Estriol Prevention of Mammary Carcinoma Induced by 7,12-Dimethylbenzanthracene and Procarbazine1

Total Page:16

File Type:pdf, Size:1020Kb

Estriol Prevention of Mammary Carcinoma Induced by 7,12-Dimethylbenzanthracene and Procarbazine1 (CANCER RESEARCH 35, 1341 1353, May 1975] Estriol Prevention of Mammary Carcinoma Induced by 7,12-Dimethylbenzanthracene and Procarbazine1 Henry M. Lemon Section of Oncology, Department of Internal Medicine, The University of Nebraska Medical Center, 42nd Street and Dewey Avenue, Omaha. Nebraska 68105 SUMMARY hexestrol, 0.60 mg/pellet, did not alter breast cancer incidence in 220 additional rats. Estrogen-treated rats The concentration of estrogenic, androgenic, progesta- usually sustained a mean 0.6 to 8.9% reduction of body tional, and adrenocortical steroid hormones in body fluids growth for the first 6 to 8 months of observation; this did of mature intact Sprague-Dawley female rats was increased not correlate with the breast carcinoma-suppressive activi by s.c. implantation of 5 to 7 mg NaCl pellets containing 1 ties of individual steroids. to 20% steroid 48 hr before administration p.o. of either Single implantation of 0.60 mg estriol 48 hr before 7,12-dimethylbenz(a)anthracene or procarbazine. The inci dimethylbenzanthracene p.o. or sustained implantation dence of rats developing one or more mammary carcinomas every 2 months of 10% estriol pellets beginning 24 hr after in each treated group was compared to that observed in si carcinogen exposure failed significantly to alter mammary multaneously treated groups receiving only the carcinogen, carcinoma development after dimethylben/anthracene ad steroid, or no treatment whatsoever, with weekly observa ministration. tion of all rats until palpably growing tumors were biopsied Inhibition of mammary carcinogenesis induced by these and proven carcinomatous or until death occurred from two dissimilar carcinogens in intact mature rats using other causes determined by autopsy. A total of 105 un sustained low dosages of estriol support previously pub treated or steroid-implanted rats followed to death (234 to lished biochemical and epidemiological data suggesting an 256 days median observation) developed no breast carci inverse relationship between the renal excretion ratio of nomas. Rats fed either of the carcinogens developed initial estriol to estrone plus 17/3-estradiol and risk of breast cancer evidence of breast carcinoma, after 136 to 156 days median in women. On a mg per kg per day basis, the calculated observation, in 51 to 57% of 318 total treated rats. Non- daily absorption of estriol from the pellets by the rats is breast carcinomas and sarcomas developed in 5 to 10% of considerably less than that contributed by the human the carcinogen-treated rats. fetoplacental unit to the mother during pregnancy (a Estriol administered as 0.15 to 0.60 mg/pellet reim- deterrent of breast cancer risk) and is within a well- planted every 2 months reduced breast carcinoma incidence tolerated p.o. dosage range in the postmenopausal human to as low as 5 to 7% of 106 rats given dimethylbenzan- female in clinical trials. thracene or procarbazine (p < 0.001) during a median observation period of 202 to 232 days. The incidence of nonbreast neoplasms was not significantly altered. Breast INTRODUCTION tumor incidence noted following implantation of 0.50 to 1.14 mg estrone and 17/3-estradiol in 80 dimethylbenzan- Multiple genetic and endocrine factors contribute to thracene-treated rats was reduced to 22 to 25%, compared to increased risk of human breast carcinogenesis, such as 45 to 47% in carcinogen controls; more significant breast female sex, Caucasian racial background, breast carcinoma cancer reduction was observed by estrone treatment, in in premenopausal Ist-degree relatives, and duration of similar doses, following procarbazine administration. 