Lower Pliocene Mollusks and Echinoids from the Los Angeles Basin, California

Total Page:16

File Type:pdf, Size:1020Kb

Lower Pliocene Mollusks and Echinoids from the Los Angeles Basin, California UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mcndenhull, Director Professional Paper 190 LOWER PLIOCENE MOLLUSKS AND ECHINOIDS FROM THE LOS ANGELES BASIN, CALIFORNIA AND THEIR INFERRED ENVIRONMENT BY W. P. WOODRING UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1938 For sale by the Superintendent of Documents, Washington, D. C. ------ Trice 30 cents CONTENTS Page Abstract._____________----______-_-_-- Inferred environment of larger fossils Continued. Introduction __________-_-___-___---_-_ Inferred depth range of larger fossils______________ 13 New systematic names proposed_______-_ Interpretation of fossils of deep-water facies----.... 15 General features of Los Angeles Basin____ Distribution of fossils of different depth facies...... 16 Repetto formation of Los Angeles Basin __ Paleogeographic implications_____________________ 16 General features.___________________ Bearing on geologic history of Los Angeles Basin.__. 17 Outcrop localities._-_--____-_-_____ Comparison between Los Angeles Basin during Subsurface section.________________ Repetto time and modern deep-water basins on Larger fossils from Repetto formation____ Continental Shelf of southern California._________ 18 Outcrop localities._________________ Age relations of larger fossils.__________________'______ 18 Subsurface localities.---______.__-_- Fossils of deep-water facies__-____________________ 18 Fossils. _ _-____-____---___-_-______. Fossils of intermediate and shallow-water facies.____ 20 Inferred environment of larger fossils..... Descriptions of species_____-___--__-_-____-__-_.____ 22 Depth range of allied modern species. Index.______.________________________ 65 ILLUSTRATIONS Page Page PLATE 1. Relief map of California showing principal areas PLATE 7. Pliocene mollusks from Los Angeles Basin_____ 62 of marine Pliocene formations._____________ 2 8. Pliocene mollusks from Los Angeles Basin and 2. Generalized geologic map of Los Angeles Basin Miocene mollusks from Colorado Desert. 63 and borders._----------------_-__----_-_ 2 9. Pliocene mollusks and echinoids from Los 3. Depth frequency graphs of modern Pacific Angeles Basin___________________________ 64 coast mollusks and echinoids allied to Re­ FIGURE 1. Bathymetric map of Continental Shelf along petto fossils.-----------.-.-------------- 14 part of coast of southern California. _______ 19 4. Map of Los Angeles Basin showing distribution 2. Hinge of Phreagena, Calyptogena, and Ec- of Repetto fossils of different depth facies. _ _ _ 14 lenagena. _________-_____-________----__ 50 5, 6. Pliocene and Miocene mollusks from Los Ange­ les Basin___----_-____-_____-_-____.___ 60,61 it LOWER PLIOCENE MOLLUSKS AND EG^INOIDS FROM THE LOS ANGELES BASIN, CALIFORNIA, AND THEIR INFERRED ENVIRONMENT By W. P. WOODRING ABSTRACT depth facies during Pliocene and Pleistocene time was a factor The Repetto formation, which is considered of lower Pliocene in the accumulation of the 6,000 to 10,000 feet of Pliocene and age, embraces the principal oil-bearing strata in most of the major Pleistocene sediments in the basin. Unless, however, the depth oil fields of the Los Angeles Basin. Twenty-six forms of mollusks. of the Repetto sea was much greater than now appears probable, and one echinoid are described from the Repetto formation of subsidence also was a factor. this region, and other larger fossils are recorded. These fossils, The inferred deep-water environment of the Repetto formation were collected from outcrops and from cores representing 56 wells supports the comparison, also already made, of the Los Angeles distributed widely over the basin. Imperfect remains from 10 Basin during Repetto time with the modern deep-water basins additional wells are undetermined or undeterminable. on the Continental Shelf of southern California. These modern The fossils are assigned to three depth-range groups on the basins have depths of 300 to 1,000 fathoms. According to recent assumption that they represent essentially the same depth range investigations, sand is being deposited on the ridges between the as modern species from the eastern Pacific, to which the}7, are modern basins regardless of depth, and the fine-grained sediments closely allied. These groups are (J) fossils of shallow-water in the basins are relatively rich in organic matter. facies; (2) fossils of intermediate-depth facies, inferred to repre­ The age relations of the fossils are briefly discussed. Most of sent a range from shallow water into deep water; (3) fossils of the fossils of deep-water facies closely resemble modern species, deep-water facies. and many are similar to Miocene and Oligocene forms. The The fossils of deep-water facies consist of at least 8 species, shallow-water species have a middle Pliocene aspect in terms of possibly .1.2 species, embracing mollusks, an echinoid, a sponge, current age assignments. and doubtfully a coral. The first fossil