Sex Difference in the Conjunctive Tumoral

Total Page:16

File Type:pdf, Size:1020Kb

Sex Difference in the Conjunctive Tumoral Sex Difference in the Conjunctive Tumoral Reaction of the Guinea Pig Towards Natural and Artificial Estrogens* Alexander Lipsch0tz, M.D., Luis Vargas, Jr., M.D., and Jorge Palma, M.D. (From the Department of Experimental Medictne, Natzonal Health Service o/ the Republic o[ Chile, Santiago) (Received for publication May 2o, I94I) INTRODUCTION The endocrine activity of the gonads is not respon- sible for this sex difference. We have reported that the The conjunctive tumoral reaction of the male guinea castrated male guinea pig reacts in a way similar to the pig towards esterified estradiol is different from that noncastrated male (6, 7)" One must then question of the female (7)- whether there is a sex difference in the metabolic fate Large spherical peritoneal fibroids are easily elicited in the of the follicular hormones which might explain the female guinea pig injected thrice weekly with 8o /zgm. or less sex difference in the tumoral reaction to estrogens. of estradiol 1 given as the benzoate in the course of 2 to 3 Comparative experiments with natural and artificial months (6, 9, io). Similar fibroids are not induced in the male under similar conditions. The tumoral seed on the spleen, on estrogens offer an opportunity to study this question the surrounding parts of the abdominal wall, and on the ventral experimentally. Artificial estrogens are more resistant surface of the stomach, and peritoneal fibrous strands are the against inactivation than the natural follicular hor- characteristic features of the conjunctive reaction in the male mones (4, i8). Therefore, there should be some dif- (6, 7). In the male the localization of the reaction on the left ference between the metabolic behavior in the organ- side is of great uniformity, especially at the beginning (I9). In contrast, the variation is enormous in the female (5, 9, io, 2x). ism of artificial and natural estrogens. If the sex The reaction in the male is probably due to a lesser susceptibility. difference in the conjunctive reaction towards follicular This is suggested by different facts. The left-sided tumoral seed hormones as established by our experiments were due typical of the male is found frequently in females treated with to some unknown sex difference in the metabolic fate srnallcr quantities of cstrogens (I, I5). An identical feature is of the hormones, one might question whether male observed in the female when the tumorigenic action of the follicular hormone is inhibited by other hormones such as or female guinea pigs would also react towards arti- testosterone, progesterone, or desoxycorticosterone (i2, I3). In- ficial estrogens in a different manner according to sex, dividual spherical fibroids appear also in the male when the as they do towards natural estrogens. injections of 80 /zgm. of estradiol benzoatc arc prolongcd for more than 4 months (7) or when similar quantities of the 17-caprylate or the x7-benzoate-3-n-butyrate ester of estradiol (5) EXPERIMENTS 2 which possess more potent tumorigenic power than the benzoic Thirty-seven male guinea pigs, weighing 235 to or dipropionic esters of estradiol (8) are used. And finally, the uriiformity of the reaction in the male becomes highly accentu- 680 gin., were injected with doses of stilbestrol or atcd when a smaller dose of the i7-caprylate as, for instance, hexestrol which in the female are sufficient to elicit Io /zgm. per injection is used (2), a dosage which in the female abdominal fibroids, or with doses four times greater. is sufficient to elicit large abdominal fibroids (6). The sex The results in the males were compared with those ob- difference of the conjunctive reaction was quite evident also tained in :z3 castrated females. The artificial estrogens in experiments in which tablets of free estradiol were used instead of injections of esterified estradiol (3). were given in olive oil; 0. 4 cc. containing 8o or 32o/~gm. The above facts have been established by our group on a of stilbestrol, and 4 o or i6o/zgm, of hexestrol respec- number of animals sufficiently large to reduce possibility of error. tively, were injected thrice weekly in the course of 87 Seventy-eight male and several hundred female guinea pigs were and 88 days (with the exception of 3 animals injected injected in the course of 69 to I4o days (2, 6, 7, I9) or treated with subcutaneous tablets (3). Full corroboration of our findings for 73 to 84 days only.) A total of 38 injections (3 to concerning a sex difference in the conjunctive tumoral reaction I2 mgm. of stilbestrol, and I. 5 to 6. 