) are reviewed, with particular attention to the A. planci species group (crown-of-thorn starfish, COTS). Several problems with earlier nomenclatural and bibliographic data are resolved. The available name for the type species of Acan- thaster in the original combination is Asterias echinites Ellis & Solander in Watt, 1786; the often-cited "Asterias echinus" and "Acanthaster echinus" are incorrect subsequent spellings, therefore unavailable. The scientific names and taxonomic concepts for species and subspecies in Acanthaster are compared to recently published, robust COI-barcoding clades. Two of four clades in the A. planci group can be named unequivocally, a third requires a neotype designation to decide which of two available names will be valid, and the fourth clade necessitates a new species description and name. The References section includes annotations explaining bibliographical data important to the nomenclatural evaluations. Many hyperlinks interspersed with the paper's texts offer quick access to digital versions of the respective references.
    [Show full text]
  • Calypso LNG Deepwater Port Project, Florida: Marine Benthic Video Survey Charles Messing Nova Southeastern University Oceanographic Center, [email protected]
    Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Reports Department of Marine and Environmental Sciences 6-12-2006 Calypso LNG Deepwater Port Project, Florida: Marine Benthic Video Survey Charles Messing Nova Southeastern University Oceanographic Center, [email protected] Brian K. Walker Nova Southeastern University Oceanographic Center, [email protected] Richard E. Dodge Nova Southeastern University Oceanographic Center, [email protected] John K. Reed Harbor Branch Oceanographic Institution Sandra Brooke Florida Fish and Wildlife Research Institute Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facreports Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons NSUWorks Citation Charles Messing, Brian K. Walker, Richard E. Dodge, John K. Reed, and Sandra Brooke. 2006. Calypso LNG Deepwater Port Project, Florida: Marine Benthic Video Survey : 1 -61. https://nsuworks.nova.edu/occ_facreports/77. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Reports by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Calypso LNG Deepwater Port Project, Florida Marine Benthic Video Survey FINAL REPORT 12 June 2006 Submitted to: Ecology and Environment, Inc. & SUEZ Energy North America, Inc. Submitted by: Charles G. Messing, Ph.D., Brian K. Walker, M.S. and Richard E. Dodge, Ph.D. National Coral Reef Institute, Nova Southeastern University Oceanographic Center, 8000 North Ocean Drive, Dania Beach, FL 33004 John Reed, M.S., Harbor Branch Oceanographic Institution 5600 U.S.
    [Show full text]
  • Crown-Of-Thorns Sea Star, Acanthaster Cf. Solaris, Have Tissue-Characteristic Microbiomes With
    AEM Accepted Manuscript Posted Online 4 May 2018 Appl. Environ. Microbiol. doi:10.1128/AEM.00181-18 © Crown copyright 2018. The government of Australia, Canada, or the UK ("the Crown") owns the copyright interests of authors who are government employees. The Crown Copyright is not transferable. 1 Crown-of-thorns sea star, Acanthaster cf. solaris, have tissue-characteristic microbiomes with 2 potential roles in health and reproduction 3 4 Lone Høj,a#,b Natalie Levy,a,b,c* Brett K. Baillie,a Peta L. Clode,d,e,f Raphael C. Strohmaier,a 5 Nachshon Siboni,a,** Nicole S. Webster,a,b,g Sven Uthicke,a,b David G. Bournea,b,c 6 Downloaded from 7 aAustralian Institute of Marine Science, Townsville, Queensland, Australia. 8 bAIMS@JCU, Division of Research & Innovation, James Cook University, Townsville, 9 Queensland, Australia 10 cCollege of Science and Engineering, James Cook University, Townsville, Queensland, http://aem.asm.org/ 11 Australia. 12 dCentre for Microscopy, Characterisation and Analysis, The University of Western Australia, 13 Perth, Western Australia, Australia 14 eSchool of Biological Sciences, The University of Western Australia, Perth, Western on May 10, 2018 by UQ Library 15 Australia, Australia 16 fThe Oceans Institute, The University of Western Australia, Perth, Western Australia, 17 Australia 18 gAustralian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, 19 Australia 20 21 Running head: Microbiome of crown-of-thorns sea stars 22 23 #Address correspondence to Lone Høj, [email protected]. 24 *Present address: Natalie Levy, School of Zoology, Tel Aviv University, Tel Aviv, Israel. 1 25 **Present address: Nachshon Siboni, Climate Change Cluster, University of Technology 26 Sydney, Sydney, New South Wales, Australia.
    [Show full text]
  • A Systematic Revision of the Asterinid Genus Aquilonastra O'loughlin
    Memoirs of Museum Victoria 63(2): 257–287 (2006) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs/index.asp A systematic revision of the asterinid genus Aquilonastra OʼLoughlin, 2004 (Echinodermata: Asteroidea) P. M ARK OʼLOUGHLIN1 AND FRANCIS W.E. ROWE2 1Honorary Associate, Marine Biology Section, Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia ([email protected]) 2Research Associate, Australian Museum, Sydney, NSW, Australia ([email protected]). Private address: Beechcroft, Norwich Road, Scole, Diss, Norfolk, IP21 4DY, U.K. Abstract OʼLoughlin, P. Mark and Rowe, Francis W.E. A systematic revision of the asterinid genus Aquilonastra OʼLoughlin, 2004 (Echinodermata: Asteroidea). Memoirs of Museum Victoria 63(2): 257–287. The Indo-west Pacifi c Aquilonastra OʼLoughlin is reviewed. Eleven species are retained in Aquilonastra: A. anomala (H.L. Clark); A. batheri (Goto); A. burtonii (Gray); A. cepheus (Müller and Troschel); A. corallicola (Marsh); A. coronata (Martens); A. iranica (Mortensen); A. limboonkengi (Smith); A. minor (Hayashi); A. rosea (H.L. Clark); A. scobinata (Livingstone). Asterina lorioli Koehler is reassigned to Aquilonastra. Thirteen new species are described: A. byrneae; A. colemani; A. conandae; A. doranae; A. halseyae; A. marshae; A. moosleitneri; A. oharai; A. richmondi; A. rowleyi; A. samyni; A. watersi; A. yairi. The four subspecies of Asterina coronata Martens are junior synonyms: Asterina coronata cristata Fisher; Asterina coronata euerces Fisher; Asterina coronata fascicularis Fisher; Asterina coronata forma japonica Hayashi. The 13 fi ssiparous Red Sea specimens described by Perrier as Asteriscus wega are the syntypes. Asteriscus wega Perrier is a junior synonym of Asterina burtonii Gray.
    [Show full text]