representatives of the echinoid family Echinothuriidae found in America are included INTRODUCTION in this group. Inasmuch as the fossils of deep-water facies belong to genera or subgenera that, with one exception, have not been The Repetto formation, which is assigned to the found in California Pliocene formations characterized by a lower Pliocene, embraces the principal oil zones in most shallow-water facies, it is inferred that they represent deep water of the major oil fields of the Los Angeles Basin. The or cool water. The hypothesis that they represent upwelling extensive foraminiferal fauna of this formation^ tjas cool water is considered and rejected, and the probability that been exhaustively studied on account of its value in pil|- they lived in deep water is considered reasonably certain. Most of the deep-water fossils are closely allied to species dredged by field correlations, but the results of these studies have the Albatross off the coast of Oregon arid California, but some not yet appeared in print aside from a few brief accounts closely resemble species that have not yet been found north of dealing with single species or local areas. Apparently Central America, and allies of one species of probable deep-water only one record of a Repetto larger fossil* from core facies are unknown in the eastern Pacific. material in the basin has been published.2 The fossils of deep-water facies are widely distributed through­ out the basin. They suggest that during Repetto time the Los I am greatly indebted to Dr. W. S. W. Kew, of the Angeles Basin sea had depths of 300 to 600 fathoms (roughly Standard Oil Co. of California, and to Mr. S. G. Wissler, 2,000 to 4,000 feet). of the Union Oil Co. of California, for the opportunity Fossils of shallow-water .facies have so far been found near the .to study Repetto larger fossils from 60 wells distributed northern border of the basin and near the western margin. The over the-basin. These fossils have accumulated in the fossils of intermediate-depth facies are more widely distributed than those of shallow-water facies. Some evidence points to Standard and Union micropaleontology laboratories areas of shallow water near the northern border of the basin. during the last few years. The officials of these com­ The association of fossils of deep-water, intermediate, and shallow- panies and of other companies whose wells are repre­ water facies and of land fossils in part of this region, however, sented in the core collections kindly gave permission to suggests proximity to land and transportation of the shallow- publish the data on the fossils. Mr. Wissler also per­ water and land fossils by unknown agencies. The source of a shallow-water fossil from a locality near the western margin of mitted publication of records of Lima hamlini and the basin is not known but may have been an area of shallow Hyalopecten aff. H. randolphi tillamookensis based on water farther south. specimens in his laboratory from six additional wells. The widespread distribution of fossils of deep-water facies in the Repetto formation and the depth facies of the overlying Plio­ 1 The term "larger fossils" is used to contrast mollusks, echinoids, and other rela­ tively large fossils with microscopic ones; it corresponds to the term "rnegafossils." cene and Pleistocene formations support the interpretation, 8 Hertlein, L. G., New species of marine fossil Mollusca from western North already suggested, that the deposition of sediments of decreasing America: Southern California Acad. Sci. Bull., vol. 24, p. 43, pi. 4, flg. 6,1925. LOWER PLIOCENE MOLLUSKS AND ECHINOIDS FROM LOS ANGELES BASIN Dr. Kew presented to the National Museum the ma­ Mortensen kindly permitted use of his identification and terial accumulated under his direction. Mr. Wissler comments on the echinothuriids. I prepared the de­ donated to the Museum the types, other figured speci­ scription of the echinothuriid material under the super­ mens, and additional material from his collection; the vision of Dr. A. H. Clark. Mr. H. L. Driver, of the Stand­ other specimens from his collection have been returned ard Oil Co. of California, verified the stratigraphic data to the Union Oil Co.'s laboratory. Mr. Alex Clark, of for the specimens in the Standard collection. Mr. Wissler the Shell Oil Co., donated to the Museum the specimen prepared a chart showing the stratigraphic distribution of Lunatia cf. L. caurina from the Inglewood field; of the larger fossils with reference to foraminiferal permitted publication of the record of Lima hamlini, zones. Though the data on this chart are cited only based on the specimen in his collection from the exca­ in general terms, they were very useful in attempting vation for the Times Building in Los Angeles; and guided to interpret the significance of the fossils. Dr. L. G. me to collecting localities in the Repetto Hills. Hertlein, of the California Academy of Sciences, loaned It is to be hoped that additional material will be specimens for comparison. Mr. D. D. Hughes, of the collected as cores are sampled, for almost any Repetto Texas Co.
