“Fungal Shunt”: Parasitic Fungi on Diatoms Affect Carbon Flow and Bacterial Communities in Aquatic Microbial Food Webs

Total Page:16

File Type:pdf, Size:1020Kb

“Fungal Shunt”: Parasitic Fungi on Diatoms Affect Carbon Flow and Bacterial Communities in Aquatic Microbial Food Webs Characterizing the “fungal shunt”: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs Isabell Klawonna,1,2, Silke Van den Wyngaertb,3, Alma E. Paradaa, Nestor Arandia-Gorostidia, Martin J. Whitehousec, Hans-Peter Grossartb,d, and Anne E. Dekasa,2 aDepartment of Earth System Science, Stanford University, Stanford, CA 94305; bDepartment of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; cDepartment of Geosciences, Swedish Museum of Natural History, 104 05 Stockholm, Sweden; and dInstitute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved March 26, 2021 (received for review February 3, 2021) Microbial interactions in aquatic environments profoundly affect Members of the fungal division Chytridiomycota, referred to global biogeochemical cycles, but the role of microparasites has as chytrids, can thrive as microparasites on phytoplankton cells in been largely overlooked. Using a model pathosystem, we studied freshwater (11, 13, 14) and marine systems (15–17), infecting up hitherto cryptic interactions between microparasitic fungi (chytrid to 90% of the phytoplankton host population (18–21). A recent Rhizophydiales), their diatom host Asterionella, and cell-associated concept, called mycoloop, describes parasitic chytrids as an in- and free-living bacteria. We analyzed the effect of fungal infections tegral part of aquatic food webs (22). Energy and organic matter on microbial abundances, bacterial taxonomy, cell-to-cell carbon are thereby transferred from large, often inedible phytoplankton transfer, and cell-specific nitrate-based growth using microscopy to chytrid zoospores, which are consumed by zooplankton (23–27). (e.g., fluorescence in situ hybridization), 16S rRNA gene amplicon Hence, parasitic chytrids establish a novel trophic link between sequencing, and secondary ion mass spectrometry. Bacterial abun- phytoplankton and zooplankton. Our understanding of element dances were 2 to 4 times higher on individual fungal-infected cycling and microbial interactions during chytrid epidemics, how- diatoms compared to healthy diatoms, particularly involving ever, remains sparse. For instance, the cell-to-cell C transfer from Burkholderiales. Furthermore, taxonomic compositions of both single phytoplankton cells to their directly associated chytrids has ENVIRONMENTAL SCIENCES diatom-associated and free-living bacteria were significantly differ- notbeenquantifiedtodate.Moreover,therelationshipbe- ent between noninfected and fungal-infected cocultures. The fungal tween parasitic chytrids and heterotrophic bacteria is largely microparasite, including diatom-associated sporangia and free- undescribed. swimming zoospores, derived ∼100% of their carbon content from the diatom. By comparison, transfer efficiencies of photosynthetic Significance carbon were lower to diatom-associated bacteria (67 to 98%), with a high cell-to-cell variability, and even lower to free-living bacteria Planktonic microorganisms interact with each other in multi- (32%). Likewise, nitrate-based growth for the diatom and fungi was farious ways, ultimately catalyzing the flow of carbon and synchronized and faster than for diatom-associated and free-living energy in diverse aquatic environments. However, crucial links bacteria. In a natural lacustrine system, where infection prevalence associated with eukaryotic microparasites are still overlooked reached 54%, we calculated that 20% of the total diatom-derived in planktonic networks. We addressed such links by studying photosynthetic carbon was shunted to the parasitic fungi, which can cryptic interactions between parasitic fungi, phytoplankton, be grazed by zooplankton, thereby accelerating carbon transfer to and bacteria using a model pathosystem. Our results demonstrate higher trophic levels and bypassing the microbial loop. The herein that parasitic fungi profoundly modified microbial interactions termed “fungal shunt” can thus significantly modify the fate of through several mechanisms (e.g., transferring photosynthetic photosynthetic carbon and the nature of phytoplankton–bacteria carbon to infecting fungi, stimulating bacterial colonization on interactions, with implications for diverse pelagic food webs and phytoplankton cells, and altering the community composition of global biogeochemical cycles. bacteria and their acquisition of photosynthetic carbon). Hence, fungal microparasites can substantially shape the microbially eukaryotic microparasites | phytoplankton–fungi–bacteria interactions | mediated carbon flow at the base of aquatic food webs and carbon fluxes should be considered as crucial members within plankton communities. arasitism is one of the most common consumer strategies on PEarth (1–3). Recently, it has also been identified as one of Author contributions: I.K., S.V.d.W., and A.E.D. designed research; I.K., S.V.d.W., A.E.P., the dominating interactions within the planktonic interactome N.A.