Reducing the Health Risks of the Copper, Rare Earth and Cobalt Industries the Transition to a Low-Carbon Economy

Total Page:16

File Type:pdf, Size:1020Kb

Reducing the Health Risks of the Copper, Rare Earth and Cobalt Industries the Transition to a Low-Carbon Economy 2019 Greening heavy #GGSD and extractive 26 & 27 November OECD, Paris Forum industries Issue Paper Conference version Reducing the health risks of the copper, rare earth and cobalt industries The transition to a low-carbon economy Dr. Mike Holland EMRC and Imperial College London OECD GREEN GROWTH AND SUSTAINABLE DEVELOPMENT FORUM The GGSD Forum is an OECD initiative aimed at providing a dedicated space for multi-disciplinary dialogue on green growth and sustainable development. It brings together experts from different policy fields and disciplines and provides them with an interactive platform to encourage discussion, facilitate the exchange of knowledge and ease the exploitation of potential synergies. By specifically addressing the horizontal, multi-disciplinary aspects of green growth and sustainable development, the GGSD Forum constitutes a valuable supplement to the work undertaken in individual government ministries. The GGSD Forum also enables knowledge gaps to be identified and facilitates the design of new works streams to address them. AUTHORSHIP & ACKNOWLEDGEMENTS This issue note was prepared for the 2019 GGSD Forum to steer discussion around the theme of Parallel Session A on “Greening extractive sectors: mission possible?”. This paper considers the health and environmental burdens and impacts of the extraction and refining of selected metals (copper, rare earth elements and cobalt) and how impacts can be reduced through the transition to a circular, low-carbon economy. Performance in the global industry is extremely variable. Some businesses operate to high standards within a framework that facilitates the re-use and recycling of metals and other materials. Others cause significant harm to workers (including child labour) and the people and environment around their facilities. Mining for metal ore remains a highly hazardous occupation in some countries. Pollutant emission standards vary substantially between regions. Life cycle analysis has repeatedly demonstrated the benefits of recycling metals. The report includes a number of recommendations to policy makers and the metals and manufacturing industries The opinions expressed herein do not necessarily reflect the official views of the OECD member countries. This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. 3 │ Table of Contents Abbreviations and acronyms .................................................................................................................... 7 Executive Summary .................................................................................................................................. 9 1. Introduction ......................................................................................................................................... 13 1.1. Objectives of this report ................................................................................................................. 13 1.2. The Circular Economy ................................................................................................................... 13 1.3. Metals and the Circular Economy ................................................................................................. 14 2. Environmental health risks associated with primary and secondary metals production ............. 21 2.1. Production chains and induced hazards ........................................................................................ 21 2.2. Hazards associated with mining, and collection of secondary materials ...................................... 21 2.3. Hazards associated with initial processing of materials ............................................................... 25 2.4. Hazards associated with smelting and refining ............................................................................. 27 2.5. Comparative life cycle analysis of metals ...................................................................................... 27 2.6. Comparative analysis of primary and secondary metal flows ....................................................... 28 3. Environmental risks to human health associated with the primary and secondary production of copper, rare earth elements (REEs), and cobalt. .................................................................................. 31 3.1. Key insights .................................................................................................................................... 31 4. Discussion ............................................................................................................................................. 35 4.1. Examples of existing good practice in the global metals industry ................................................. 35 4.2. Examples of existing bad practice in the global metals industry ................................................... 35 4.3. Comparing primary and secondary metals production systems .................................................... 36 4.4. Knowledge gaps ............................................................................................................................. 37 4.5. Key policy questions ....................................................................................................................... 38 4.6. The roles of government and industry ............................................................................................ 40 Annex A. Copper ..................................................................................................................................... 43 Production and reserves ....................................................................................................................... 43 Copper production processes ................................................................................................................ 43 Occupational health risks of copper mining and production of copper concentrate ............................ 45 Environmental risks of copper mining and production of copper concentrate ..................................... 