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • MARINE TANK GUIDE About the Marine Tank
    HOME EDITION MARINE TANK GUIDE About the Marine Tank With almost 34,000 miles of coastline, Alaska’s intertidal zones, the shore areas exposed and covered by ocean tides, are home to a variety of plants and animals. The Anchorage Museum’s marine tank is home to Alaskan animals which live in the intertidal zone. The plants and animals in the Museum’s marine tank are collected under an Alaska Department of Fish and Game Aquatic Resource Permit during low tide at various beaches in Southcentral and Southeast Alaska. Visitors are asked not to touch the marine animals. Touching is stressful for the animals. A full- time animal care technician maintains the marine tank. Since the tank is not located next to the ocean, ocean water cannot be constantly pumped through it. This means special salt water is mixed at the Museum. The tank is also cleaned regularly. Equipment which keeps the water moving, clean, chilled to 43°F and constantly monitored. Contamination from human hands would impact the cleanliness of the water and potentially hurt the animals. A second tank is home to the Museum’s king crab, named King Louie, and black rockfish, named Sebastian. King crab and black rockfish of Alaska live in deeper waters than the intertidal zone creatures. This guide shares information about some of the Museum’s marine animals. When known, the Dena’ina word for an animal is included, recognizing the thousands of years of stewardship and knowledge of Indigeneous people of the Anchorage area and their language. The Dena’ina & Marine Species The geographically diverse Dena’ina lands span both inland and coastal areas, including Anchorage.
    [Show full text]
  • Section 4.5 – Cultural and Paleontological Resources
    4.5 Cultural and Paleontological Resources 4.5 CULTURAL AND PALEONTOLOGICAL RESOURCES This section evaluates the cultural and paleontological resources impacts of the proposed Plan. The information presented was compiled from multiple sources as noted throughout the section. 4.5.1 EXISTING CONDITIONS 4.5.1.1 CULTURAL SETTING Prehistoric Setting The discussion below briefly summarizes the major cultural developments in the region before the arrival of Spanish colonists in 1769. It draws mainly from several decades of archaeological research, which generally recognizes three major periods (Paleoindian, or Paleoamerican; Archaic; and Late Prehistoric), each marked by certain changes in the archaeological record. These archaeological changes appear to reflect a variety of shifts in technology, settlement, and land use. Of the 109 federally recognized Indian tribes in California, 18 are located in San Diego County. The tribal members of today's bands represent four Indian cultural/linguistic groups who have populated this entire region for more than 10,000 years, taking advantage of its abundant natural resources and diverse ecological system for their livelihoods. As described in proposed Plan Appendix G, the four nations are: the Luiseno, Cahuilla, Cupeno, and Kumeyaay. Paleoamerican Period (12,000 to 7,000 Years Before Present [B.P.]) Despite decades of research, the early prehistory of coastal southern California remains poorly understood. The archaeological record does reveal that humans had appeared by about 13,000 years ago on the Channel Islands, where they lived primarily by fishing and shellfishing. These early island components are of interest in that they seem to reflect fully developed maritime economies that were distinct from, but roughly contemporaneous with, the Clovis tradition represented throughout much of interior North America.
