Winter 2007 Kelseya

Total Page:16

File Type:pdf, Size:1020Kb

Winter 2007 Kelseya Winter 2007 Kelseya Volume 20 No. 2 e i n Kelseya n o B : n Newsletter of the Montana Native Plant Society o i t a r t s www.umt.edu/mnps/ u l l I MNPS CELEBRATES 20 YEARS! To celebrate 20 years of MNPS and tributed elsewhere, but Kelseya is ter in Maine and Massachusetts be- this publication, we are reprinting found mainly in Montana. fore moving to Montana in 1885. the following two articles from early The genus Kelseya was named in Kelsey served as a minister in He- issues of the Kelseya. You will find honor of Francis Duncan Kelsey, who lena from 1885 to 1893. From 1887 to early newsletter mastheads sprin- first discovered the plant along the 1890, he was also a lecturer at the kled throughout this publication. Missouri River northeast of Helena in College of Montana in Deer Lodge. 1888. He was one of Montana’s first During that time, Kelsey studied the resident botanists. flora and collected nearly 500 fungi Kathy Ahlenslager Vol. 1 No. 2 Winter and 650 vascular plant specimens. elseya uniflora 1988 Twenty-three of the fungal speci- (Watson) Rydberg is an mens and 18 of the vascular plant Kintricately branched, mat forming, specimens were nomenclatural types. partially evergreen shrub in the Rose He discovered at least five plant spe- family (Rosaceae). It has small red- cies that were new to science. These dish-purple flowers that are pro- include Kelsey’s milkvetch duced very early in the spring. Kel- (Astragalus atropubescens), small seya is most often found growing shooting star (Dodecatheon con- from cracks in limestone cliffs where jugens), kelseya (Kelseya uniflora), it forms mats that cover the cliff white-margined phlox (Phlox albo- faces like patches of thick, green marginata), and Kelsey’s phlox tapestry. (Phlox kelseyi). Most of these plants Kelseya is locally common in the he discovered within a few miles of mountains east of the Continental Helena. The majority of his collec- Divide, from the Little Belt Moun- tions were made in Lewis and Clark, tains near Great Falls and the Front Jefferson, and Powell Counties, but Range west of Augusta, south to the he also collected in Cascade, Deer Centennial Mountains and the Bear- Lodge, Gallatin, Granite, Madison, tooth Mountains on the southern bor- Park, Sweet Grass, and Yellowstone der of Montana. It is currently known Counties. Kelsey’s collecting and from Beaverhead, Big Horn, Broad- teaching of the local flora did much water, Carbon, Gallatin, Lewis and Our first newsletter, Fall 1987. to arouse interest in botany through- Clark, Meagher, and Teton Counties out the state. He directed the assem- in Montana. It also occurs in four bly of a collection of Montana plant counties in northwestern Wyoming specimens for display at the 1893 and two counties is south-central rancis Duncan Kelsey was World’s Fair. This collection is now Idaho. born in Indiana in 1849 housed at the herbarium at Montana Fand spent most of his early years in State University in Bozeman. The Kelseya is a monotypic genus, which means that this one species is Ohio. He received a Bachelor’s de- remainder of his collection so unique that it must be placed by gree from Marietta College in Ohio (eventually totaling over 6,000 speci- itself in a separate group. Almost all and attended Andover Theological mens) is at the herbarium of Miami species of plants in our state are in Seminary in Massachusetts, then University in Ohio. genera which are more widely dis- served as a Congregationalist minis- (Continued on page 9) Kelseya President’s Platform Susan Winslow Happy New Year and Happy Anni- activities as detailed in the Kelseya There is a move afoot to change versary MNPS! May we all continue to winter 2006 issue. leadership of this committee. An support conservation toward healthy Membership: Membership was re- electronic update of the Source and sustainable environments. ported at 611, up from 537 in 2005. Guide for Native Plants of Montana The Montana Native Plant Society Multiple-member families actually will proceed as time allows. was organized and incorporated in bump the total up to over 800. My Elections: A small committee was set the fall of 1987. Over the past 20 how that 1987 register of 250 has up to secure nominations for the years, the Society has blossomed and grown! Note that it’s time to pay spring election of President, Treas- borne the fruits of dedication and dues, so when you get the renewal urer, and Western Director At-large. hard work. In looking back at old notice in the mail, please send in See page 3. newsletters, the underlying message your payment. Thanks! Awards: An important aspect of the is one of determination. The seeds of Newsletter: Should we go electronic summer meeting is the presentation diligence were sown and over time and e-distribute the newsletter? of a