Elsinoë Australis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fruits; Fresh Vegetables and Fresh Limes” (Opp
Trademark Trial and Appeal Board Electronic Filing System. http://estta.uspto.gov ESTTA Tracking number: ESTTA881622 Filing date: 03/07/2018 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD Proceeding 91238258 Party Plaintiff Wonderful Citrus LLC Correspondence DARYA P LAUFER ESQ Address ROLL LAW GROUP PC 11444 WEST OLYMPIC BLVD LOS ANGELES, CA 90064 UNITED STATES Email: [email protected], [email protected] Submission Other Motions/Papers Filer's Name Michael M. Vasseghi Filer's email [email protected], [email protected] Signature / Michael M. Vasseghi / Date 03/07/2018 Attachments Opposition with Exhibits-reduced size.pdf(1950576 bytes ) IN THE UNITED STATES PATENT AND TRADEMARK OFFICE TRADEMARK TRIAL AND APPEAL BOARD Wonderful Citrus LLC, Opposition No. 91238258 Opposer, Application Serial No. 87/472272 v. APB, Inc. dba Vision Produce Company, Applicant. OPPOSER WONDERFUL CITRUS LLC’S OPPOSITION TO APPLICANT’S MOTION FOR JUDGMENT ON THE PLEADINGS I. INTRODUCTION Applicant moves for judgment on the pleadings (“Motion”), arguing that “there is no genuine issue as to Opposer’s lack of prior rights in a trademark that could be confusingly similar to Applicant’s Mark.” (Motion pg. 3.)1 Applicant’s Motion is not well taken. It acknowledges that Opposer has alleged exactly what it takes issue with – that Opposer has prior rights in a trademark that could be confusingly similar to Applicant’s Mark. Despite this, Applicant seeks to take issue with those allegations, implicitly contending that Opposer will be unable to prove what it has alleged. (Motion pg. 2.) This is not a proper basis for judgment on the pleadings, which must accept as true all allegations asserted in the Opposition. -
Based on a Newly-Discovered Species
A peer-reviewed open-access journal MycoKeys 76: 1–16 (2020) doi: 10.3897/mycokeys.76.58628 RESEARCH ARTICLE https://mycokeys.pensoft.net Launched to accelerate biodiversity research The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species Xinhao Li1, Hai-Xia Wu1, Jinchen Li1, Hang Chen1, Wei Wang1 1 International Fungal Research and Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China Corresponding author: Hai-Xia Wu ([email protected], [email protected]) Academic editor: N. Wijayawardene | Received 15 September 2020 | Accepted 25 November 2020 | Published 17 December 2020 Citation: Li X, Wu H-X, Li J, Chen H, Wang W (2020) The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species. MycoKeys 76: 1–16. https://doi.org/10.3897/mycokeys.76.58628 Abstract During the field studies, aTranslucidithyrium -like taxon was collected in Xishuangbanna of Yunnan Province, during an investigation into the diversity of microfungi in the southwest of China. Morpho- logical observations and phylogenetic analysis of combined LSU and ITS sequences revealed that the new taxon is a member of the genus Translucidithyrium and it is distinct from other species. Therefore, Translucidithyrium chinense sp. nov. is introduced here. The Maximum Clade Credibility (MCC) tree from LSU rDNA of Translucidithyrium and related species indicated the divergence time of existing and new species of Translucidithyrium was crown age at 16 (4–33) Mya. Combining the estimated diver- gence time, paleoecology and plate tectonic movements with the corresponding geological time scale, we proposed a hypothesis that the speciation (estimated divergence time) of T. -
Molecular Systematics of the Marine Dothideomycetes
available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. -
<I>Tothia Fuscella</I>
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/118.203 Volume 118, pp. 203–211 October–December 2011 Epitypification, morphology, and phylogeny of Tothia fuscella Haixia Wu1, Walter M. Jaklitsch2, Hermann Voglmayr2 & Kevin D. Hyde1, 3, 4* 1 International Fungal Research and Development Centre, Key Laboratory of Resource Insect Cultivation & Utilization, State Forestry Administration, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, 650224, PR China 2 Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030 Wien, Austria 3 School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand 4 Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11442, Saudi Arabia *Correspondence to: [email protected] Abstract — The holotype of Tothia fuscella has been re-examined and is re-described and illustrated. An identical fresh specimen from Austria