    [Show full text]
  • Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications To
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications to Late Miocene Mediterranean Brine Chemistry and Late Cenozoic Calcium Cycling in the Oceans A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Earth Sciences by Tabitha Michele Hensley Committee in Charge: J. Douglas Macdougall, Chair Chris Charles Miriam Kastner Kurt Marti Jeff Severinghaus 2006 Copyright Tabitha Michele Hensley, 2006 All rights reserved ii The dissertation of Tabitha Michele Hensley is approved, and it is acceptable in quality and form for publication on microfilm: _____________________________________________ _____________________________________________ _____________________________________________ _____________________________________________ _____________________________________________ Chair University of California, San Diego 2006 iii To my parents, Eddy and Brenda Hensley iv TABLE OF CONTENTS Signature Page …………………………………………………………………. iii Dedication ……………………………………………………………………… iv Table of Contents ………………………………………………………………. v List of Figures ………………………………………………………………….. vii List of Tables …………………………………………………………………… viii Acknowledgements …………………………………………………………….. ix Vita, Publications and Fields of Study …………………………………………. xi Abstract ………………………………………………………………………… xiii Chapter I Introduction and Ca Isotope Background ………………………….. 1 1.1 Introduction ………………………………………………………… 1 1.2 Calcium Isotope Notation and Common Standards ………………… 3 1.3 Double Spiking
    [Show full text]
  • FAD. See First Appearance Datum Fagaloa Trend, 330759 Faial, 33, 820505 Faial Island, Basalt, Alkali, 820453, 820454, 820455
    346 FAD F Africa W, 360043, 360101, 361003 glauconite, authigenic, 710361 FAD. See first appearance datum alteration, 711003 gypsum, authigenic, 710361 Fagaloa trend, 330759 Angola Basin, evolution, geologic, 750530 heat flow, 710299, 710302 Faial, 33, 820505 anoxia, global, evidence against, 801003 thermal conductivity, 710300 Faial Island, basalt, alkali, 820453, 820454, Antarctica, 361051 humic acid, 711048 820455 geochemistry, 711011 chemistry, 711045 fairchildite, clay minerals, hydrothermal aromatic fraction, 711008 kerogen, 711048, 711049 mounds, 700225 Atlantic Ocean, Cretaceous, 750820 organic matter, 711045 Fairway Ridge, 901339 Atlantic Ocean S shale, black, 711049 Lansdowne Bank, Neogene sequence, 901339 Cretaceous, 720981, 720982 humic compounds, 711006 Faisi, 160663 hiatuses, 391099, 391101, 391104 carbon, organic, 711006 Falcon E, 040592 Mesozoic, 751035, 751040, 751041 mudstone, black, 711006 Falcon Formations, 040597 Atlantic Ocean SW poor yield, 711006 Falconara, Sicily, 42A0777 basin, evolution, 360993, 360994, 360996, hydrocarbon, 711033 Falkland Escarpment, 360966, 710021, 710285 360998, 360999, 361000, 361001, 361002, carbon, organic, 711033 Falkland Fracture Zone, 360008, 360027, 361004, 361005, 361006, 361007, 361008, hydrocarbon, C,-C7, 711033 360100, 360101, 360259, 360494, 360538, 361009 hydrocarbon, light, 711033 360962, 361004, 710302, 710470, 710830, paleoenvironment, 710320, 710321, 710328 kerogen, 711033 720017, 730791, 750479 sediments, 711001 low molecular weight, 711033, 711034 Atlantic Ocean S authigenic
    [Show full text]
  • Program of the 76Th Annual Meeting
    PROGRAM OF THE 76 TH ANNUAL MEETING March 30−April 3, 2011 Sacramento, California THE ANNUAL MEETING of the Society for American Archaeology provides a forum for the dissemination of knowledge and discussion. The views expressed at the sessions are solely those of the speakers and the Society does not endorse, approve, or censor them. Descriptions of events and titles are those of the organizers, not the Society. Program of the 76th Annual Meeting Published by the Society for American Archaeology 900 Second Street NE, Suite 12 Washington DC 20002-3560 USA Tel: +1 202/789-8200 Fax: +1 202/789-0284 Email: [email protected] WWW: http://www.saa.org Copyright © 2011 Society for American Archaeology. All rights reserved. No part of this publication may be reprinted in any form or by any means without prior permission from the publisher. Program of the 76th Annual Meeting 3 Contents 4................ Awards Presentation & Annual Business Meeting Agenda 5………..….2011 Award Recipients 11.................Maps of the Hyatt Regency Sacramento, Sheraton Grand Sacramento, and the Sacramento Convention Center 17 ................Meeting Organizers, SAA Board of Directors, & SAA Staff 18 ............... General Information . 20. .............. Featured Sessions 22 ............... Summary Schedule 26 ............... A Word about the Sessions 28…………. Student Events 29………..…Sessions At A Glance (NEW!) 37................ Program 169................SAA Awards, Scholarships, & Fellowships 176................ Presidents of SAA . 176................ Annual Meeting Sites 178................ Exhibit Map 179................Exhibitor Directory 190................SAA Committees and Task Forces 194…….…….Index of Participants 4 Program of the 76th Annual Meeting Awards Presentation & Annual Business Meeting APRIL 1, 2011 5 PM Call to Order Call for Approval of Minutes of the 2010 Annual Business Meeting Remarks President Margaret W.