16- ovarian function; pregnancy, marked by a 1000-fold in Epiestriol also reduced breast cancer incidence to one-half crease in estriol production, is notably protective (26, 34). that observed in carcinogen-treated controls. Estrone 3-sul- Controversy exists as to the etiological significance of fate, 0.88 mg/pellet, reduced breast tumor incidence after reduced estriol excretion noted in 20% of nonpregnant procarbazine administration, but it was ineffective in a healthy Caucasians compared to 60% of patients with lower dose. D-Equilenin, 6-dehydroesterone, 16-keto-17/3- precancerous and malignant breast disease that we have estradiol, 2-hydroxy-17/3-estradiol, 2-hydroxyestriol, es- reported (27, 32). Premenopausal Asiatic women with tradiol-17«, 16,17-epiestriol, 17-epiestriol, testosterone, one-sixth the breast carcinoma risk of Caucasians com progesterone, corticosterone, dehydroepiandrosterone, and monly excrete a higher proportion of estriol relative to estrone and estradiol in their urine (28, 34). Wide variation 1Supported in part by National Cancer Institute Grant in estriol excretion by healthy Caucasian premenopausal CA 10626-01,02 from the United States Department of Health. Education, and Welfare: by the Department of Internal Medicine Memorial Cancer women may reflect several phenotypic mutant variants for Research Funds of the University of Nebraska Medical Center in Omaha: the endogenous production of estriol (28), which appear and by research grants from Carnrick Laboratories, Cedar Knolls, N. J. susceptible to genotypic quantitation by leukocyte incuba Received September 27, 1973: accepted February 3, 1975. tion with tritiated precursors of estriol in vitro (29). MAY 1975 1341 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 1975 American Association for Cancer Research. H. M. Lemon The present investigation was planned to explore the Table 1 possible carcinogenic or anticarcinogenic function not only Compounds tested of estriol but also of other metabolites of estradiol hydrox- ylated at C-2, C-6. C-16 and of nonestrogenic steroids. Trivia] name Chemical name Some estrogen metabolites resemble estriol in altering 17«-Estradiol Estra-l.3.5(10)-triene-3,17«-diol physiological response to estradiol and are classified among 17rf-Estradiol Estra-1.3.5(10)-triene-3,l7/3-diol "impeded" estrogens (16, 27, 51). Commencing in 1967, we Estrone 3-Hydroxyestra-1,3,5( 10)-trien-17-one Estriol Estra-1.3.5( 10)-triene-3.16«. 17/3-triol adapted the model system of rat mammary carcinogenesis 16-Epiestriol Estra-1,3,5( IO)-triene-3,16/3.170-lriol developed by Dao (5) and Muggins el al. (14, 15) to our 17-Epiestriol Estra-1,3,5( IO)-triene-3,16a, 17a-triol needs, by superimposing upon the normal ovarian estradiol 16,17-Epiestriol Estra-1,3,5( 10)-triene-3,16/3,17a-triol secretory activity (44), required for DM BA2 induction of 16-Ketoestradiol 3.17j3-Dihydroxyestra-1.3.5(10)-trien-16-one mammary carcinogenesis, periodic s.c. implantation of 2-Hvdroxyestradiol Estra-1,3,5( IO)-triene-2,3,17/3-triol 0.06- to 1.3-mg doses of the test steroid (Table 1). Mam 2-Hydroxyestriol Estra-1,3,5( 10)-2,3,16a. 17/i-tetrol D-Equilenin 3-Hydroxyestra-1,3.5( 10),6,8-pentaen-17-one mary carcinogenesis induced in the female Sprague-Dawley 6-Dehydroestrone 3-Hydroxyestra-1.3.5( I0).6-tetraen-17-one rat by this agent has many similarities to human mammary Corticosterone 1li3.21-Dihydroxypregn-4-ene-3.20-dione carcinogenesis, especially relating to the near identity of Dehydroepiandros- 3d-H \droxyandrost-5-en-17-one estrogen receptor proteins and the response of these tumors terone Testosterone 17-Hydroxyandrost-4-en-3-one to various types of endocrine therapy (Table 2). Further Progesterone Pregn-4-ene-3.20-dione more, the rat offered an acceptable model for determining Estrone 3-sulfate 17-Oxoestra-l,3,5(IO)-trien-3-yl sulfate the potential chronic toxicity and tolerance of various doses Hexestrol p.p'-(1.2-Diethylethylene)diphenol of steroid metabolites, which might have significant