3 gm. of hexestrol) has been published by other workers (I7). was given. These timing conditions corresponded to those in our former work with the injection of free or * This investigation was aided by grants from The Jane Coffin esterified follicular hormones into males (6, 7)- Childs Memorial Fund for Medical Research, from Mr. Adolfo Eastman of Limache (Chile) and others. The results are summarized in Table I in which is 1 The artificial estrogens were generously supplied by Pro- given the number of animals which have developed fessor E. C. Dodds of the Courtauld Institute of Biochemistry, The Middlesex Hospital, University of London. 2 See thesis of J. Palma (i6). 575 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 1941 American Association for Cancer Research. 576 Cancer Research extragenital tumors of a certain size; i.e., "class I," or on the abdominal wall and diaphragm in the vicinity tumors of a diameter not less than i mm., according of the spleen (Figs. 2 and 5). This left-sided orienta- to our classification (8, i i). It is evident from Table I tion of the tumoral seed on the stomach and abdominal that 38 injections of 8o /~gm. of stilbestrol or of 4 ~ wall may be present when the tumoral seed on the /,gm. of hexestrol given in the course of 3 months are spleen is lacking. In one animal injected with 32o unable to elicit tumors in the male whereas with the /,gin. of stilbestrol per injection the tumoral seed was same treatment a high incidence of extragenital fibroids found also on the intestine, especially on the cecum occurs in the female. Tumors appear in the male when and ascending colon (Fig. 6). This was the only quantities four times greater are given (Fig. 6). Even animal in which large tumors were present. The then the frequency of tumors in the male is very small tumoral seed on the intestine is a very rare localization. when compared with that in females treated with the In our previous experiments it occurred only after same quantity or with quantities four times smaller. injection of highly potent esters of estradiol in males With 320 /,gm. of stilbestrol or with I6o ~gm. of (Fig. 3). It may appear also in females (Fig. 4). hexestrol per injection there was only one animal with Frequently a tumoral seed can be seen also on the individual spherical tumors of class i or larger. Fig. 6 surface of the left kidney and not rarely on the right TABLE I: EXTRAGENITAL TUMORS IN 37 MALE AND 2 3 FEMALE GUINEA PIGS; 36 TO 39 [NJ-ECTIONS OF ESTROGENS IN THREE MONTHS Number of Number of animals with animals with Stilbestrol extragenital I{exestrol extragenital Sex of per tumors, per tumors, guinea injection Nunlber class I or injection Number class I * pigs #gm. injected larger #gm. injected or larger Females ........................ 80 8 5 40 IO 5 Females .............................. 8o 5 4 Males .......................... 8o 9 o 40 Io o Males ......................... 320 9 I 16o 9 I 9Class i tumors are not less than I ram. in diameter. TABLE II: CONyUNCTIVE TUMORAL REACTIONS Or 37 MALt- GUINFA PIGS; 36 TO 38 IN~ECTIONS OF ESTROGENS IN THREE MONTHS Number of animals with tumoral seed on the Number A ___ Of Abdominal animals #gin. Number Kidney . wall with per of ~v ~'~ fibrous injection animals Testicle Stomach Intestine Left Right" ~Left Right Spleen strands Stilbestrol .............. 8o 9 9 5 o 2 2 5 o 3 Stilbestrol .............. 32o 9 9 6 I* 6 2 9 o 8 Hexestrol .............. 40 I o 7 7 o 4 2 9 o 7 9 Hexestrol .............. 160 9 9 6 o I o 7 o 6 9 * See Fig. 6. shows the condition of the only male with tumors in one. Almost constant phenomena are small nodules the group injected with 320 /,gm. of stilbestrol. The on the albuginea of the testicle (Figs. 5 and 6). reaction in the only animal with tumors in the group Fibrous strands induced in the peritoneum by a receiving i6o /,gin. of hexestrol was less pronounced prolonged treatment with estrogens (22) almost never than this. failed to appear in our animals (Table II). They were As we observed in former experiments with natural more pronounced in the 32o and I6o /~gm. groups estrogens, absence of individual spherical tumors in than in the 80 and 4 ~ #gm. groups; but in the latter the male did not exclude other types of conjunctive groups the fibrous strands also were sometimes very proliferation. All the 37 males with but one exception conspicuous (Fig. 2). showed some sign of a conjunctive reaction. The re- suits are summarized in Table II. There was in most DISCUSSION of the animals a "tumoral seed"; i.e., an accumulation of small white nodules on the surface of different The results of our work with prolonged administra- organs. The localization of these nodules whose micro- tion of stitbestrol and hexestrol in guinea pigs leave scopical structure we have described (I4), was by no doubt as to the fact that with artificial estrogens preference on the left side--on the spleen, on the conjunctive proliferation is different in females and ventral surface of the stomach near the great curvature, males.