special award to a deserving sprouted into the spirited organiza- Some states do so to reduce mailing member, and once again, nomina- tion we see today: self-governed, expenses. There are many issues as- tions are being accepted. If you fully functional, and highly moti- sociated with making a transition of have someone in mind, details can be vated. The core group faced signifi- that magnitude. If you have found on page 3. cant challenges that many of us cur- thoughts, I’m sure the editors would The Board of Directors meetings rently take for granted, such as a set like to hear them. are open to the general membership. of functional bylaws, a viable bank Webmaster: The webmaster position The next meeting is scheduled in He- account and annual operating is still in somewhat of a state of lena on March 3. There is a concern budget, productive committees and limbo. The board approved a small about a lack of chapter participation special projects, active chapters and annual stipend for maintaining the at the board meetings. Most re- field trips, and record-setting atten- website, so if anyone with html- cently, response to the request for dance at the annual meeting. We programming skills is interested, agenda items/activity reports was owe that pioneering bunch of enthu- please contact myself or Marilyn Mar- minimal, and overall attendance was siastic individuals a huge debt of ler. Thanks again to Marilyn for con- pretty low. On behalf of the entire gratitude, which can be expressed tinuing to update our site. board, I’m asking that each chapter with continued personal support and Small Grant Committee: Included in discuss the need for consistent repre- involvement at the Society’s local this issue is a call for the 2007 Small sentation at these meetings held only and state levels. In that regard, the Grant Program. Since 1996, Small three times a year. Remember the Board of Directors addressed at the Grants have played an integral role in abovementioned gambit about being fall meeting several areas of major stimulating research, appreciation, self-governed? Actions by a few do interest to the membership. and conservation of Montana’s native not constitute agreement by many. There is always a need to raise flora. Read more about this opportu- Thanks for your attention and have a money and we’re still looking for nity on page 4. Merry Winter! someone to spearhead fund-raising Landscape/Revegetation Committee: Susan can be reached at P.O. Box 502, Bridger, MT 59014 406-668-9112 e-mail: [email protected] 2007 Annual Meeting Scheduled WELCOME new members! MNPS Dues Increase The Montana Native Plant Society Effective January 2007 there will be Mark your calendars now! The 2007 extends a warm welcome to the fol- a slight increase in MNPS dues. An MNPS annual meeting is June 29-July lowing new members: individual with chapter affiliation 1, 2007, at Georgetown Lake. The will be $20 and without affiliation Kelsey Chapter is busy with plans to Clark Fork Chapter: Mary Lawrence; will be $15. Other categories were make this event one not to be Flathead Chapter: Annie Lavoie, raised proportionately. The board missed. We have a camp rented right Frances Towl; Kelsey Chapter: Rich- was reluctant to raise the cost of on the lake and the event promises ard Davis; Maka Flora: Laura Senior. membership, but noted that costs to be loads of fun. There are lots of great hiking opportunities and sev- Your participation and support are have increased and dues have been eral Forest Service Research Natural important to us! Please contact your unchanged for a number of years. chapter representative with any Areas are close by. Wildflowers ideas or suggestions you may have. should be abundant! Plan ahead and we’ll see you then. 2 Kelseya Winter 2007 20 Years of Native Plant Conservation MNPS is in a nearly unique position Winter 1988 to do conservation work. True or not, environmental organizations have been accused of stirring up contro- Wildflowers Photo Award Nominations versy in order to feather their own and Art Contest a Due by April 1st nests with contributions. MNPS is a completely volunteer organization, Huge Success!! The Montana Native Plant Society and partly because of this, is consid- The Flathead Chapter hosted its presents two awards. The Out- ered an unbiased source of informa- first Photo and Art Contest this last standing Service Award is given no tion and ideas on conservation issues summer. The contest was promoted more than once a year to a member by natural resource agencies. Over as part of the national Celebrating of MNPS for service to the Society. the past 20 years MNPS (Flathead Wildflowers program and celebrated The award consists of a certificate Chapter) successfully petitioned for the beauty and diversity of native accompanied by an individualized the listing of two threatened plants plants in Montana.