inhibi tory effect upon mammary carcinogenesis, and also be suitable for human clinical trials. PC was later substituted with gross examination of the heart, lungs, and abdomen. In for DMBA as the carcinogenic agent to determine whether sacrificed animals, the uterus was dissected free and its the inhibition of breast carcinogenesis by estriol was related weight was recovered as an index of estrogenic response. to the chemical structure or possible endocrine activity of Steroid Incorporation into Pellets. The pellets were con either carcinogen (13). structed in a Forbes pellet press (9), from 1 to 20% mixtures of the authentic crystalline steroid with crystalline NaCl. They were prepared a few days before use, weighed, and MATERIALS AND METHODS kept in a dessicator until implantation. Their weight usually varied between 5 and 7 mg and they could be identified as RaCs and Their Maintenance. Throughout the study, long as 2 to 3 weeks after implantation, at necropsy. The intact female Sprague-Dawley rats were obtained from a dynamics of steroid release from such pellets has been single source (Sasco, Inc., Omaha, Nebr.) at 50 to 55 days described (10) and, in the case of 100% estrogen pellets, of age. They were randomized upon receipt and housed hormone release continues for at least 90 to 100 days in the individually in suspended cages. They were fed Wayne Lab rat. Pellet reimplantation was carried out every 2 months Blox (South Omaha Terminal Co., Omaha, Nebr.) and for the 2.5 to 20% pellets and monthly for the 1% pellets. municipal water, with temperature maintained within 22-23° and 40 to 50% relative humidity. Prophylactic The percentage composition of nonestrogenic steroids or synthetic nonsteroidal estrogens in pellets was adjusted to hormone therapy was achieved by implanting s.c. in the provide equimolar activity compared to estriol. Steroids posterior nuchal region 5- to 7-mg pellets once every 1 or 2 were obtained from commercial sources. Estrogens were months under light ether anesthesia. The 1st pellet implan screened for identity and purity by thin-layer silica gel tation was 48 hr before administration by gavage of the chromatography using 5% ethanol, 47.5% ethyl acetate, carcinogen, again under light ether anesthesia.
Recommended publications
  • The Reactivity of Human and Equine Estrogen Quinones Towards Purine Nucleosides
    S S symmetry Article The Reactivity of Human and Equine Estrogen Quinones towards Purine Nucleosides Zsolt Benedek †, Peter Girnt † and Julianna Olah * Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; [email protected] (Z.B.); [email protected] (P.G.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Conjugated estrogen medicines, which are produced from the urine of pregnant mares for the purpose of menopausal hormone replacement therapy (HRT), contain the sulfate conjugates of estrone, equilin, and equilenin in varying proportions. The latter three steroid sex hormones are highly similar in molecular structure as they only differ in the degree of unsaturation of the sterane ring “B”: the cyclohexene ring in estrone (which is naturally present in both humans and horses) is replaced by more symmetrical cyclohexadiene and benzene rings in the horse-specific (“equine”) hormones equilin and equilenin, respectively. Though the structure of ring “B” has only moderate influence on the estrogenic activity desired in HRT, it might still significantly affect the reactivity in potential carcinogenic pathways. In the present theoretical study, we focus on the interaction of estrogen orthoquinones, formed upon metabolic oxidation of estrogens in breast cells with purine nucleosides. This multistep process results in a purine base loss in the DNA chain (depurination) and the formation of a “depurinating adduct” from the quinone and the base. The point mutations induced in this manner are suggested to manifest in breast cancer development in the long run.