Recommended publications
  • The Reactivity of Human and Equine Estrogen Quinones Towards Purine Nucleosides
    S S symmetry Article The Reactivity of Human and Equine Estrogen Quinones towards Purine Nucleosides Zsolt Benedek †, Peter Girnt † and Julianna Olah * Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; [email protected] (Z.B.); [email protected] (P.G.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Conjugated estrogen medicines, which are produced from the urine of pregnant mares for the purpose of menopausal hormone replacement therapy (HRT), contain the sulfate conjugates of estrone, equilin, and equilenin in varying proportions. The latter three steroid sex hormones are highly similar in molecular structure as they only differ in the degree of unsaturation of the sterane ring “B”: the cyclohexene ring in estrone (which is naturally present in both humans and horses) is replaced by more symmetrical cyclohexadiene and benzene rings in the horse-specific (“equine”) hormones equilin and equilenin, respectively. Though the structure of ring “B” has only moderate influence on the estrogenic activity desired in HRT, it might still significantly affect the reactivity in potential carcinogenic pathways. In the present theoretical study, we focus on the interaction of estrogen orthoquinones, formed upon metabolic oxidation of estrogens in breast cells with purine nucleosides. This multistep process results in a purine base loss in the DNA chain (depurination) and the formation of a “depurinating adduct” from the quinone and the base. The point mutations induced in this manner are suggested to manifest in breast cancer development in the long run.
    [Show full text]
  • Steroid Sex Hormones Non Steroid Hormones Fig. A1. Chemical
    Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2015 Steroid sex hormones O OH H H H H H H O Testosterone (T) HO Estrone (E1) OH O H H H H H H O HO 17β-Estradiol (17β-E2) 4-Androstene-3,17-dione (AND) OH OH H OH H H H H H H O HO Nandrolone (NAN) Estriol (E3) OH OH H H H H H H O 17α-Methyltestosterone (17α-MT) HO Ethinylestradiol (EE2) OH O O H HO OH H H H H H H O Prednisolone (PRED) O Progesterone (P) Non steroid hormones HO CH3 HO CH3 H C OH H C OH 3 Diethylstilbestrol (DES) 3 Hexestrol (HEX) Fig. A1. Chemical structure of selected endocrine disruptors. Fig. A2. Scheme of SPE procedure: a) PTFE disks, b) nylon filter membrane. Table A1. Characterization data for mesoporous silicas a Material BET surface Pore volume Pore L0C18 Particle morphology Average particle size 2 -1 3 -1 -1 (m g ) (cm g ) diameter (Å) (mmol C18 g ) (length x wide) SBA-15-C18 796 0.88 76 0.69 Cylindrical 1.4 µm x 750 nm a Amount of octadecyl groups per gram of silica Q3 Q4 Q2 DH 50 0 -50 -100 -150 -200 (ppm) 29 Fig. A3. Si NMR spectrum of SBA-15-C18. 140 0 % Weight Loss T 120 -5 100 s s o L Exothermic Procces 80 t -10 ) h C º g i 60 ( e T W Endothermic Procces -15 % 40 20 -20 0 -25 -20 100 200 300 400 500 600 700 800 T (ºC) Fig.