Recommended publications
  • Permanent Draft Genome Sequence of Frankia Sp. NRRL B-16219 Reveals
    Ktari et al. Standards in Genomic Sciences (2017) 12:51 DOI 10.1186/s40793-017-0261-3 EXTENDEDGENOMEREPORT Open Access Permanent draft genome sequence of Frankia sp. NRRL B-16219 reveals the presence of canonical nod genes, which are highly homologous to those detected in Candidatus Frankia Dg1 genome Amir Ktari1, Imen Nouioui1, Teal Furnholm2, Erik Swanson2, Faten Ghodhbane-Gtari1, Louis S. Tisa2 and Maher Gtari1* Abstract Frankia sp. NRRL B-16219 was directly isolated from a soil sample obtained from the rhizosphere of Ceanothus jepsonii growing in the USA. Its host plant range includes members of Elaeagnaceae species. Phylogenetically, strain NRRL B-16219 is closely related to “Frankia discariae” with a 16S rRNA gene similarity of 99.78%. Because of the lack of genetic tools for Frankia, our understanding of the bacterial signals involved during the plant infection process and the development of actinorhizal root nodules is very limited. Since the first three Frankia genomes were sequenced, additional genome sequences covering more diverse strains have helped provide insight into the depth of the pangenome and attempts to identify bacterial signaling molecules like the rhizobial canonical nod genes. The genome sequence of Frankia sp. strain NRRL B-16219 was generated and assembled into 289 contigs containing 8,032,739 bp with 71.7% GC content. Annotation of the genome identified 6211 protein-coding genes, 561 pseudogenes, 1758 hypothetical proteins and 53 RNA genes including 4 rRNA genes. The NRRL B-16219 draft genome contained genes homologous to the rhizobial common nodulation genes clustered in two areas. The first cluster contains nodACIJH genes whereas the second has nodAB and nodH genes in the upstream region.
    [Show full text]
  • Production, Pomological and Nutraceutical Properties of Apricot
    1 Production, pomological and nutraceutical properties of apricot Khaled Moustafa1* and Joanna Cross2 1Editor of ArabiXiv (arabixiv.org), Paris, France 2Nigde Omer Halisdemir University, Nigde, Turkey Correspondence: [email protected] Abstract Apricot (Prunus sp.) is an important fruit crop worldwide. Despite recent advances in apricot research, much is still to be done to improve its productivity and environmental adaptability. The availability of wild apricot germplasms with economically interesting traits is a strong incentive to increase research panels toward improving its economic, environmental and nutritional characteristics. New technologies and genomic studies have generated a large amount of raw data that the mining and exploitation can help decrypt the biology of apricot and enhance its agronomic values. Here, we outline recent findings in relation to apricot production, pomological and nutraceutical properties. In particular, we retrace its origin from central Asia and the path it took to attain Europe and other production areas around the Mediterranean basin while locating it in the rosaceae family and referring to its genetic diversities and new attempts of classification. The production, nutritional, and nutraceutical importance of apricot are recapped in an easy readable and comparable way. We also highlight and discuss the effects of late frost damages on apricot production over different growth stages, from swollen buds to green fruits formation. Issues related to the length of production season and biotic and abiotic environmental challenges are also discussed with future perspective on how to lengthen the production season without compromising the fruit quality and productivity. Keywords Apricot kernel oil, plum pox virus, prunus armeniaca, spring frost, stone fruit, sharka.