    [Show full text]
  • Steroid Sex Hormones Non Steroid Hormones Fig. A1. Chemical
    Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2015 Steroid sex hormones O OH H H H H H H O Testosterone (T) HO Estrone (E1) OH O H H H H H H O HO 17β-Estradiol (17β-E2) 4-Androstene-3,17-dione (AND) OH OH H OH H H H H H H O HO Nandrolone (NAN) Estriol (E3) OH OH H H H H H H O 17α-Methyltestosterone (17α-MT) HO Ethinylestradiol (EE2) OH O O H HO OH H H H H H H O Prednisolone (PRED) O Progesterone (P) Non steroid hormones HO CH3 HO CH3 H C OH H C OH 3 Diethylstilbestrol (DES) 3 Hexestrol (HEX) Fig. A1. Chemical structure of selected endocrine disruptors. Fig. A2. Scheme of SPE procedure: a) PTFE disks, b) nylon filter membrane. Table A1. Characterization data for mesoporous silicas a Material BET surface Pore volume Pore L0C18 Particle morphology Average particle size 2 -1 3 -1 -1 (m g ) (cm g ) diameter (Å) (mmol C18 g ) (length x wide) SBA-15-C18 796 0.88 76 0.69 Cylindrical 1.4 µm x 750 nm a Amount of octadecyl groups per gram of silica Q3 Q4 Q2 DH 50 0 -50 -100 -150 -200 (ppm) 29 Fig. A3. Si NMR spectrum of SBA-15-C18. 140 0 % Weight Loss T 120 -5 100 s s o L Exothermic Procces 80 t -10 ) h C º g i 60 ( e T W Endothermic Procces -15 % 40 20 -20 0 -25 -20 100 200 300 400 500 600 700 800 T (ºC) Fig.
    [Show full text]
  • Structure and Origin of Uterine and Extragenital L=Ibroids Induced
    Structure and Origin of Uterine and Extragenital l=ibroids Induced Experimentally in the Guinea Pig by Prolonged Administration of Estrogens* Alexander Lipschotz, M.D., and Louis Vargas, Jr., M.D. (From Department o/ Experimental Medicine, National Health Service o/the Republic o/Chile, Santiago, Chile) (Received for publication December 13, x94o) The purpose of this communication is to present the These experimentally induced abdominal tumors findings of a detailed microscopical study of the sites present a smooth surface formed of a capsule com- of origin and stages of development of the subserous posed of flattened superficial cells (Plate 2, Figs. 2-A fibroid tumors induced in guinea pigs by prolonged and 2-B). The cells beneath the capsule resemble administration of estrogens. Details of treatment of fibroblasts. These cells have definite boundaries or the animals are given in the explanations of Plates I- 5. they are separated from each other by collagenous Subserous uterine tumors which can be induced in fibers (Plate 4, Fig. ix-C). guinea pigs by prolonged administration of estrogens, The masses of fibroid tumors arising from the apex as described by Nelson (26, 27), were found to be of the uterine horn may enclose the tubes or large fibroids. Lipschiitz, Iglesias, and Vargas (i3, 18, 22) tubal cysts. The demarcation between the muscular have shown that extragenital tumors in the abdominal coat of the tube and the tumor is not always sharp. cavity, induced by estrogens, also were fibroids. The In some instances, especially when the apical fibroid localization of these tumo~:s at various sites on the is small, the tumor is in close contact with an abun- uterus, pancreas, kidney, spleen, etc., have been de- dance of smooth muscle and adipose tissue (Plate 2, scribed by Iglesias (5), Vargas and Lipschiitz (32), Fig.