    [Show full text]
  • Unit-V Evolution of Horse
    UNIT-V EVOLUTION OF HORSE Horses (Equus) are odd-toed hooped mammals belong- ing to the order Perissodactyla. Horse evolution is a straight line evolution and is a suitable example for orthogenesis. It started from Eocene period. The entire evolutionary sequence of horse history is recorded in North America. " Place of Origin The place of origin of horse is North America. From here, horses migrated to Europe and Asia. By the end of Pleis- tocene period, horses became extinct in the motherland (N. America). The horses now living in N. America are the de- scendants of migrants from other continents. Time of Origin The horse evolution started some 58 million years ago, m the beginning of Eocene period of Coenozoic era. The modem horse Equus originated in Pleistocene period about 2 million years ago. Evolutionary Trends The fossils of horses that lived in different periods, show that the body parts exhibited progressive changes towards a particular direction. These directional changes are called evo- lutionary trends. The evolutionary trends of horse evolution are summarized below: 1. Increase in size. 2. Increase in the length of limbs. 3. Increase in the length of the neck. 4. Increase in the length of preorbital region (face). 5. Increase in the length and size of III digit. 6. Increase in the size and complexity of brain. 7. Molarization of premolars. Olfactory bulb Hyracotherium Mesohippus Equus Fig.: Evolution of brain in horse. 8. Development of high crowns in premolars and molars. 9. Change of plantigrade gait to unguligrade gait. 10. Formation of diastema. 11. Disappearance of lateral digits.
    [Show full text]
  • Us Department of the Interior
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Palynological Data from the Imperial and Palm Spring Formations, Anza-Borrego Desert State Park, California by R. Parley Fleming! U.S. Geological Survey Open-File Report 93-678 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Denver, Colorado 1993 TABLE OF CONTENTS Introduction ...........................................................................................3 Acknowledgments ...................................................................................3 Regional Geology and Stratigraphy ................................................................3 Materials and Methods ...............................................................................4 Age Control ...........................................................................................4 Pliocene Palynology .................................................................................7 Reworked Cretaceous Pollen .......................................................................7 Implications of Reworked Pollen for Pliocene Climate ..........................................8 Conclusions ...........................................................................................9 References ...........................................................................................10
    [Show full text]
  • Barren Ridge FEIS-Volume IV Paleo Tech Rpt Final March
    March 2011 BARREN RIDGE RENEWABLE TRANSMISSION PROJECT Paleontological Resources Assessment Report PROJECT NUMBER: 115244 PROJECT CONTACT: MIKE STRAND EMAIL: [email protected] PHONE: 714-507-2710 POWER ENGINEERS, INC. PALEONTOLOGICAL RESOURCES ASSESSMENT REPORT Paleontological Resources Assessment Report PREPARED FOR: LOS ANGELES DEPARTMENT OF WATER AND POWER 111 NORTH HOPE STREET LOS ANGELES, CA 90012 PREPARED BY: POWER ENGINEERS, INC. 731 EAST BALL ROAD, SUITE 100 ANAHEIM, CA 92805 DEPARTMENT OF PALEOSERVICES SAN DIEGO NATURAL HISTORY MUSEUM PO BOX 121390 SAN DIEGO, CA 92112 ANA 032-030 (PER-02) LADWP (MARCH 2011) SB 115244 POWER ENGINEERS, INC. PALEONTOLOGICAL RESOURCES ASSESSMENT REPORT TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................................... 1 1.1 STUDY PERSONNEL ....................................................................................................................... 2 1.2 PROJECT DESCRIPTION .................................................................................................................. 2 1.2.1 Construction of New 230 kV Double-Circuit Transmission Line ........................................ 4 1.2.2 Addition of New 230 kV Circuit ......................................................................................... 14 1.2.3 Reconductoring of Existing Transmission Line .................................................................. 14 1.2.4 Construction of New Switching Station .............................................................................