is used to designate an epitype with herbarium material and a living culture. Sequence analyses show T. fuscella to be most closely related to Venturiaceae and not Microthyriaceae, to which it was previously referred. Key words — Dothideomycetes, molecular phylogeny, taxonomy Introduction We have been re-describing and illustrating the generic types of Dothideomycetes (Zhang et al. 2008, 2009, Wu et al. 2010, 2011, Li et al. 2011) and have tried where possible to obtain fresh specimens for epitypification and use molecular analyses to provide a natural classification. Our previous studies of genera in the Microthyriaceae, a poorly known family within the Dothideomycetes, have resulted in several advances (Wu et al. -
Citrus Industry Biosecurity Plan 2015
Industry Biosecurity Plan for the Citrus Industry Version 3.0 July 2015 PLANT HEALTH AUSTRALIA | Citrus Industry Biosecurity Plan 2015 Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2004 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2004) Industry Biosecurity Plan for the Citrus Industry (Version 3.0 – July 2015). Plant Health Australia, Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific and independent professional advice. -
Color Plates
Color Plates Plate 1 (a) Lethal Yellowing on Coconut Palm caused by a Phytoplasma Pathogen. (b, c) Tulip Break on Tulip caused by Lily Latent Mosaic Virus. (d, e) Ringspot on Vanda Orchid caused by Vanda Ringspot Virus R.K. Horst, Westcott’s Plant Disease Handbook, DOI 10.1007/978-94-007-2141-8, 701 # Springer Science+Business Media Dordrecht 2013 702 Color Plates Plate 2 (a, b) Rust on Rose caused by Phragmidium mucronatum.(c) Cedar-Apple Rust on Apple caused by Gymnosporangium juniperi-virginianae Color Plates 703 Plate 3 (a) Cedar-Apple Rust on Cedar caused by Gymnosporangium juniperi.(b) Stunt on Chrysanthemum caused by Chrysanthemum Stunt Viroid. Var. Dark Pink Orchid Queen 704 Color Plates Plate 4 (a) Green Flowers on Chrysanthemum caused by Aster Yellows Phytoplasma. (b) Phyllody on Hydrangea caused by a Phytoplasma Pathogen Color Plates 705 Plate 5 (a, b) Mosaic on Rose caused by Prunus Necrotic Ringspot Virus. (c) Foliar Symptoms on Chrysanthemum (Variety Bonnie Jean) caused by (clockwise from upper left) Chrysanthemum Chlorotic Mottle Viroid, Healthy Leaf, Potato Spindle Tuber Viroid, Chrysanthemum Stunt Viroid, and Potato Spindle Tuber Viroid (Mild Strain) 706 Color Plates Plate 6 (a) Bacterial Leaf Rot on Dieffenbachia caused by Erwinia chrysanthemi.(b) Bacterial Leaf Rot on Philodendron caused by Erwinia chrysanthemi Color Plates 707 Plate 7 (a) Common Leafspot on Boston Ivy caused by Guignardia bidwellii.(b) Crown Gall on Chrysanthemum caused by Agrobacterium tumefaciens 708 Color Plates Plate 8 (a) Ringspot on Tomato Fruit caused by Cucumber Mosaic Virus. (b, c) Powdery Mildew on Rose caused by Podosphaera pannosa Color Plates 709 Plate 9 (a) Late Blight on Potato caused by Phytophthora infestans.(b) Powdery Mildew on Begonia caused by Erysiphe cichoracearum.(c) Mosaic on Squash caused by Cucumber Mosaic Virus 710 Color Plates Plate 10 (a) Dollar Spot on Turf caused by Sclerotinia homeocarpa.(b) Copper Injury on Rose caused by sprays containing Copper. -
Joimalofagmoiltdraiesea
JOIMALOFAGMOILTDRAIESEARCH VOL. XIX WASHINGTON, D. C, JULY 15, 1920 No. 8 RELATIVE SUSCEPTIBILITY TO CITRUS-CANKER OF DIFFERENT SPECIES AND HYBRIDS OF THE GENUS CITRUS, INCLUDING THE WILD RELATIVES » By GEORGE I*. PELTIER, Plant Pathologist, Alabama Agricultural Experiment Station, and Agent, Bureau of Plant Industry, United States Department of Agriculture, and WILLIAM J. FREDERICH, Assistant Pathologist, Bureau of Plant Industry, United States Department of Agriculture 2 INTRODUCTION In a preliminary report (6)3 the senior author briefly described the results obtained under greenhouse conditions for a period of six months on the susceptibility and resistance to citrus-canker of a number of plants including some of the wild relatives, Citrus fruits, and hybrids of the genus Citrus. Since that time the plants reported on have been under close observation; a third experiment has been started, and many inoculations have been made in the isolation field in southern Alabama during the summers of 1917, 1918, and 1919. Many more plants have been successfully inoculated; others have proved to be extremely sus- ceptible; while some of those tested still show considerable resistance. The results obtained up to November 1, 1919, are described in tjhis report. EXPERIMENTAL METHODS In the greenhouse, the methods used and the conditions governing the inoculations described in the preliminary report were closely fol- lowed. The same strain of the organism was used and was applied in the 1 Published with the approval of the Director of the Alabama Agricultural Experiment Station. The paper is based upon cooperative investigations between the Office of Crop Physiology and Breeding Investi- gations, Bureau of Plant Industry, United States Department of Agriculture, and the Department of Plant Pathology, Alabama Agricultural Experiment Station. -