    [Show full text]
  • Estrogen-Induced Endogenous DNA Adduction
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 5301-5305, July 1986 Medical Sciences Estrogen-induced endogenous DNA adduction: Possible mechanism of hormonal cancer (estradiol/synthetic estrogens/renal carcinoma/Syrian hamster/32P-labeling analysis) J. G. LIEHR*, T. A. AVITTSt, E. RANDERATHt, AND K. RANDERATHtt *Department of Pharmacology, University of Texas Medical Branch, Galveston, TX 77550; and tDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Communicated by Paul C. Zamecnik, March 24, 1986 ABSTRACT In animals and humans, estrogens are able to but the mechanism of this effect has not been elucidated. In induce cancer in susceptible target organs, but the mecha- view ofthe extensive use ofcompounds with estrogenic activity nism(s) of estrogen-induced carcinogenesis has not been eluci- in human medicine (20, 21) and in agriculture (22) and the dated. A well-known animal model is the development of renal occurrence of estrogenic compounds as contaminants in food carcinoma in estrogen-treated Syrian hamsters. Previous work (22, 23), it is important to define how these compounds cause demonstrated the presence of covalent DNA addition products cancer. (adducts) in premalignant kidneys of hamsters exposed to the A central question to be addressed in this context is whether synthetic estrogen, diethylstilbestrol, a known human carcin- or not estrogens, like the majority of chemical carcinogens, ogen. In the present study, the natural hormone, 178-estradiol, induce covalent DNA alterations in the target tissue of and several synthetic steroid and stilbene estrogens were exam- carcinogenesis in vivo. In the present study, experiments were ined by a 32P-postlabeling assay for their capacity to cause carried out to search for adduct formation in an established covalent DNA alterations in hamster kidney.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • Hormone Replacement Therapy and Osteoporosis
    This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied. AHRQ is the lead Federal agency charged with supporting research designed to improve the quality of health care, reduce its cost, address patient safety and medical errors, and broaden access to essential services. AHRQ sponsors and conducts research that provides evidence-based information on health care outcomes; quality; and cost, use, and access. The information helps health care decisionmakers— patients and clinicians, health system leaders, and policymakers—make more informed decisions and improve the quality of health care services. Systematic Evidence Review Number 12 Hormone Replacement Therapy and Osteoporosis Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 2101 East Jefferson Street Rockville, MD 20852 http://www.ahrq.gov Contract No. 290-97-0018 Task Order No. 2 Technical Support of the U.S. Preventive Services Task Force Prepared by: Oregon Health Sciences University Evidence-based Practice Center, Portland, Oregon Heidi D. Nelson, MD, MPH August 2002 Preface The Agency for Healthcare Research and Quality (AHRQ) sponsors the development of Systematic Evidence Reviews (SERs) through its Evidence-based Practice Program. With guidance from the third U.S. Preventive Services Task Force∗ (USPSTF) and input from Federal partners and primary care specialty societies, two Evidence-based Practice Centers—one at the Oregon Health Sciences University and the other at Research Triangle Institute-University of North Carolina—systematically review the evidence of the effectiveness of a wide range of clinical preventive services, including screening, counseling, immunizations, and chemoprevention, in the primary care setting.
    [Show full text]
  • Studies on Squamous Metaplasia in Rat Bladder II . Effects of Estradiol and Estradiol Plus Hexestrol*T
    Studies on Squamous Metaplasia in Rat Bladder II . Effects of Estradiol and Estradiol plus Hexestrol*t A. ANGRIST, P. CAPURRO, AND B. MOUMGIS (Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, New York 61, N.Y.) SUMMARY The effects of estrogens were studied with and without foreign body (rough glass beads and paraffin pellets) on the metaplasia of the bladder of rats on stock main tenance diet and on a vitamin A-deficient diet. Estradiol increased the degree of metaplasia in the bladder of rats when combined with vitamin A deficiency and/or foreign body stimulation. Estradiol affected bladder epithelium already made squamous more effectively than it did the normal transitional uroepithelium. A high dose of hexestrol, when added to estradiol, showed no enhance ment of the degree of metaplasi.a by estradiol benzoate in the bladder of the rat. The combination of vitamin A deficiency, foreign body in situ, and estrogenadminis tration was an effective means of obtaining keratinizing squamous metaplasia in the urinary bladder for studies of its developmental and reversal changes. In a previous presentation (4) the relation of The animals were divided into the following different forms of foreign-body irritation and of groups (the number of rats surviving with tissue vitamin A deficiency to squamous metaplasia in for study and the total number in each group mi the bladders of rats was reported. It is also known tinily are given following each group): that estrogens will cause squamous metaplasia. I. Stock diet + estradiol (6 survivals/lI rats) The metaplasia following estrogen administration II.