47 Health risks from collecting and initial processing of copper waste .................................................... 49 Emissions from copper smelting and refining ....................................................................................... 50 4 │ Life-cycle emissions to air and associated health impacts ................................................................... 52 Damage cost assessment for health impacts of air pollutants .............................................................. 53 Summary of the risks of copper production and health ........................................................................ 56 Annex B. Rare earths .............................................................................................................................. 59 The Rare Earth Elements ...................................................................................................................... 59 Current production and reserves of rare earth elements ...................................................................... 60 Processes for the production of refined rare earth metals .................................................................... 61 Rare earth mining and processing of ores ............................................................................................ 63 Collecting rare earths for secondary production, and initial processing ............................................. 65 Purification processes ........................................................................................................................... 66 Health impacts of the processing chain for production of refined rare earth metals ........................... 66 Life-cycle emissions to air and associated health impacts ................................................................... 67 Summary of the risks of rare earth production and health ................................................................... 71 Annex C. Cobalt ...................................................................................................................................... 75 Extraction and reserves ........................................................................................................................ 75 Cobalt and health .................................................................................................................................. 76 Cobalt mining and health ...................................................................................................................... 77 Health risks from collecting cobalt for secondary production, and initial processing ......................... 78 Primary and secondary cobalt production processes, and their burdens ............................................. 79 Life cycle analysis and associated health impacts ................................................................................ 83 Summary of the risks of cobalt production and health.......................................................................... 84 References ................................................................................................................................................ 87 Tables Table 1.1. Recycling rates for metals. .....................................................................................
Recommended publications
  • Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth
    Subscriber access provided by RES CENTER OF ECO ENVIR SCI Article Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Metals on Cobalt#Cerium Composite Oxide Catalysts for N2O Decomposition Li Xue, Hong He, Chang Liu, Changbin Zhang, and Bo Zhang Environ. Sci. Technol., 2009, 43 (3), 890-895 • DOI: 10.1021/es801867y • Publication Date (Web): 05 January 2009 Downloaded from http://pubs.acs.org on January 31, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Environ. Sci. Technol. 2009, 43, 890–895 Promotion Effects and Mechanism such as Fe-ZSM-5 are more active in the selective catalytic reduction (SCR) of N2O by hydrocarbons than in the - ° of Alkali Metals and Alkaline Earth decomposition of N2O in a temperature range of 300 400 C (3). In recent years, it has been found that various mixed Metals on Cobalt-Cerium oxide catalysts, such as calcined hydrotalcite and spinel oxide, showed relatively high activities. Composite Oxide Catalysts for N2O One of the most active oxide catalysts is a mixed oxide containing cobalt spinel. Calcined hydrotalcites containing Decomposition cobalt, such as Co-Al-HT (9-12) and Co-Rh-Al-HT (9, 11), have been reported to be very efficient for the decomposition 2+ LI XUE, HONG HE,* CHANG LIU, of N2O.
    [Show full text]
  • Stable Isotopes of Cobalt Properties of Cobalt
    Stable Isotopes of Cobalt Isotope Z(p) N(n) Atomic Mass Natural Abundance Nuclear Spin Co-59 27 32 58.93320 100.00% 7/2- Cobalt was discovered in 1735 by Georg Brandt. Its name derives from the German word kobald, meaning "goblin" or "evil spirit." Minerals containing cobalt were used by the early civilizations of Egypt and Mesopotamia for coloring glass deep blue. Cobalt oxide is used today to add a pink or blue color to glass. It is also an important trace element in soils and necessary for animal nutrition. The most important modern use of cobalt is in the manufacture of various wear-resistant and superalloys. Its alloys have shown high resistance to corrosion and oxidation at high temperatures. Radioactive Cobalt-60 is used in radiography and in the sterilization of food. A silvery-white, shining, hard, ductile, somewhat malleable metal, cobalt is also ferromagnetic, with permeability two-thirds that of iron. It has exceptional magnetic properties in alloys. It is attached by dilute hydrochloric and sulfuric acids. It corrodes readily in air, and it has unusual coordinating properties, especially the trivalent ion. It is noncombustible except in powder form. Cobalt occurs in two allotropic modifications over a wide range of temperatures: the crystalline close-packed- hexagonal form is known as the alpha form, which turns into the beta (or gamma) form above 417 ºC. In finely powdered form, cobalt ignites spontaneously in air. Reactions with acetylene and bromine pentafluoride proceed to incandescence and can become violent. The metal is moderately toxic by ingestion. Inhalation of dusts can damage lungs.