    [Show full text]
  • Structure and Origin of Uterine and Extragenital L=Ibroids Induced
    Structure and Origin of Uterine and Extragenital l=ibroids Induced Experimentally in the Guinea Pig by Prolonged Administration of Estrogens* Alexander Lipschotz, M.D., and Louis Vargas, Jr., M.D. (From Department o/ Experimental Medicine, National Health Service o/the Republic o/Chile, Santiago, Chile) (Received for publication December 13, x94o) The purpose of this communication is to present the These experimentally induced abdominal tumors findings of a detailed microscopical study of the sites present a smooth surface formed of a capsule com- of origin and stages of development of the subserous posed of flattened superficial cells (Plate 2, Figs. 2-A fibroid tumors induced in guinea pigs by prolonged and 2-B). The cells beneath the capsule resemble administration of estrogens. Details of treatment of fibroblasts. These cells have definite boundaries or the animals are given in the explanations of Plates I- 5. they are separated from each other by collagenous Subserous uterine tumors which can be induced in fibers (Plate 4, Fig. ix-C). guinea pigs by prolonged administration of estrogens, The masses of fibroid tumors arising from the apex as described by Nelson (26, 27), were found to be of the uterine horn may enclose the tubes or large fibroids. Lipschiitz, Iglesias, and Vargas (i3, 18, 22) tubal cysts. The demarcation between the muscular have shown that extragenital tumors in the abdominal coat of the tube and the tumor is not always sharp. cavity, induced by estrogens, also were fibroids. The In some instances, especially when the apical fibroid localization of these tumo~:s at various sites on the is small, the tumor is in close contact with an abun- uterus, pancreas, kidney, spleen, etc., have been de- dance of smooth muscle and adipose tissue (Plate 2, scribed by Iglesias (5), Vargas and Lipschiitz (32), Fig.
    [Show full text]
  • Estrogen-Induced Endogenous DNA Adduction
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 5301-5305, July 1986 Medical Sciences Estrogen-induced endogenous DNA adduction: Possible mechanism of hormonal cancer (estradiol/synthetic estrogens/renal carcinoma/Syrian hamster/32P-labeling analysis) J. G. LIEHR*, T. A. AVITTSt, E. RANDERATHt, AND K. RANDERATHtt *Department of Pharmacology, University of Texas Medical Branch, Galveston, TX 77550; and tDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Communicated by Paul C. Zamecnik, March 24, 1986 ABSTRACT In animals and humans, estrogens are able to but the mechanism of this effect has not been elucidated. In induce cancer in susceptible target organs, but the mecha- view ofthe extensive use ofcompounds with estrogenic activity nism(s) of estrogen-induced carcinogenesis has not been eluci- in human medicine (20, 21) and in agriculture (22) and the dated. A well-known animal model is the development of renal occurrence of estrogenic compounds as contaminants in food carcinoma in estrogen-treated Syrian hamsters. Previous work (22, 23), it is important to define how these compounds cause demonstrated the presence of covalent DNA addition products cancer. (adducts) in premalignant kidneys of hamsters exposed to the A central question to be addressed in this context is whether synthetic estrogen, diethylstilbestrol, a known human carcin- or not estrogens, like the majority of chemical carcinogens, ogen. In the present study, the natural hormone, 178-estradiol, induce covalent DNA alterations in the target tissue of and several synthetic steroid and stilbene estrogens were exam- carcinogenesis in vivo. In the present study, experiments were ined by a 32P-postlabeling assay for their capacity to cause carried out to search for adduct formation in an established covalent DNA alterations in hamster kidney.
    [Show full text]
  • Hormone Replacement Therapy and Osteoporosis
    This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied. AHRQ is the lead Federal agency charged with supporting research designed to improve the quality of health care, reduce its cost, address patient safety and medical errors, and broaden access to essential services. AHRQ sponsors and conducts research that provides evidence-based information on health care outcomes; quality; and cost, use, and access. The information helps health care decisionmakers— patients and clinicians, health system leaders, and policymakers—make more informed decisions and improve the quality of health care services. Systematic Evidence Review Number 12 Hormone Replacement Therapy and Osteoporosis Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 2101 East Jefferson Street Rockville, MD 20852 http://www.ahrq.gov Contract No. 290-97-0018 Task Order No. 2 Technical Support of the U.S. Preventive Services Task Force Prepared by: Oregon Health Sciences University Evidence-based Practice Center, Portland, Oregon Heidi D. Nelson, MD, MPH August 2002 Preface The Agency for Healthcare Research and Quality (AHRQ) sponsors the development of Systematic Evidence Reviews (SERs) through its Evidence-based Practice Program. With guidance from the third U.S. Preventive Services Task Force∗ (USPSTF) and input from Federal partners and primary care specialty societies, two Evidence-based Practice Centers—one at the Oregon Health Sciences University and the other at Research Triangle Institute-University of North Carolina—systematically review the evidence of the effectiveness of a wide range of clinical preventive services, including screening, counseling, immunizations, and chemoprevention, in the primary care setting.