    [Show full text]
  • Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription
    Hindawi BioMed Research International Volume 2018, Article ID 7627191, 10 pages https://doi.org/10.1155/2018/7627191 Research Article Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription Jiahui Sun ,1,2 Shuo Shi ,1,2,3 Jinlu Li,1,4 Jing Yu,1 Ling Wang,4 Xueying Yang,5 Ling Guo ,6 and Shiliang Zhou 1,2 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2University of the Chinese Academy of Sciences, Beijing 100043, China 3College of Life Science, Hebei Normal University, Shijiazhuang 050024, China 4Te Department of Landscape Architecture, Northeast Forestry University, Harbin 150040, China 5Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China 6Beijing Botanical Garden, Beijing 100093, China Correspondence should be addressed to Ling Guo; [email protected] and Shiliang Zhou; [email protected] Received 21 September 2017; Revised 11 December 2017; Accepted 2 January 2018; Published 19 March 2018 Academic Editor: Fengjie Sun Copyright © 2018 Jiahui Sun et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Maleae consists of economically and ecologically important plants. However, there are considerable disputes on generic circumscription due to the lack of a reliable phylogeny at generic level. In this study, molecular phylogeny of 35 generally accepted genera in Maleae is established using 15 chloroplast regions. Gillenia isthemostbasalcladeofMaleae,followedbyKageneckia + Lindleya, Vauquelinia, and a typical radiation clade, the core Maleae, suggesting that the proposal of four subtribes is reasonable.
    [Show full text]
  • They Come in Teams
    GBE Frankia-Enriched Metagenomes from the Earliest Diverging Symbiotic Frankia Cluster: They Come in Teams Thanh Van Nguyen1, Daniel Wibberg2, Theoden Vigil-Stenman1,FedeBerckx1, Kai Battenberg3, Kirill N. Demchenko4,5, Jochen Blom6, Maria P. Fernandez7, Takashi Yamanaka8, Alison M. Berry3, Jo¨ rn Kalinowski2, Andreas Brachmann9, and Katharina Pawlowski 1,* 1Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden 2Center for Biotechnology (CeBiTec), Bielefeld University, Germany 3Department of Plant Sciences, University of California, Davis 4Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia 5Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia 6Bioinformatics and Systems Biology, Justus Liebig University, Gießen, Germany 7Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Universite Lyon I, Villeurbanne Cedex, France 8Forest and Forestry Products Research Institute, Ibaraki, Japan 9Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany *Corresponding author: E-mail: [email protected]. Accepted: July 10, 2019 Data deposition: This project has been deposited at EMBL/GenBank/DDBJ under the accession PRJEB19438 - PRJEB19449. Abstract Frankia strains induce the formation of nitrogen-fixing nodules on roots of actinorhizal plants. Phylogenetically, Frankia strains can be grouped in four clusters. The earliest divergent cluster, cluster-2, has a particularly wide host range. The analysis of cluster-2 strains has been hampered by the fact that with two exceptions, they could never be cultured. In this study, 12 Frankia-enriched meta- genomes of Frankia cluster-2 strains or strain assemblages were sequenced based on seven inoculum sources. Sequences obtained via DNA isolated from whole nodules were compared with those of DNA isolated from fractionated preparations enhanced in the Frankia symbiotic structures.
    [Show full text]
  • Willdenowia Annals of the Botanic Garden and Botanical Museum Berlin-Dahlem
    Willdenowia Annals of the Botanic Garden and Botanical Museum Berlin-Dahlem JOACHIM W. KADEREIT1*, DIRK C. ALBACH2, FRIEDRICH EHRENDORFER3, MERCÈ GALBANY-CASALS4, NÚRIA GARCIA-JACAS5, BERIT GEHRKE1, GUDRUN KADEREIT6,1, NORBERT KILIAN7, JOHANNES T. KLEIN1, MARCUS A. KOCH8, MATTHIAS KROPF9, CHRISTOPH OBERPRIELER10, MICHAEL D. PIRIE1,11, CHRISTIANE M. RITZ12, MARTIN RÖSER13, KRZYSZTOF SPALIK14, ALFONSO SUSANNA5, MAXIMILIAN WEIGEND15, ERIK WELK16, KARSTEN WESCHE12,17, LI-BING ZHANG18 & MARKUS S. DILLENBERGER1 Which changes are needed to render all genera of the German lora monophyletic? Version of record irst published online on 24 March 2016 ahead of inclusion in April 2016 issue. Abstract: The use of DNA sequence data in plant systematics has brought us closer than ever to formulating well- founded hypotheses about phylogenetic relationships, and phylogenetic research keeps on revealing that plant genera as traditionally circumscribed often are not monophyletic. Here, we assess the monophyly of all genera of vascular plants found in Germany. Using a survey of the phylogenetic literature, we discuss which classiications would be consistent with the phylogenetic relationships found and could be followed, provided monophyly is accepted as the primary criterion for circumscribing taxa. We indicate whether and which names are available when changes in ge- neric assignment are made (but do not present a comprehensive review of the nomenclatural aspects of such names). Among the 840 genera examined, we identiied c. 140 where data quality is suiciently high to conclude that they are not monophyletic, and an additional c. 20 where monophyly is questionable but where data quality is not yet suicient to reach convincing conclusions. While it is still iercely debated how a phylogenetic tree should be trans- lated into a classiication, our results could serve as a guide to the likely consequences of systematic research for the taxonomy of the German lora and the loras of neighbouring countries.