    [Show full text]
  • Developing a Solvent Extraction Process for the Separation of Cobalt and Iron from Nickel Sulfate Solutions
    Abstract DEVELOPING A SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF COBALT AND IRON FROM NICKEL SULFATE SOLUTIONS By Michiel Casparus Olivier Thesis presented in partial fulfilment of the requirements for the Degree of MASTER OF SCIENCE IN ENGINEERING (EXTRACTIVE METALLURGICAL ENGINEERING) In the faculty of Engineering at Stellenbosch University Supervised by Christie Dorfling December 2011 i Stellenbosch University http://scholar.sun.ac.za DeclarationAbstract DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. …………………………… ………………. Signature Date Copyright © 2011 Stellenbosch University All rights reserved i Stellenbosch University http://scholar.sun.ac.za Abstract ABSTRACT Crude NiSO4 solutions are often produced as a product of Sherrit based matte leach processes leading to iron and cobalt contaminated solutions of NiSO4. To upgrade the quality of these solutions for either, the production of NiSO4 crystals or cathode/precipitated nickel, the iron and cobalt must be removed. Conventional processes use either pure or saponified Cyanex 272 in solvent extraction to extract iron and cobalt from pregnant nickel leach solutions. These processes require the addition of an alkali like NaOH to neutralise the protons being exchanged for the different metal species since extraction is a strong function of pH. Hence, while removing iron and cobalt from the solution, sodium is added instead.
    [Show full text]
  • Cobalt Publications Rejected As Not Acceptable for Plants and Invertebrates
    Interim Final Eco-SSL Guidance: Cobalt Cobalt Publications Rejected as Not Acceptable for Plants and Invertebrates Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition ). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection ( Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding). No Dose Abdel-Sabour, M. F., El Naggr, H. A., and Suliman, S. M. 1994. Use of Inorganic and Organic Compounds as Decontaminants for Cobalt T-60 and Cesium-134 by Clover Plant Grown on INSHAS Sandy Soil. Govt Reports Announcements & Index (GRA&I) 15, 17 p. No Control Adams, S. N. and Honeysett, J. L. 1964. Some Effects of Soil Waterlogging on the Cobalt and Copper Status of Pasture Plants Grown in Pots. Aust.J.Agric.Res. 15, 357-367 OM, pH Adams, S.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • The Periodic Table of Elements
    The Periodic Table of Elements 1 2 6 Atomic Number = Number of Protons = Number of Electrons HYDROGENH HELIUMHe 1 Chemical Symbol NON-METALS 4 3 4 C 5 6 7 8 9 10 Li Be CARBON Chemical Name B C N O F Ne LITHIUM BERYLLIUM = Number of Protons + Number of Neutrons* BORON CARBON NITROGEN OXYGEN FLUORINE NEON 7 9 12 Atomic Weight 11 12 14 16 19 20 11 12 13 14 15 16 17 18 SODIUMNa MAGNESIUMMg ALUMINUMAl SILICONSi PHOSPHORUSP SULFURS CHLORINECl ARGONAr 23 24 METALS 27 28 31 32 35 40 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 POTASSIUMK