-G., and M.J.W. performed research; H.-P.G. and A.E.D. contributed new reagents/ analytic tools; I.K. analyzed data; and I.K. and A.E.D. wrote the paper with the input from (4, 5), and yet parasites remain poorly considered in analyses of all coauthors. trophic interactions and element cycling in aquatic systems (6, 7). The authors declare no competing interest. The foundation of trophic interactions in plankton communities This article is a PNAS Direct Submission. is set by single-cell phytoplankton, which contributes almost half This open access article is distributed under Creative Commons Attribution License 4.0 of the world’s primary production (8). According to our common (CC BY). understanding, the newly fixed carbon (C) is channeled either 1Present address: Department of Biological Oceanography, Leibniz Institute for Baltic Sea through the microbial loop, classical food web, or viral shunt, Research, 18119 Rostock, Germany. which supports the growth of heterotrophic bacteria and nano- 2To whom correspondence may be addressed. Email: [email protected] or [email protected]. flagellates, zooplankton and higher trophic levels, or viruses, 3Present address: WaterCluster Lunz, Inter-University Center for Aquatic Ecosystem Re- respectively (9). However, fungi, particularly fungal microparasites, search, 3293 Lunz am See, Austria. are rarely considered as contributors to C and nutrient cycling, al- This article contains supporting information online at https://www.pnas.org/lookup/suppl/ though they are present and active in diverse aquatic environments doi:10.1073/pnas.2102225118/-/DCSupplemental. (10–12). Published May 31, 2021. PNAS 2021 Vol. 118 No. 23 e2102225118 https://doi.org/10.1073/pnas.2102225118 | 1of11 Downloaded by guest on September 27, 2021 Phytoplankton cells release substantial amounts of dissolved reactive phosphorous [SRP]). Concentrations of dissolved silica − organic C (DOC) (28), whereby up to 50% of photosynthetic C is (∼0.2 to 1.6 nmol · mL 1) were comparable on day 0 and 2 but consumed as DOC by bacteria (29–32). Thus, bacterial com- significantly higher in the infected treatment on day 6. Total − munities are intimately linked to phytoplankton abundances and DOC concentrations (∼70 to 140 nmol · mL 1) were equal in production (33). Phytoplankton–bacteria interactions are particu- both treatments on all sampling days, but on day 6, the 13C en- larly strong within the phycosphere, the region immediately sur- richment in the DOC pool was significantly higher in the infected rounding individual phytoplankton cells (33–35), where nutrient treatment (4.0 ± 0.4 versus 4.9 ± 0.0 13C atom percent [atom%] concentrations are several-folds higher compared to the ambient excess, P = 0.0001). DOC production rates were similar in both − − water (36, 37), and nutrient assimilation rates of phytoplankton- treatments (∼20 nmol C · d 1 · mL 1, SI Appendix, Table S2). associated bacteria are at least twice as fast as those of their free- living counterparts (38, 39). Importantly, parasitic chytrids may Bacterial Abundances, Community Composition, and Potential Activity. distort these phytoplankton–bacteria interactions within and out- Using fluorescence microscopy, we classified bacteria as 1) free- side the phycosphere since they modulate substrate and nutrient living bacteria and diatom-associated bacteria based on their at- availabilities and presumably also bacterial activity and community tachment to different types of Asterionella cells, including 2) composition. The effects of this distortion are virtually unresolved, noninfected, 3) infected, 4) postinfected, and 5) decaying cells but the few available data indicate that chytrid infections alter the (Fig. 1). Noninfected Asterionella were recognized as healthy, in- composition and concentration of DOC (40), while abundances of tact cells; infected Asterionella showed ongoing infections with a free-living bacteria increase (25, 40) or remain unchanged (24). mature epibiotic zoosporangium (herein sporangium); post- To disentangle phytoplankton–fungi–bacteria interactions at a infected Asterionella displayed remains of chytrid-related chitin microspatial single-cell scale—the scale at which phytoplankton, structures as a sign of previous infections after zoospore discharge; fungi, and bacteria intimately interact—we used one of the few and decaying cells showed low levels of autofluorescence but no existing model
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Effects of Eutrophication on Stream Ecosystems
    EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms.