    [Show full text]
  • Studies on Squamous Metaplasia in Rat Bladder II . Effects of Estradiol and Estradiol Plus Hexestrol*T
    Studies on Squamous Metaplasia in Rat Bladder II . Effects of Estradiol and Estradiol plus Hexestrol*t A. ANGRIST, P. CAPURRO, AND B. MOUMGIS (Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, New York 61, N.Y.) SUMMARY The effects of estrogens were studied with and without foreign body (rough glass beads and paraffin pellets) on the metaplasia of the bladder of rats on stock main tenance diet and on a vitamin A-deficient diet. Estradiol increased the degree of metaplasia in the bladder of rats when combined with vitamin A deficiency and/or foreign body stimulation. Estradiol affected bladder epithelium already made squamous more effectively than it did the normal transitional uroepithelium. A high dose of hexestrol, when added to estradiol, showed no enhance ment of the degree of metaplasi.a by estradiol benzoate in the bladder of the rat. The combination of vitamin A deficiency, foreign body in situ, and estrogenadminis tration was an effective means of obtaining keratinizing squamous metaplasia in the urinary bladder for studies of its developmental and reversal changes. In a previous presentation (4) the relation of The animals were divided into the following different forms of foreign-body irritation and of groups (the number of rats surviving with tissue vitamin A deficiency to squamous metaplasia in for study and the total number in each group mi the bladders of rats was reported. It is also known tinily are given following each group): that estrogens will cause squamous metaplasia. I. Stock diet + estradiol (6 survivals/lI rats) The metaplasia following estrogen administration II.
    [Show full text]
  • Use of Estrogen-Dihydropyridine Compounds For
    Europaisches Patentamt J European Patent Office © Publication number: 0 220 844 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION © Application number: 86307536.2 © int. ci.<: A61K 31/57 A61 K , 31/565 , A61K 31/44 © Date of filing: 01.10.86 The title of the invention has been amended © Applicant: UNIVERSITY OF FLORIDA (Guidelines for Examination in the EPO, A-lll, 207 Tigert Hall 7.3). Gainesville Florida 32611 (US) @ Inventor: Bodor, Nicholas S. ® Priority: 22.10.85 US 790159 7211 Southwest 97th Lane Gainesville Florida 32608(US) © Date of publication of application: Inventor: Estes, Kerry S. 06.05.87 Bulletin 87/19 5604 Southwest 83rd Drive Gainesville Florida 32608(US) © Designated Contracting States: Inventor: Simpkins, James W. AT BE CH DE ES FR GB GR IT LI LU NL SE 1722 Northwest 11th Road Gainesville Florida 32605(US) © Representative: Pendlebury, Anthony et al Page, White & Fairer 5 Plough Place New Fetter Lane London EC4A 1HY(GB) © Use of estrogen-dihydropyridlne compounds for weight control. © The invention provides the use of a compound of the formula [E-DHC] (I) or a non-toxic pharmaceutically acceptable salt thereof, wherein [E] is an estrogen and [DHC] is the reduced, biooxidizable, blood-brain barrier penetrating, lipoidal form of a dihydropyridines*pyridinium salt redox carrier in the preparation of a medicament for controlling mammalian body weight. Novel compositions for weight control comprising a compound of formula (I) or its salt are also disclosed. A preferred compound for use herein is an I estradiol derivative, namely, 1 7/3-[(1 -methyl-1 ,4-dihydro-3-pyridinyl)carbonyloxy]estra-1 ,3,5(1 0)-trien-3-ol.