CALCIUMCa SCANDIUMSc TITANIUMTi VANADIUMV CHROMIUMCr MANGANESEMn FeIRON COBALTCo NICKELNi CuCOPPER ZnZINC GALLIUMGa GERMANIUMGe ARSENICAs SELENIUMSe BROMINEBr KRYPTONKr 39 40 45 48 51 52 55 56 59 59 64 65 70 73 75 79 80 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 RUBIDIUMRb STRONTIUMSr YTTRIUMY ZIRCONIUMZr NIOBIUMNb MOLYBDENUMMo TECHNETIUMTc RUTHENIUMRu RHODIUMRh PALLADIUMPd AgSILVER CADMIUMCd INDIUMIn SnTIN ANTIMONYSb TELLURIUMTe IODINEI XeXENON 85 88 89 91 93 96 98 101 103 106 108 112 115 119 122 128 127 131 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 CESIUMCs BARIUMBa HAFNIUMHf TANTALUMTa TUNGSTENW RHENIUMRe OSMIUMOs IRIDIUMIr PLATINUMPt AuGOLD MERCURYHg THALLIUMTl PbLEAD BISMUTHBi POLONIUMPo ASTATINEAt RnRADON 133 137 178 181 184 186 190 192 195 197 201 204 207 209 209 210 222 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 FRANCIUMFr RADIUMRa RUTHERFORDIUMRf DUBNIUMDb SEABORGIUMSg BOHRIUMBh HASSIUMHs MEITNERIUMMt DARMSTADTIUMDs ROENTGENIUMRg COPERNICIUMCn NIHONIUMNh
    [Show full text]
  • Sudibyo S, Et Al. Optimization of Electrometal-Elektrowinning Cobalt Process from the Slag Copyright© Sudibyo S, Et Al
    Physical Science & Biophysics Journal MEDWIN PUBLISHERS ISSN: 2641-9165 Committed to Create Value for Researchers Optimization of Electrometal-Elektrowinning Cobalt Process from the Slag of Nickel Pig Iron (NPI) Hermida L1, Sudibyo S2*, Supriyatna YI2, Herlina U2, Handoko AS2, Prasetyo E2, Almutaqii M2 and Reswari PA1 Research Article Volume 4 Issue 2 1Department of Chemical Engineering, Engineering Faculty, Lampung University, Indonesia Received Date: October 09, 2020 2Research Unit for Mineral Technology, Indonesian Institute of Sciences (LIPI), Indonesia Published Date: October 27, 2020 *Corresponding author: Sudibyo Sudibyo, Research Unit for Mineral Technology, Indonesian Institute of Sciences (LIPI), Ir. Sutami street Km. 15, Tanjung Bintang, South Lampung district, Lampung Province, Indonesia, Tel: +6285881020870; Email: [email protected] Abstract Slag from the manufacturing of nickel pig iron (NPI) from laterite soil is still containing 823.7 ppm of cobalt. In this research, the separation process is carried out from slag NPI by using the Response Surface Method (RSM). This method is to determine the optimum conditional process of Electrometal Electrowinning (EMEW) and get an equation model to see the correlation isbetween leach the a variable slag using and acetic know acid,the most and significantthen extracted interfactor in two interaction.steps by versatic This research acid 10 andwas thenconducted with cyanex using three 272. parameters,The organic phaseconsists from of duration this extraction of operation, then stripped potential using voltage, 6 M and sulphuric variable acid of boric so obtained acid. The aqueous first step phase in electro-metal at pH 5.5 with electrowinning the highest cobalt content. The best condition of electro-metal electrowinning is obtained at 4.5 V, 2 hours, and 0.5 M of boric acid with 45.8273% of cobalt recovery.