    [Show full text]
  • Permanent Draft Genome Sequence for Frankia Sp. Strain Cci49, a Nitrogen-Fixing Bacterium Isolated from Casuarina Cunninghamiana That Infects Elaeagnaceae
    University of New Hampshire University of New Hampshire Scholars' Repository Molecular, Cellular and Biomedical Sciences Scholarship Molecular, Cellular and Biomedical Sciences 9-12-2017 Permanent Draft Genome sequence for Frankia sp. strain CcI49, a Nitrogen-Fixing Bacterium Isolated from Casuarina cunninghamiana that Infects Elaeagnaceae Samira R. Mansour Suez Canal University Erik Swanson University of New Hampshire, Durham Zakkary McNutt University of New Hampshire, Durham Celine Pesce University of New Hampshire, Durham, [email protected] Kelsey Harrington University of New Hampshire, Durham See next page for additional authors Follow this and additional works at: https://scholars.unh.edu/mcbs_facpub Recommended Citation Mansour,S., E. SWANSON, Z. MCNUTT, C. Pesce, K. HARRINGTON, F. Abebe-Alele, S. Simpson, K. Morris, W. K. Thomas, and L. S. Tisa. 2017. Permanent Draft Genome sequence for Frankia sp. strain CcI49, a Nitrogen-Fixing Bacterium Isolated from Casuarina cunninghamiana that Re-infects Elaegnaceae. J. Genomics 5:115-119 doi: 10.7150/jgen.22138 This Article is brought to you for free and open access by the Molecular, Cellular and Biomedical Sciences at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Molecular, Cellular and Biomedical Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Authors Samira R. Mansour, Erik Swanson, Zakkary McNutt, Celine Pesce, Kelsey Harrington, Feseha Abebe-Akele, Stephen Simpson, Krystalynne Morris, W. Kelley Thomas, and Louis S. Tisa This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/mcbs_facpub/ 182 Journal of Genomics 2017, Vol.
    [Show full text]
  • A Synopsis of the Expanded Rhaphiolepis (Maleae, Rosaceae)
    A peer-reviewed open-access journal PhytoKeys 154: 19–55 (2020) Synopsis of Rhaphiolepis (Rosaceae) 19 doi: 10.3897/phytokeys.154.52790 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research A synopsis of the expanded Rhaphiolepis (Maleae, Rosaceae) Bin-Bin Liu1,2*, Yu-Bing Wang2,3*, De-Yuan Hong1, Jun Wen2 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Scien- ces, Beijing 100093, China 2 Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA 3 Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges Uni- versity, Yichang, 443002, China Corresponding author: Jun Wen ([email protected]) Academic editor: A. Sennikov | Received 1 April 2020 | Accepted 6 June 2020 | Published 4 August 2020 Citation: Liu B-B, Wang Y-B, Hong D-Y, Wen J (2020) A synopsis of the expanded Rhaphiolepis (Maleae, Rosaceae). PhytoKeys 154: 19–55. https://doi.org/10.3897/phytokeys.154.52790 Abstract As part of the integrative systematic studies on the tribe Maleae, a synopsis of the expanded Rhaphiolepis is presented, recognizing 45 species. Three new forms were validated: R. bengalensis f. contracta B.B.Liu & J.Wen, R. bengalensis f. intermedia B.B.Liu & J.Wen, and R. bengalensis f. multinervata B.B.Liu & J.Wen, and four new combinations are made here: R. bengalensis f. angustifolia (Cardot) B.B.Liu & J.Wen, R. bengalensis f. gigantea (J.E.Vidal) B.B.Liu & J.Wen, R. laoshanica (W.B.Liao, Q.Fan & S.F.Chen) B.B.Liu & J.Wen, and R.