    [Show full text]
  • Androstenedione ELISA
    Product information ❖ User´s Manual Androstenedione ELISA IB79119 96 IVD For in-vitro diagnostic use. Immuno-Biological Laboratories, Inc. (IBL-America) 8201 Central Ave. NE, Suite P, Minneapolis, Minnesota 55432, USA Version 13-01/20 DLB Phone: +1 (763) - 780-2955 Fax.: +1 (763) - 780-2988 Updated 200221 Email: [email protected] Web: www.ibl-america.com 1 IBL-America Androstenedione ELISA IB79119 Table of Contents 1 INTRODUCTION ..................................................................................................................................... 3 2 PRINCIPLE OF THE TEST ..................................................................................................................... 3 3 WARNINGS AND PRECAUTIONS ......................................................................................................... 4 4 REAGENTS............................................................................................................................................. 5 5 SAMPLE COLLECTION AND PREPARATION ....................................................................................... 6 6 ASSAY PROCEDURE ............................................................................................................................ 6 7 EXPECTED NORMAL VALUES .............................................................................................................. 8 8 QUALITY CONTROL .............................................................................................................................. 8
    [Show full text]
  • Studies on Phenolic Steroids in Human Subjects. VII. Metabolic Fate of Estriol and Its Glucuronide
    Studies on Phenolic Steroids in Human Subjects. VII. Metabolic Fate of Estriol and Its Glucuronide Avery A. Sandberg, W. Roy Slaunwhite Jr. J Clin Invest. 1965;44(4):694-702. https://doi.org/10.1172/JCI105181. Research Article Find the latest version: https://jci.me/105181/pdf Journal of Clinical Investigation Vol. 44, No. 4, 1965 Studies on Phenolic Steroids in Human Subjects. VII. Metabolic Fate of Estriol and Its Glucuronide * AVERY A. SANDBERG t AND W. RoY SLAUNWHITE, JR. (From the Roswell Park Memorial Institute, Buffalo, N. Y.) Estriol has been considered a metabolic product of enzymes capable of oxidizing the hydroxyl of the more active estrogens, estrone (1, 2) and group at position 16, a finding not reported in the indirectly estradiol. Recently, an alternative path- past. way has been proposed (3) based on the observa- The attention of investigators has recently been tions that 16a-hydroxydehydroepiandrosterone is directed toward steroid conjugates, not only be- present in high concentrations in cord blood and cause they are excreted in that form, but owing to that it is aromatized by placental enzymes. During the demonstration that steroid sulfates may, in pregnancy the placenta has been thought the some instances, serve as biosynthetic intermediates source of the mother's urinary estriol, but recent (12-14), that dehydroepiandrosterone sulfate is evidence indicates that the fetus (4-6) and, in par- secreted by the adrenal cortex (15), that estrone ticular, the fetal liver (7) may play an important circulates in the blood as a sulfate (16), and that role in the conversion of the estrone to estriol steroid sulfates appear to be biologically active (8).
    [Show full text]
  • Use of Estrogen-Dihydropyridine Compounds For
    Europaisches Patentamt J European Patent Office © Publication number: 0 220 844 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION © Application number: 86307536.2 © int. ci.<: A61K 31/57 A61 K , 31/565 , A61K 31/44 © Date of filing: 01.10.86 The title of the invention has been amended © Applicant: UNIVERSITY OF FLORIDA (Guidelines for Examination in the EPO, A-lll, 207 Tigert Hall 7.3). Gainesville Florida 32611 (US) @ Inventor: Bodor, Nicholas S. ® Priority: 22.10.85 US 790159 7211 Southwest 97th Lane Gainesville Florida 32608(US) © Date of publication of application: Inventor: Estes, Kerry S. 06.05.87 Bulletin 87/19 5604 Southwest 83rd Drive Gainesville Florida 32608(US) © Designated Contracting States: Inventor: Simpkins, James W. AT BE CH DE ES FR GB GR IT LI LU NL SE 1722 Northwest 11th Road Gainesville Florida 32605(US) © Representative: Pendlebury, Anthony et al Page, White & Fairer 5 Plough Place New Fetter Lane London EC4A 1HY(GB) © Use of estrogen-dihydropyridlne compounds for weight control. © The invention provides the use of a compound of the formula [E-DHC] (I) or a non-toxic pharmaceutically acceptable salt thereof, wherein [E] is an estrogen and [DHC] is the reduced, biooxidizable, blood-brain barrier penetrating, lipoidal form of a dihydropyridines*pyridinium salt redox carrier in the preparation of a medicament for controlling mammalian body weight. Novel compositions for weight control comprising a compound of formula (I) or its salt are also disclosed. A preferred compound for use herein is an I estradiol derivative, namely, 1 7/3-[(1 -methyl-1 ,4-dihydro-3-pyridinyl)carbonyloxy]estra-1 ,3,5(1 0)-trien-3-ol.