New and Noteworthy Citrus Varieties Presentation
New and Noteworthy Citrus Varieties Citrus species & Citrus Relatives Hundreds of varieties available. CITRON Citrus medica • The citron is believed to be one of the original kinds of citrus. • Trees are small and shrubby with an open growth habit. The new growth and flowers are flushed with purple and the trees are sensitive to frost. • Ethrog or Etrog citron is a variety of citron commonly used in the Jewish Feast of Tabernacles. The flesh is pale yellow and acidic, but not very juicy. The fruits hold well on the tree. The aromatic fruit is considerably larger than a lemon. • The yellow rind is glossy, thick and bumpy. Citron rind is traditionally candied for use in holiday fruitcake. Ethrog or Etrog citron CITRON Citrus medica • Buddha’s Hand or Fingered citron is a unique citrus grown mainly as a curiosity. The six to twelve inch fruits are apically split into a varying number of segments that are reminiscent of a human hand. • The rind is yellow and highly fragrant at maturity. The interior of the fruit is solid rind with no flesh or seeds. • Fingered citron fruits usually mature in late fall to early winter and hold moderately well on the tree, but not as well as other citron varieties. Buddha’s Hand or Fingered citron NAVEL ORANGES Citrus sinensis • ‘Washington navel orange’ is also known • ‘Lane Late Navel’ was the first of a as the Bahia. It was imported into the number of late maturing Australian United States in 1870. navel orange bud sport selections of Washington navel imported into • These exceptionally delicious, seedless, California. -
1 Research Article 1 2 Fungi 3 Authors: 4 5 6 7 8 9 10
1 Research Article 2 The architecture of metabolism maximizes biosynthetic diversity in the largest class of 3 fungi 4 Authors: 5 Emile Gluck-Thaler, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 6 Sajeet Haridas, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 7 Laboratory, Berkeley, CA, USA 8 Manfred Binder, TechBase, R-Tech GmbH, Regensburg, Germany 9 Igor V. Grigoriev, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 10 Laboratory, Berkeley, CA, USA, and Department of Plant and Microbial Biology, University of 11 California, Berkeley, CA 12 Pedro W. Crous, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The 13 Netherlands 14 Joseph W. Spatafora, Department of Botany and Plant Pathology, Oregon State University, OR, USA 15 Kathryn Bushley, Department of Plant and Microbial Biology, University of Minnesota, MN, USA 16 Jason C. Slot, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 17 corresponding author: [email protected] 18 1 19 Abstract: 20 Background - Ecological diversity in fungi is largely defined by metabolic traits, including the 21 ability to produce secondary or "specialized" metabolites (SMs) that mediate interactions with 22 other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters 23 (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation 24 in BGC composition reflects the diversity of their SM products. Recent studies have documented 25 surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is 26 known about how this population-level variation is inherited across macroevolutionary 27 timescales. -
List of Citrus Fruits