    [Show full text]
  • Steroidal Estrogens
    FINAL Report on Carcinogens Background Document for Steroidal Estrogens December 13 - 14, 2000 Meeting of the NTP Board of Scientific Counselors Report on Carcinogens Subcommittee Prepared for the: U.S. Department of Health and Human Services Public Health Service National Toxicology Program Research Triangle Park, NC 27709 Prepared by: Technology Planning and Management Corporation Canterbury Hall, Suite 310 4815 Emperor Blvd Durham, NC 27703 Contract Number N01-ES-85421 Dec. 2000 RoC Background Document for Steroidal Estrogens Do not quote or cite Criteria for Listing Agents, Substances or Mixtures in the Report on Carcinogens U.S. Department of Health and Human Services National Toxicology Program Known to be Human Carcinogens: There is sufficient evidence of carcinogenicity from studies in humans, which indicates a causal relationship between exposure to the agent, substance or mixture and human cancer. Reasonably Anticipated to be Human Carcinogens: There is limited evidence of carcinogenicity from studies in humans which indicates that causal interpretation is credible but that alternative explanations such as chance, bias or confounding factors could not adequately be excluded; or There is sufficient evidence of carcinogenicity from studies in experimental animals which indicates there is an increased incidence of malignant and/or a combination of malignant and benign tumors: (1) in multiple species, or at multiple tissue sites, or (2) by multiple routes of exposure, or (3) to an unusual degree with regard to incidence, site or type of tumor or age at onset; or There is less than sufficient evidence of carcinogenicity in humans or laboratory animals, however; the agent, substance or mixture belongs to a well defined, structurally-related class of substances whose members are listed in a previous Report on Carcinogens as either a known to be human carcinogen, or reasonably anticipated to be human carcinogen or there is convincing relevant information that the agent acts through mechanisms indicating it would likely cause cancer in humans.
    [Show full text]
  • Reversal of Acquired Resistance to Doxorubicin in P388 Murine Leukemia Cells by Tamoxifen and Other Triparanol Analogues1
    [CANCER RESEARCH 44, 4392-4395, October 1984] Reversal of Acquired Resistance to Doxorubicin in P388 Murine Leukemia Cells by Tamoxifen and Other Triparanol Analogues1 A. Ramu,2 D. Glaubiger, and Z. Fuks Department of Radiation and Clinical Oncology, Hadassah University Hospital, P. 0. Box 12000, Jerusalem, Israel 91120 [A. R., Z. F], and The Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland 20205 [D. G.] ABSTRACT We now report on the reduction of doxorubicin resistance by a different group of tricyclic compounds, tamoxifen and other The effects of the triparanol analogues chlorotrianisene, clom- triparanol analogues, and bring evidence that this effect is not a iphene, tamoxifen, 5-[p-(fluoren-9-ylidenemethyl)phenyl]-2-piper- result of the antiestrogenic activity of these compounds. idineethanol (MDL 10393), MDL 8917v, nafoxidine, 2-[p-(6-meth- oxy-2-phenylinden-3-yl)phenoxy]triethylamine (U-11555A), 2-[p- (3,4-dihydro- 6- methoxy-2 - phenyl -1 - naphthyl)phenoxy]triethyl- MATERIALS AND METHODS amine (U-10520A), and nitromifene, as well as triparanol itself, Cell Culture and Determination of Drug Sensitivity. These were were studied in the P388 murine leukemia cell line and in a carried out as described previously (9). Briefly, P388 murine leukemia doxorubicin-resistant subline (P388/ADR). At noninhibitory con cells and a doxorubicin-resistant subline (P388/ADR)3 were maintained centrations, all the analogues increased the sensitivity of P388/ in RPMI 1640 (Grand Island Biological Co., Grand Island, NY) supple ADR cells to doxorubicin but did not have such an effect on the mented with 10% fetal calf serum (Grand Island Biological Co.), 10 /¿M doxorubicin-sensitive cells.