    [Show full text]
  • Mote Marine Laboratory Red Tide Studies
    MOTE MARINE LABORATORY RED TIDE STUDIES FINAL REPORT FL DEP Contract MR 042 July 11, 1994 - June 30, 1995 Submitted To: Dr. Karen Steidinger Florida Marine Research Institute FL DEPARTMENT OF ENVIRONMENTAL PROTECTION 100 Eighth Street South East St. Petersburg, FL 33701-3093 Submitted By: Dr. Richard H. Pierce Director of Research MOTE MARINE LABORATORY 1600 Thompson Parkway Sarasota, FL 34236 Mote Marine Laboratory Technical Report No. 429 June 20, 1995 This document is printed on recycled paper Suggested reference Pierce RH. 1995. Mote Marine Red Tide Studies July 11, 1994 - June 30, 1995. Florida Department of Environmental Pro- tection. Contract no MR 042. Mote Marine Lab- oratory Technical Report no 429. 64 p. Available from: Mote Marine Laboratory Library. TABLE OF CONTENTS I. SUMMARY. 1 II. CULTURE MAINTENANCE AND GROWTH STUDIES . 1 Ill. ECOLOGICAL INTERACTION STUDIES . 2 A. Brevetoxin Ingestion in Black Seabass B. Evaluation of Food Carriers C. First Long Term (14 Day) Clam Exposure With Depuration (2/6/95) D. Second Long Term (14 Day) Clam Exposure (3/21/95) IV. RED TIDE FIELD STUDIES . 24 A. 1994 Red Tide Bloom (9/16/94 - 1/4/95) B. Red Tide Bloom (4/13/94 - 6/16/95) C. Red Tide Pigment D. Bacteriological Studies E. Brevetoxin Analysis in Marine Organisms Exposed to Sublethal Levels of the 1994 Natural Red Tide Bloom V. REFERENCES . 61 Tables Table 1. Monthly Combined Production and Use of Laboratory C. breve Culture. ....... 2 Table 2. Brevetoxin Concentration in Brevetoxin Spiked Shrimp and in Black Seabass Muscle Tissue and Digestive Tract Following Ingestion of the Shrimp ...............
    [Show full text]
  • Microscale Ecology Regulates Particulate Organic Matter Turnover in Model Marine Microbial Communities
    ARTICLE DOI: 10.1038/s41467-018-05159-8 OPEN Microscale ecology regulates particulate organic matter turnover in model marine microbial communities Tim N. Enke1,2, Gabriel E. Leventhal 1, Matthew Metzger1, José T. Saavedra1 & Otto X. Cordero1 The degradation of particulate organic matter in the ocean is a central process in the global carbon cycle, the mode and tempo of which is determined by the bacterial communities that 1234567890():,; assemble on particle surfaces. Here, we find that the capacity of communities to degrade particles is highly dependent on community composition using a collection of marine bacteria cultured from different stages of succession on chitin microparticles. Different particle degrading taxa display characteristic particle half-lives that differ by ~170 h, comparable to the residence time of particles in the ocean’s mixed layer. Particle half-lives are in general longer in multispecies communities, where the growth of obligate cross-feeders hinders the ability of degraders to colonize and consume particles in a dose dependent manner. Our results suggest that the microscale community ecology of bacteria on particle surfaces can impact the rates of carbon turnover in the ocean. 1 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2 Department of Environmental Systems Science, ETH Zurich, Zürich 8092, Switzerland. Correspondence and requests for materials should be addressed to O.X.C. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:2743 | DOI: 10.1038/s41467-018-05159-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05159-8 earning how the composition of ecological communities the North Pacific gyre20.
    [Show full text]
  • The Florida Red Tide Dinoflagellate Karenia Brevis
    G Model HARALG-488; No of Pages 11 Harmful Algae xxx (2009) xxx–xxx Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review The Florida red tide dinoflagellate Karenia brevis: New insights into cellular and molecular processes underlying bloom dynamics Frances M. Van Dolah a,*, Kristy B. Lidie a, Emily A. Monroe a, Debashish Bhattacharya b, Lisa Campbell c, Gregory J. Doucette a, Daniel Kamykowski d a Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Resarch, Charleston, SC, United States b Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA, United States c Department of Oceanography, Texas A&M University, College Station, TX, United States d Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States ARTICLE INFO ABSTRACT Article history: The dinoflagellate Karenia brevis is responsible for nearly annual red tides in the Gulf of Mexico that Available online xxx cause extensive marine mortalities and human illness due to the production of brevetoxins. Although the mechanisms regulating its bloom dynamics and toxicity have received considerable attention, Keywords: investigation into these processes at the cellular and molecular level has only begun in earnest during Bacterial–algal interactions the past decade. This review provides an overview of the recent advances in our understanding of the Cell cycle cellular and molecular biology on K. brevis. Several molecular resources developed for K. brevis, including Dinoflagellate cDNA and genomic DNA libraries, DNA microarrays, metagenomic libraries, and probes for population Florida red tide genetics, have revolutionized our ability to investigate fundamental questions about K.