    [Show full text]
  • Soft Magnetic Cobalt-Iron Alloys Vacoflux and Vacodur
    SOFT MAGNETIC COBALT-IRON ALLOYS VACOFLUX AND VACODUR ADVANCED MAGNETIC SOLUTIONS THE COMPANY VACUUMSCHMELZE ADVANCED MAGNETIC SOLUTIONS VAC is a leading manufacturer of magnetic materials as well as our refined solutions and their special magnetic and solutions. We passionately advance the tech- properties are the key to making our customers’ nologies of today and tomorrow. As a reliable partner, systems smaller, lighter, more efficient and, last but we work with our customers to develop application not least, safer. Thereby we contribute significantly to solutions that make it possible to meet constantly the saving of resources and the protection of our increasing requirements. We push technical boundaries environment. with groundbreaking solutions. The use of our materials 2 SOFT MAGNETIC COBALT-IRON ALLOYS VACOFLUX® AND VACODUR® THE COMPANY VACUUMSCHMELZE Contents Introduction Page 4 Magnetic properties Page 7 DC magnetic properties of strip material Page 8 DC magnetic properties of solid material Page 9 Specific iron losses of strip material Page 9 Mechanical properties Page 10 Mechanical properties of strip material Page 11 Mechanical properties of solid material Page 11 Physical properties Page 12 Corrosion resistance of VACOFLUX 9 CR Page 13 Processing Page 14 Magnetic final annealing Page 14 Adjusting mechanical properties for VACODUR strip material Page 16 General processing information Page 17 Forms of supply Page 18 SOFT MAGNETIC COBALT-IRON ALLOYS VACOFLUX® AND VACODUR® 3 INTRODUCTION VACUUMSCHMELZE is one of the world’s leading manufac- Our range of soft magnetic materials comprises nickel-iron, turers of special alloys with a particular focus on magnetic silicon-iron and cobalt-iron alloys, as well as amorphous and and specific physical properties.
    [Show full text]
  • Development of the New Method for Oxidized Nickel Ore Processing
    NIOKR-2018 Theoretical and practical conference with international participation and School KnE Materials Science for young scientists «FERROALLOYS: Development prospects of metallurgy and machine building based on completed Research and Development» Volume 2019 Conference Paper Development of the New Method for Oxidized Nickel Ore Processing Boris Dmitrievich Khalezov, Oleg Vadimovich Zayakin, Alexey Sergeevich Gavrilov, and Vladimir Ivanovich Zhuchkov IMET UB RAS, Ekaterinburg, Russia Abstract In modern conditions of sharp fluctuations in nickel prices on world markets, the problem of profitability of processing Russian poor oxidized nickel ores (ONO) has arisen. As an alternative to the previously existing in Russia, a sulphidation-reducing smelting on a matte, a hydro-pyrometallurgical method has been proposed for the preparation of complex nickel-, chromium-, manganese-containing ferroalloys. At the first stage, hydrolytic precipitation (with sodium hydroxide) is considered as a method of processing production solutions from heap leaching of ONO. It is established that Corresponding Author: at pH = 5.5, Al is completely removed in the precipitate as hydroxide. After washing Oleg Vadimovich Zayakin from impurities and calcining, a concentrate containing 50 wt.% Al was obtained. At the [email protected] second stage, at pH = 9.5, more than 99% of nickel and cobalt oxides, as well as 92% Received: 5 February 2019 MnO and 46% MgO, are precipitated. Obtained after washing and calcination at 700∘C Accepted: 6 March 2019 oxide concentrate contains, by weight. %: 67 NiO; 3 CoO; 20 MnO; 9 MgO; 0,2 S. At the Published: 17 March 2019 third stage, a pyrometallurgical method for smelting complex ferroalloys of the Fe-Ni-Cr- Publishing services provided by Mn-Si system using refractory ferrosilicochrome as a reducing agent is proposed for the Knowledge E processing of nickel-containing concentrate.
    [Show full text]
  • Preliminary Estimates of the Quantities of Rare-Earth Elements Contained in Selected Products and in Imports of Semimanufactured Products to the United States, 2010
    Preliminary Estimates of the Quantities of Rare-Earth Elements Contained in Selected Products and in Imports of Semimanufactured Products to the United States, 2010 By Donald I. Bleiwas and Joseph Gambogi Open-File Report 2013–1072 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order other USGS information products, visit http://store.usgs.gov Suggested citation: Bleiwas, D.I., and Gambogi, Joseph, 2013, Preliminary estimates of the quantities of rare-earth elements contained in selected products and in imports of semimanufactured products to the United States, 2010: U.S. Geological Survey Open–File Report 2013–1072, 14 p., http://pubs.usgs.gov/of/2013/1072/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Cover. Left: Aerial photograph of Molycorp, Inc.’s Mountain Pass rare-earth oxide mining and processing facilities in Mountain Pass, California.