    [Show full text]
  • Supplemental Figure
    ● Agonist ● Antagonist ● Interference AR AUC 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 17beta−Trenbolone 5alpha−Dihydrotestosterone 17−Methyltestosterone Testosterone propionate Norethindrone Norgestrel GSK232420A 4−Androstene−3,17−dione Progesterone 17beta−Estradiol Mifepristone 17alpha−Ethinylestradiol Hydroxyflutamide 17alpha−Hydroxyprogesterone Corticosterone Nilutamide Basic Blue 7 Triphenyltin hydroxide Bicalutamide Tributyltin benzoate 17alpha−Estradiol Gentian Violet Equilin Zinc pyrithione Triticonazole Fenitrothion Mestranol Tributyltin methacrylate 2,2−Bis(4−hydroxyphenyl)−1,1,1 Dibutyltin dichloride Flutamide Methyltrioctylammonium chlorid Rhodamine 6G Tributyltetradecylphosphonium Emamectin benzoate Phenylmercuric acetate Cyproterone acetate Chlorothalonil 9−Phenanthrol 2,2',4,4'−Tetrahydroxybenzophe Melengestrol acetate Dehydroepiandrosterone 1−Chloro−2,4−dinitrobenzene SSR240612 Methylbenzethonium chloride Vinclozolin Tetraconazole Ziram Didecyldimethylammonium chlori Econazole nitrate Myristyltrimethylammonium chlo Clorophene Abamectin Octyl gallate 2−Chloro−4−phenylphenol Bisphenol A Propanil Dexamethasone sodium phosphate meso−Hexestrol Dichlorophen Hydroxyprogesterone caproate SSR241586 Bisphenol AF Prednisone Dichlone Reserpine Chlorobenzilate Diethylstilbestrol 3−Hydroxyfluorene Procymidone 4−Cumylphenol 4−Hydroxytamoxifen Napropamide PharmaGSID_48519 Clomiphene citrate (1:1) Chlorhexidine diacetate Tebuconazole Imazalil Dinocap PharmaGSID_48513 Linuron Prochloraz Zoxamide TDCPP Captan 3,3'−Dimethoxybenzidine dihydr 4−Phenylphenol
    [Show full text]
  • Fluoroestradiol
    Investigator’s Brochure for [18F]Fluoroestradiol AN INVESTIGATIONAL POSITRON EMISSION TOMOGRAPHY (PET) RADIOPHARMACEUTICAL FOR INJECTION, INTENDED FOR USE AS AN IN VIVO DIAGNOSTIC FOR IMAGING ESTROGEN RECEPTORS IN TUMORS IND # put your IND# here Put your Name and Address here IB Edition Number: 6 IB Edition Date/Release Date: November 10, 2020 Investigator’s Brochure: [18F]FES Table of Contents 1. SUMMARY ...................................................................................................................................... 3 2. INTRODUCTION ............................................................................................................................... 4 3. PHYSICAL, CHEMICAL, AND PHARMACEUTICAL PROPERTIES AND FORMULATION .......................... 4 3.1. AGENT DESCRIPTION ............................................................................................................................ 4 3.2. CHEMICAL STRUCTURE ........................................................................................................................ 5 3.3. FINAL PRODUCT SPECIFICATIONS ......................................................................................................... 5 4. NONCLINICAL STUDIES .................................................................................................................... 7 4.1. NONCLINICAL PHARMACOLOGY OF FES AND ESTRADIOL .................................................................... 7 4.2. PHARMACOKINETICS AND METABOLISM OF FES IN ANIMALS .............................................................
    [Show full text]
  • Hexestrol | Medchemexpress
    Inhibitors Product Data Sheet Hexestrol • Agonists Cat. No.: HY-B1662 CAS No.: 84-16-2 Molecular Formula: C₁₈H₂₂O₂ • Molecular Weight: 270.37 Screening Libraries Target: Estrogen Receptor/ERR Pathway: Others Storage: 4°C, protect from light * In solvent : -80°C, 6 months; -20°C, 1 month (protect from light) SOLVENT & SOLUBILITY In Vitro DMSO : 100 mg/mL (369.86 mM; Need ultrasonic) Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 3.6986 mL 18.4932 mL 36.9864 mL Stock Solutions 5 mM 0.7397 mL 3.6986 mL 7.3973 mL 10 mM 0.3699 mL 1.8493 mL 3.6986 mL Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.08 mg/mL (7.69 mM); Suspended solution; Need ultrasonic 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (7.69 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (7.69 mM); Clear solution BIOLOGICAL ACTIVITY Description Hexestrol is a nonsteroidal synthetic estrogen, with a Ki of 0.06 and 0.06 nM for estrogen receptor alpha (ERα) and ERβ. Hexestrol can be used for the research of the diseases caused by estrogen deficiencym, and it also can increase the weight of cattle[1][2][3]. IC₅₀ & Target ERα ERβ 0.06 nM (Ki) 0.06 nM (Ki) In Vivo Hexestrol (3 and 6 mg/kg; i.p.
    [Show full text]