    [Show full text]
  • Frankia Torreyi Sp. Nov., an Actinobacterium Isolated From
    1 Frankia torreyi sp. nov., an actinobacterium isolated from Comptonia peregrina that 2 effectively nodulates members of Myricaceae and Alnus species 3 4 5 Imen Nouioui1, Faten Ghodhbane-Gtari2, 3, Marlen Jando4, Louis S. Tisa5, Hans-Peter Klenk1, 6 Maher Gtari3* 7 8 1. School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, 9 Newcastle upon Tyne, NE1 7RU, United Kingdom. 10 2. Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST), 11 2092 Tunis, Tunisia. 12 3. Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre 13 Urbain Nord, BP 676-1080 Tunis Cedex, Tunisia. 14 4. Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, 15 Inhoffenstraße 7B, 38124 Braunschweig, Germany. 16 5. Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire. 17 USA. 18 19 Corresponding author: Maher Gtari [email protected] 20 Section: Actinobacteria 21 Keywords: Frankia, symbiosis, chemotaxonomy, phenotyping 22 23 Running title: Description of Frankia torreyi sp. nov. 24 The journal’s contents category (New taxa-Actinobacteria) 25 The GenBank accession numbers of strain CpI1T for 16S rRNA gene and genome sequences 26 are MH423838 and JYFN00000000.1 respectively. 27 28 29 30 1 31 Abstract 32 Strain CpI1T is the first isolate of the genus Frankia that was obtained from Comptonia 33 peregrina root nodules in 1978. In this study, a polyphasic approach was performed to identify 34 the taxonomic position of strain CpI1T among the genus Frankia. It contained meso- 35 Diaminopimelic acid as the diagnostic diamino acid, and had galactose, glucose, mannose, 36 rhamnose, ribose and xylose as cell wall sugars.
    [Show full text]
  • Morphology and Phytochemistry of Sanguisorba Officinalis L. Seeds (Rosaceae)
    Journal of Applied Botany and Food Quality 94, 92 - 98 (2021), DOI:10.5073/JABFQ.2021.094.011 1Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Bad Boll/Eckwälden, Germany 2Department of Plant Systems Biology, Hohenheim University, Stuttgart, Germany Morphology and phytochemistry of Sanguisorba offcinalis L. seeds (Rosaceae) Marek Bunse1,2, Florian Conrad Stintzing1, Dietmar Rolf Kammerer1,* (Submitted: October 15, 2020; Accepted: April 29, 2021) Summary grow 10 to 200 cm high, with further leaves arranged alternately up Great burnet (Sanguisorba offcinalis) has been used as medicinal the stem. The leaves are pinnate with serrated margins. Flowers are plant for more than 2000 years. However, little is known about the small, tetramerous or trimerous and often unisexual, and they lack morphology and the secondary metabolites of its seeds. The inves- petals (WANG et al., 2020). The stamina have long flaments, and gy- tigations reported here focus on the morphology and the characteri- noecia consist of a single carpel topped with a feathery style (KALK- zation of phenolics and fatty acids in S. offcinalis seeds. For this MAN, 2004). The fowers are small, dense clusters or spikes with a purpose, dried seeds were investigated using scanning electron length of 1 to 7 cm (BLAscHEK et al., 2018; UCHIDA and OHARA, microscopy to clarify their compartment structures. Furthermore, 2018). The fowering stage ranges from June to September and the fruit phases are usually from August to November. The fruits of San- the seeds were extracted with CH2Cl2 and MeOH to characterize the fatty acids and to assess the secondary metabolite profle.