    [Show full text]
  • Study on the Extraction and Separation of Zinc, Cobalt, and Nickel Using Ionquest 801, Cyanex 272, and Their Mixtures
    metals Article Study on the Extraction and Separation of Zinc, Cobalt, and Nickel Using Ionquest 801, Cyanex 272, and Their Mixtures Wensen Liu 1,2,3, Jian Zhang 3,4,5, Zhenya Xu 6, Jie Liang 1,* and Zhaowu Zhu 2,3,4,* 1 School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; [email protected] 2 Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China 3 National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190, China; [email protected] 4 Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 5 School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 6 The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100028, China; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (Z.Z.) Abstract: Both Cyanex 272 (bis (2,4,4-trimethylpentyl) phosphinic acid) and Ionquest 801 (2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester) are commonly used for metal extraction and separation, particularly for zinc, cobalt, and nickel, which are often found together in processing solutions. Detailed metal extractions of zinc, cobalt, and nickel were studied in this paper using Cya-nex 272, Ionquest 801, and their mixtures. It was found that they performed very similarly in zinc selectivity over cobalt. Cyanex 272 performed much better than Ionquest 801 in cobalt separation from nickel. Citation: Liu, W.; Zhang, J.; Xu, Z.; However, very good separation of them was also obtained with Ionquest 801 at its low concentration Liang, J.; Zhu, Z.
    [Show full text]
  • Transmittal of Draft EIR for Molycorp Mountain Pass Mine Expansion, for Review and Comment
    COUNTY OF SAN BERNARDINO PLANNING DEPARTMENT I,regular-! I PUBLIC WORKS GROUP -- W&- Sw1. NENNO lorth Arrowhead Avenue * San Bernardino, CA 924154182 * (909) 3874131 VALERY PILMER Director of Planning December 9, 1996No. 909) 3873223 IY RESPONSIBLE AND TRUSTEE AGENCIES INTERESTED ORGANIZATIONS AND INDIVIDUALS RE: NOTICE OF AVAILABILITY FOR THE DRAFT EIR ON THE MOLYCORP MOUNTAIN PASS MINE EXPANSION Dear Reader/Reviewer: Enclosed for your review and comment is the Draft EIR for the Molycorp Mountain Pass Mine Expansion. The purpose of the document is to identify and describe the probable environmental impacts that would result from the proposed expansion of Molycorp's existing mine and processing plant complex located at Mountain Pass, California. Mountain Pass is within the unincorporated portion San Bernardino County along Interstate 15 approximately 30 miles northeast of Baker and approximately 14 miles southwest of the Nevada stateline. The proposed quarry and waste rock areas would add 696 acres of disturbance to the existing mine site, resulting in a total disturbed area of approximately 1,044 acres. sag_> This document has been prepared to meet the State requirements of the California Environmental Quality Act. The Draft EIR has been prepared under the supervision of the County of San Bernardino Planning Department. The public comment period will end on January 27, 1997. Written comments should be addressed to: County of San Bemnardino- Planning Dgparnn 385 N. Arrowhead Avenue, Third Floor San Bernardino, CA 92415-0182 Attn: Randy Scott Sincerely, Randy Scottjlanning Manager, San Berardo County Planning Department ~-! - nLA ,;;K Scr.'Eperviscs .,* 1:,. 3 - -, I- . 1 12 4~ ..!A','V34-' TUrCCI Vi~i D;s~ri:n, BARBA~RA CPANM FURtOPAN .
    [Show full text]