Hydrologic Budget of the Beaverdam Creek Basin Maryland
Total Page:16
File Type:pdf, Size:1020Kb
Hydrologic Budget of the Beaverdam Creek Basin Maryland GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1472 Prepared in cooperation with the Maryland Department of Geology, Mines and Heater Resources Hydrologic Budget of the Beaverdam Creek Basin Maryland By WILLIAM C. RASMUSSEN and GORDON E. ANDREASEN GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1472 Prepared in cooperation with the Maryland Department of Geology, Mines and Water Resources UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U. S. Geological Survey Library has cataloged this publication as follows: Rasmussen, William Charles, 1917- Hydrologic budget of the Beaverdam Creek basin, Mary land, by William C. Rasmussen and Gordon E. Andreasen. Washington, U. S. Govt. Print. Off., 1958. v, 106 p. illus., maps. 25 cm. (U. S. Geological Survey. Water- supply paper 1472) Part of illustrative matter folded in pocket. "Prepared in cooperation with the Maryland Dept of Geology, Mines, and Water Resources." Bibliography: p. 101-104. 1. Water, Underground Maryland Beaverdam Creek basin. 2. Water-supply Maryland Beaverdam Creek basin. i. Andreasen, Gordon Ellsworth, 1924- joint author, n. Title. (Series) TC801.U2 no. 1472 551.490976225 G S 59-168 Copy 2. GB1025.M3R3 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Abstract__________________-____________-_____-____---_-------_-- 1 Introduction..-_-_________-_-___________________-_---_---_-------- 2 Purpose and scope of the investigation,-------------------------- 2 Acknowledgments _________-____________-_---__---------------- 8 Geography.-________________________________--____---------- 9 Location, extent, and relief of the drainage basin._____________ 9 Ponds_________________________-___-- ,-- 9 Vegetation_-_-____-_______________________-___-_-------- 9 Climate.___--__---___-_-______-__-__-____---_------------ 9 Population and culture--__-______---_-.-___---------------- 1& Geology--------------------------------.----.-------------------- 13 Geomorphology. _____-___---_.___---__--__-__--_---_-_-------- 14 Terraces__ __ _--___________________-__-_-_-_--_--------- 15 Stream development-------.-----------------.------------- 1? "Maryland basins"__--__--__________-_-___-_ ___________ 18 Dunes_____-------------_--__-____-__---_---__----------_ 24 Stratigraphy __________________________________________________ 25 Tertiary sy8tem______________.____________________________ 25 Miocene series._______________________________________ 25 Chesapeake group below Yorktown formation.________ 32 Yorktown formation and Cohansey(?) sand-__________ 32 Pliocene(?) series__________________-__-________________ 32 Quaternary system-___-___________________________________ 34 Pleistocene series_-___-______________________-_______-_ 34 Beaverdam sand_______________________________ 35 Walston silt__-.___-___--__-__-_-___-_--_--___-- 38 Talbot and Pamlico formations__-_______-_-_-_--__ 39 Parsonsburg sand________________________________ 40 Recent series___--_---_____________-_____-______.____ 42 Influence of geologic features on the hydrologic budget.____________ 43 Hydrologic budget_______________________________________________ 44 Instrumentation. ______________________________________________ 44 Surveying._______________________________________________ 46 Observation wells________________________________________ 46 Water levels and barometric pressure ____________________ 48 Temperature of the ground water_______.__--_____-_--_ 54 Rain gages____________________________________________ 56 Streamflow-measurement station____________-____--_________ 59 Staff gages______________________________________________ 59 Soil-moisture stations_______________________________-_____- 60 Evaporation station______________________________________ 61 Factors of the budget___-----______________________-____-____ 61 Water gains__________-_-_________________________________ 62 Waterlosses__-__-__-__-__________________________________ 62 Runoff.___________________________.-_______ 63 Evapotranspiration. _ __________________________________ 64 HI IV CONTENTS Hydrologic budget Continued Factors of the budget Continued pagc Basin storage _____________________________________________ 66 Surface-water storage__________________________________ 66 Soil-moisture storage_________________________________ 66 Ground-water storage________________________________ 82 Quality of water_________________________________________ 83 Determination of evapotranspiration and ground-water storage____ 85 Method of convergent approximations______________________ 86 Check calculation for gravity yield, _________________________ 89 Laboratory determination of specific yield_.