    [Show full text]
  • Download Vol. 11, No. 3
    BULLETIN OF THE FLORIDA STATE MUSEUM BIOLOGICAL SCIENCES Volume 11 Number 3 CATALOGUE OF FOSSIL BIRDS: Part 3 (Ralliformes, Ichthyornithiformes, Charadriiformes) Pierce Brodkorb M,4 * . /853 0 UNIVERSITY OF FLORIDA Gainesville 1967 Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM are pub- lished at irregular intervals. Volumes contain about 800 pages and are not nec- essarily completed in any one calendar year. WALTER AuFFENBERC, Managing Editor OLIVER L. AUSTIN, JA, Editor Consultants for this issue. ~ HILDEGARDE HOWARD ALExANDER WErMORE Communications concerning purchase or exchange of the publication and all manuscripts should be addressed to the Managing Editor of the Bulletin, Florida State Museum, Seagle Building, Gainesville, Florida. 82601 Published June 12, 1967 Price for this issue $2.20 CATALOGUE OF FOSSIL BIRDS: Part 3 ( Ralliformes, Ichthyornithiformes, Charadriiformes) PIERCE BRODKORBl SYNOPSIS: The third installment of the Catalogue of Fossil Birds treats 84 families comprising the orders Ralliformes, Ichthyornithiformes, and Charadriiformes. The species included in this section number 866, of which 215 are paleospecies and 151 are neospecies. With the addenda of 14 paleospecies, the three parts now published treat 1,236 spDcies, of which 771 are paleospecies and 465 are living or recently extinct. The nominal order- Diatrymiformes is reduced in rank to a suborder of the Ralliformes, and several generally recognized families are reduced to subfamily status. These include Geranoididae and Eogruidae (to Gruidae); Bfontornithidae
    [Show full text]
  • The Significance of the Ancient Standing Stones, Villages, Tombs on Orkney Island
    The Proceedings of the International Conference on Creationism Volume 5 Print Reference: Pages 561-572 Article 43 2003 The Significance of the Ancient Standing Stones, Villages, Tombs on Orkney Island Lawson L. Schroeder Philip L. Schroeder Bryan College Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Schroeder, Lawson L. and Schroeder, Philip L. (2003) "The Significance of the Ancient Standing Stones, Villages, Tombs on Orkney Island," The Proceedings of the International Conference on Creationism: Vol. 5 , Article 43. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol5/iss1/43 THE SIGNIFICANCE OF THE ANCIENT STANDING STONES, VILLAGES AND TOMBS FOUND ON THE ORKNEY ISLANDS LAWSON L. SCHROEDER, D.D.S. PHILIP L. SCHROEDER 5889 MILLSTONE RUN BRYAN COLLEGE STONE MOUNTAIN, GA 30087 P. O. BOX 7484 DAYTON, TN 37321-7000 KEYWORDS: Orkney Islands, ancient stone structures, Skara Brae, Maes Howe, broch, Ring of Brodgar, Standing Stones of Stenness, dispersion, Babel, famine, Ice Age ABSTRACT The Orkney Islands make up an archipelago north of Scotland.
    [Show full text]
  • Parks Victoria Technical Series No
    Deakin Research Online This is the published version: Barton, Jan, Pope, Adam and Howe, Steffan 2012, Marine protected areas of the Flinders and Twofold Shelf bioregions Parks Victoria, Melbourne, Vic. Available from Deakin Research Online: http://hdl.handle.net/10536/DRO/DU:30047221 Reproduced with the kind permission of the copyright owner. Copyright: 2012, Parks Victoria. Parks Victoria Technical Paper Series No. 79 Marine Natural Values Study (Vol 2) Marine Protected Areas of the Flinders and Twofold Shelf Bioregions Jan Barton, Adam Pope and Steffan Howe* School of Life & Environmental Sciences Deakin University *Parks Victoria August 2012 Parks Victoria Technical Series No. 79 Flinders and Twofold Shelf Bioregions Marine Natural Values Study EXECUTIVE SUMMARY Along Victoria’s coastline there are 30 Marine Protected Areas (MPAs) that have been established to protect the state’s significant marine environmental and cultural values. These MPAs include 13 Marine National Parks (MNPs), 11 Marine Sanctuaries (MSs), 3 Marine and Coastal Parks, 2 Marine Parks, and a Marine Reserve, and together these account for 11.7% of the Victorian marine environment. The highly protected Marine National Park System, which is made up of the MNPs and MSs, covers 5.3% of Victorian waters and was proclaimed in November 2002. This system has been designed to be representative of the diversity of Victoria’s marine environment and aims to conserve and protect ecological processes, habitats, and associated flora and fauna. The Marine National Park System is spread across Victoria’s five marine bioregions with multiple MNPs and MSs in each bioregion, with the exception of Flinders bioregion which has one MNP.
    [Show full text]