    [Show full text]
  • Steroidomics for the Prevention, Assessment, and Management of Cancers: a Systematic Review and Functional Analysis
    Review Steroidomics for the Prevention, Assessment, and Management of Cancers: A Systematic Review and Functional Analysis Nguyen Hoang Anh 1,†, Nguyen Phuoc Long 1,†, Sun Jo Kim 1, Jung Eun Min 1, Sang Jun Yoon 1, Hyung Min Kim 1, Eugine Yang 2, Eun Sook Hwang 2, Jeong Hill Park 1, Soon-Sun Hong 3 and Sung Won Kwon 1,* 1 College of Pharmacy, Seoul National University, Seoul 08826, Korea; [email protected] (N.H.A.); [email protected] (N.P.L.); [email protected] (S.J.K.); [email protected] (J.E.M.); [email protected] (S.J.Y.); [email protected] (H.M.K.); [email protected] (J.H.P.) 2 College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; [email protected] (E.Y.); [email protected] (E.S.H.) 3 Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-880-7844 † These authors contributed equally to this work. Received: 13 August 2019; Accepted: 17 September 2019; Published: 21 September 2019 Abstract: Steroidomics, an analytical technique for steroid biomarker mining, has received much attention in recent years. This systematic review and functional analysis, following the PRISMA statement, aims to provide a comprehensive review and an appraisal of the developments and fundamental issues in steroid high-throughput analysis, with a focus on cancer research. We also discuss potential pitfalls and proposed recommendations for steroidomics-based clinical research. Forty-five studies met our inclusion criteria, with a focus on 12 types of cancer.
    [Show full text]
  • Steroidal Estrogens
    FINAL Report on Carcinogens Background Document for Steroidal Estrogens December 13 - 14, 2000 Meeting of the NTP Board of Scientific Counselors Report on Carcinogens Subcommittee Prepared for the: U.S. Department of Health and Human Services Public Health Service National Toxicology Program Research Triangle Park, NC 27709 Prepared by: Technology Planning and Management Corporation Canterbury Hall, Suite 310 4815 Emperor Blvd Durham, NC 27703 Contract Number N01-ES-85421 Dec. 2000 RoC Background Document for Steroidal Estrogens Do not quote or cite Criteria for Listing Agents, Substances or Mixtures in the Report on Carcinogens U.S. Department of Health and Human Services National Toxicology Program Known to be Human Carcinogens: There is sufficient evidence of carcinogenicity from studies in humans, which indicates a causal relationship between exposure to the agent, substance or mixture and human cancer. Reasonably Anticipated to be Human Carcinogens: There is limited evidence of carcinogenicity from studies in humans which indicates that causal interpretation is credible but that alternative explanations such as chance, bias or confounding factors could not adequately be excluded; or There is sufficient evidence of carcinogenicity from studies in experimental animals which indicates there is an increased incidence of malignant and/or a combination of malignant and benign tumors: (1) in multiple species, or at multiple tissue sites, or (2) by multiple routes of exposure, or (3) to an unusual degree with regard to incidence, site or type of tumor or age at onset; or There is less than sufficient evidence of carcinogenicity in humans or laboratory animals, however; the agent, substance or mixture belongs to a well defined, structurally-related class of substances whose members are listed in a previous Report on Carcinogens as either a known to be human carcinogen, or reasonably anticipated to be human carcinogen or there is convincing relevant information that the agent acts through mechanisms indicating it would likely cause cancer in humans.
    [Show full text]