    [Show full text]
  • Multiple Models for Rosaceae Genomics[OA]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Genome Analysis Multiple Models for Rosaceae Genomics[OA] Vladimir Shulaev*, Schuyler S. Korban, Bryon Sosinski, Albert G. Abbott, Herb S. Aldwinckle, Kevin M. Folta, Amy Iezzoni, Dorrie Main, Pere Aru´ s, Abhaya M. Dandekar, Kim Lewers, Susan K. Brown, Thomas M. Davis, Susan E. Gardiner, Daniel Potter, and Richard E. Veilleux Virginia Bioinformatics Institute and Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (V.S., R.E.V.); Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois 61801 (S.S.K.); Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695 (B.S.); Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634 (A.G.A.); Department of Plant Pathology (H.S.A.), and New York State Agricultural Experiment Station, Department of Horticultural Sciences (S.K.B.), Cornell University, Geneva, New York 14456; Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, Gainesville, Florida 32611 (K.M.F.); Department of Horticulture, Michigan State University, East Lansing, Michigan 48824 (A.I.); Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington 99164 (D.M.); Institut de Recerca i Technologia Agroalimenta`ries (IRTA), Centre de Recerca en Agrigeno`mica (CSIC-IRTA-UAB), 08348 Cabrils,
    [Show full text]
  • Genetic Mapping and Phenotyping Plant Characteristics, Fruit Quality and Disease Resistance Traits in Octoploid Strawberry (Fragaria × Ananassa)
    UNIVERSITY OF READING Genetic mapping and phenotyping plant characteristics, fruit quality and disease resistance traits in octoploid strawberry (Fragaria × ananassa) Thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences Laima Antanaviciute February, 2016 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. ……………………………………………………… Abstract The cultivated strawberry (Fragaria × ananassa Duch.) is the third most economically important fruit crop. In recent years the withdrawal of many fungicides and soil fumigants have made the sustainability and profitability of this crop more challenging. To overcome these challenges, plant breeders aim to improve upon existing cultivars and to release new ones with higher yield, better fruit quality and more disease resistance. Through Quantitative Trait Mapping, markers linked to genetic variants associated with traits of economic and agronomic importance can be identified through and molecular markers such as simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), can be used to improve plant breeding efficiency at the molecular level, which significantly reduces the breeding time and cost of phenotyping. In this thesis the following work is described: a correlation analysis of plant characteristics and fruit quality traits; the saturation of an existing SSR-based linkage map; the development of a high density consensus SNP-based octoploid strawberry linkage map, and the identification of quantitative trait loci (QTL) linked to two key plant attributes, fruit quality and powdery mildew resistance. In addition, the most closely linked SSR markers were identified and validated in a wider strawberry germplasm using firmness as an example study.
    [Show full text]
  • Characterization and Comparison of Two Complete Plastomes of Rosaceae Species (Potentilla Dickinsii Var
    International Journal of Molecular Sciences Article Characterization and Comparison of Two Complete Plastomes of Rosaceae Species (Potentilla dickinsii var. glabrata and Spiraea insularis) Endemic to Ulleung Island, Korea JiYoung Yang 1, Gi-Ho Kang 2, Jae-Hong Pak 1,* and Seung-Chul Kim 3,* 1 Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea; [email protected] 2 Baekdudaegan National Arboretum, 1501 Chunyang-ro, Chungyang-myeon, Bonghwa-gun, Gyeongsangbuk-do 36209, Korea; [email protected] 3 Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do 16419, Korea * Correspondence: [email protected] (J.-H.P.); [email protected] (S.-C.K.); Tel.: +82-53-950-5352 (J.-H.P.); +82-31-299-4499 (S.-C.K.) Received: 2 June 2020; Accepted: 10 July 2020; Published: 13 July 2020 Abstract: Potentilla dickinsii var. glabrata and Spiraea insularis in the family Rosaceae are species endemic to Ulleung Island, Korea, the latter of which is listed as endangered. In this study, we characterized the complete plastomes of these two species and compared these with previously reported plastomes of other Ulleung Island endemic species of Rosaceae (Cotoneaster wilsonii, Prunus takesimensis, Rubus takesimensis, and Sorbus ulleungensis). The highly conserved complete plastomes of P. dickinsii var. glabrata and S. insularis are 158,637 and 155,524 base pairs with GC contents of 37% and 36.9%, respectively. Comparative phylogenomic analysis identified three highly variable intergenic regions (trnT-UGU/trnL-UAA, rpl32/trnL-UAG, and ndhF/rpl32) and one variable genic region (ycf1).
    [Show full text]