Common Taxonomic SNo Notes name(s) name/constituents Yellowish-orange in colour, about the size of grapefruit and oblate in shape. 1 Amanatsu Citrus natsudaidai The fruit contains 12 segments and about 30 seeds. Balady citron 2 Palestinian Citrus medica Grown in Israel and used for Jewish ritual purposes. citron Bergamot 3 Citrus bergamia orange Bitter orange Seville orange Sour orange 4 Bigarade Citrus × aurantium orange Marmalade orange 5 Blood orange Citrus × sinensis Buddha's hand Citrus medica var. 6 Bushukan sarcodactylis Fingered citron Calamondin × Citrofortunella 7 Calamansi mitis Citrus reticulata × 8 Cam sành maxima 9 Citron Citrus medica Citrus subg. Papeda indicates the subgenus Papeda of the genus Citrus, with citrus species native to Asia.The papeda group includes some of the most Citrus subg. tropical, and also some of the most frost-tolerant citrus plants. They are 10 Papeda cultivated far less often than other citrus, though they will all hybridize with other citrus. This group contains about 15 species. 11 Clementine Citrus reticulata Corsican 12 citron Found in lowland subtropical rainforest and dry rainforest areas of Queensland and New South Wales, Australia. Early settlers consumed the 13 Desert Lime Citrus glauca fruit and retained the trees when clearing for agriculture. Commercial uses include boutique marmalade and restaurant dishes, and is exported for such. 14 Etrog Citrus medica The finger lime has been recently popularised as a gourmet bushfood. 15 Finger lime Citrus australasica Finger lime is thought to -
Evolution of Lifestyles in Capnodiales
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 95: 381–414 (2020). Evolution of lifestyles in Capnodiales J. Abdollahzadeh1*, J.Z. Groenewald2, M.P.A. Coetzee3, M.J. Wingfield3, and P.W. Crous2,3,4* 1Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran; 2Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, Utrecht, 3508 AD, the Netherlands; 3Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; 4Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands *Correspondence: J. Abdollahzadeh, [email protected]; P.W. Crous, [email protected] Abstract: The Capnodiales, which includes fungi known as the sooty moulds, represents the second largest order in Dothideomycetes, encompassing morphologically and ecologically diverse fungi with different lifestyles and modes of nutrition. They include saprobes, plant and human pathogens, mycoparasites, rock-inhabiting fungi (RIF), lichenised, epi-, ecto- and endophytes. The aim of this study was to elucidate the lifestyles and evolutionary patterns of the Capnodiales as well as to reconsider their phylogeny by including numerous new collections of sooty moulds, and using four nuclear loci, LSU, ITS, TEF-1α and RPB2. Based on the phylogenetic results, combined with morphology and ecology, Capnodiales s. lat. is shown to be polyphyletic, representing seven different orders. The sooty moulds are restricted to Capnodiales s. str., while Mycosphaerellales is resurrected, and five new orders including Cladosporiales, Comminutisporales, Neophaeothecales, Phaeothecales and Racodiales are introduced. Four families, three genera, 21 species and five combinations are introduced as new. -
<I>Dothideomycetes: Elsinoe</I>
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON Volume 115, pp. 507–520 January–March 2011 doi: 10.5248/115.507 Morphological studies in Dothideomycetes: Elsinoe (Elsinoaceae), Butleria, and three excluded genera Yanmei Li1, Haixia Wu1, Hang Chen1 & Kevin D. Hyde1, 2, 3* 1 International Fungal Research and Development Centre, Key Laboratory of Resource Insect Cultivation & Utilization State Forestry Administration, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, PR China 2 Visiting Professor, Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11442, Saudi Arabia 3 School of Science, Mae Fah Luang University Tasud, Muang, Chiang Rai 57100, Thailand * Correspondence to: [email protected] Abstract — The types of the genera Beelia, Butleria, Elsinoe, Hyalotheles, and Saccardinula were examined to revise their familial position. The family Elsinoaceae (type: Elsinoe canavaliae) is described and its separation from Myriangiaceae is supported. Butleria inaghatahani has characters similar to Elsinoaceae where it should remain. Beelia suttoniae appears to be a superficial biotroph on the surface of leaves and thus Beelia should be placed in Chaetothyriaceae and is most similar to Ainsworthia (= Phaeosaccardinula). Apart from the oblong to ovoid sessile asci in Hyalotheles dimerosperma, its placement in Elsinoaceae seems unwarranted, and Hyalotheles should be placed in Dothideomycetes incertae sedis. Saccardinula guaranitica may be better placed in Microthyriaceae or Brefeldiellaceae, because its ascomata greatly resemble thyrothecia found in Microthyriaceae and have similarities with Brefeldiella. Molecular sequence data from fresh collections is required to solve the problem of familial placement. Key words — Ascomycota, morphology, taxonomy Introduction We are conducting studies on the Dothideomycetes in order to provide a natural classification (Zhang et al.