____-______-__--._ 91 Ground-water budget. _________________________________________ 93 Ground-water recharge.._ __________________________________ 94 Ground-water drainage_____________________________________ 94 Ground-water storage.__-_-__-_-_-_-____-_--_______________ 95 Ground-water evapotranspiration_________-_---____-____-__ 96 Comparison to the Pomperaug River basin study.__--_--_---__________ 97 Critical discussion and summary____________________________________ 99 References. _______________________________________________________ 101 Index... _____________..._________________________________ 105 ILLUSTRATIONS [All plates, except plates 2, 8, and 9, are in pocket] PLATE 1. Hydrologic map of the Beaverdam Creek drainage basin, Wicomico County, Md. 2. A. Streamflow-gaging station at the outlet of Schumaker page pond. B, Parker pond, looking upstream.___________ facing 10 3. A generalized cross section of the Atlantic Coastal Plain. 4. Areal geologic map of the Beaverdam Creek basin. 5. Block diagram showing formations of the Beaverdam Creek basin. 6. Composite graphic log of a deep test hole in the Beaverdam Creek basin. 7. Hydrograph of daily mean discharge rates measured at Schumaker dam, and derived base flow of Beaverdam Creek. 8. A. Staff gage 115 on Beaverdam Creek bridge, Mount Hermon Road. B, Soil-moisture station and well 132, at Salisbury airport_-__________________-__-______-----._------ facing 58 9. Unused Bouyoucos block compared to one after 2 years in the soil..____________________-___-__-_-__---_-_-_-_-_ facing 59 10. Fourth and final approximation of gravity yield. FIGURE 1. Block diagram showing the regional physiographic provinces and location of the Beaverdam Creek basin._____________ 10 2. Map of the Pleistocene terraces in the Beaverdam Creek basin___ __-_________-_-__________-__---------_---__- 15 3. Profile of Beaverdam Creek showing knickpoints___________ 16 4. Hydrograph of average ground-water level and bar graph of weekly average precipitation.________-_-_-__---__--__-_ 47 CONTENTS V Figure 5. Profiles of ground-water temperature in nine selected wells in Page the Beaverdam Creek basin on December 30, 1952______ 55 6. Rating curve of mean ground-water stage compared with base flow of Beaverdam Creek__-_---_-_---_-------_---__-_- 65 7. Calibration curves for computing soil-moisture deficiency from electrical resistance at a depth of 4 inches, station 118_ _ _ _ 67 8. Calibration curves for computing soil-moisture deficiency from electrical resistance at a depth of 12 inches, station 118_ 68 9. Calibration curves for computing soil-moisture deficiency from electrical resistance at a depth of 39 inches, station 118. 69 10. Calibration curves for computing soil-moisture deficiency from electrical resistance at a depth of 4 inches, station 132_____ 70 11. Calibration curves for computing soil-moisture deficiency from electrical resistance at a depth of 12 inches, station 132____ 71 12. Calibration curves for computing soil-moisture deficiency from electrical resistance at a depth of 39 inches, station 132. __- 72 13. Calibration curves for computing soil-moisture deficiency from electrical resistance at a depth of 4 inches, station 133_____ 78 14. Calibration curves for computing soil-moisture deficiency from * electrical resistance at a depth of 12 inches, station 133-__- 74 15. Calibration curves for computing soil-moisture deficiency from electrical resistance at a depth of 39 inches, station 133__-_ 75 16. Calibration curve for a thermistor used to compute tempera ture from electrical resistance at a depth of 12 inches.____ 76 17. Curve of weekly evapotranspiration in Beaverdam Creek basin _______________________________________________ 87 18. Third approximation of gravity yield derived from a plot of mean ground-water stage and the sum of infiltration residuals-___________________________________________ 87 19. Graph comparing ground-water evapotranspiration to total evapotranspiration, by months___---_-----______------- 98 TABLES TABLE 1. Hydrologic budget of the Beaverdam Creek basin, April 1950 pagfl through March 1952._______________________ 4 2. Pan evaporation and wind movement at the U. S. Geological Survey station, Salisbury, Md., April 1950 through March 1952__-_____________________________________________ 13 3. Characteristics of wells and test holes_____________________ 26 4. Logs of auger holes in the Beaverdam Creek basin__________ 29 5. Texture of surficial sediments in the Beaverdam Creek basin. 43 6. Gage heights at four staff gages on Beaverdam Creek and Walston Branch____________________________ 60 7. Soil-moisture data for station 118-_-_____-___--_---_-_-_-_ 77 8. Soil-moisture data for station 132_______________________