    [Show full text]
  • Plankton Community Composition, Organic Carbon and Thorium-234 Particle Size Distributions, and Particle Export in the Sargasso Sea
    Journal of Marine Research, 67, 845–868, 2009 Plankton community composition, organic carbon and thorium-234 particle size distributions, and particle export in the Sargasso Sea by H. S. Brew1, S. B. Moran1,2, M. W. Lomas3 and A. B. Burd4 ABSTRACT Measurements of plankton community composition (eight planktonic groups), particle size- fractionated (10, 20, 53, 70, and 100-␮m Nitex screens) distributions of organic carbon (OC) and 234Th, and particle export of OC and 234Th are reported over a seasonal cycle (2006–2007) from the Bermuda Atlantic Time-Series (BATS) site. Results indicate a convergence of the particle size distributions of OC and 234Th during the winter-spring bloom period (January–March, 2007). The observed convergence of these particle size distributions is directly correlated to the depth-integrated abundance of autotrophic pico-eukaryotes (r ϭ 0.97, P Ͻ 0.05) and, to a lesser extent, Synechococcus (r ϭ 0.85, P ϭ 0.14). In addition, there are positive correlations between the sediment trap flux of OC and 234Th at 150 m and the depth-integrated abundance of pico-eukaryotes (r ϭ 0.94, P ϭ 0.06 for OC, and r ϭ 0.98, P Ͻ 0.05 for 234Th) and Synechococcus (r ϭ 0.95, P ϭ 0.05 for OC, and r ϭ 0.94, P ϭ 0.06 for 234Th). An implication of these observations and recent modeling studies (Richardson and Jackson, 2007) is that, although small in size, pico-plankton may influence large particle export from the surface waters of the subtropical Atlantic.
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • Phytoplankton
    Phytoplankton • What are the phytoplankton? • How do the main groups differ? Phytoplankton Zooplankton Nutrients Plankton “wandering” or “drifting” (incapable of sustained, directed horizontal movement) www.shellbackdon.com Nekton Active swimmers Components of the Plankton Virioplankton: Viruses Bacterioplankton: Bacteria — free living planktobacteria; epibacteria attached to larger particles Mycoplankton: Fungi Phytoplankton: Photosynthetic microalgae, cyanobacteria, and prochlorophytes Zooplankton: Heterotrophic — Protozooplankton (unicellular) and Metazooplankton (larval and adult crustaceans, larval fish, coelenterates…) Components of the Phytoplankton: Older scheme Netplankton: Plankton that is retained on a net or screen, usually Inspecting a small plankton 20 - 100 µm net. In: "From the Surface to the Bottom of the Sea" by H. Nanoplankton: Plankton that Bouree, 1912, Fig. 49, p. 61. passes the net, but Library Call Number 525.8 B77. which is > 2 µm Ultrananoplankton: Plankton < 2µm Components of the Plankton (older scheme) Netplankton: Plankton that is retained on a net or screen, usually 20 - 100 µm Nanoplankton: Plankton that passes the net, but which is > 2 µm Ultrananoplankton: Plankton < 2µm Microzooplankton: Zooplankton in the microplankton (i.e., < 200 µm) Length Scales to Define Plankton Groups Sieburth, J. M., Smetacek, V. and Lenz, J. (1978). Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256-1263. Terminology and Scales:
    [Show full text]
  • October-2009-Inoculum.Pdf
    Supplement to Mycologia Vol. 60(5) October 2009 Newsletter of the Mycological Society of America — In This Issue — Feature Article Fungal zoospores are valuable food Fungal zoospores are valuable food resources in aquatic ecosystems resources in aquatic ecosystems MSA Business President’s Corner By Frank H. Gleason, Maiko Kagami, Secretary’s Email Express Agostina V. Marano and Telesphore Simi-Ngando MSA Officers 2009 –2010 MSA 2009 Annual Reports Fungal zoospores are known to contain large quantities Minutes of the 2009 MSA Annual Council Meeting Minutes of the MSA 2009 Annual Business Meeting of glycogen and lipids in the form of endogenous reserves. MSA 2009 Award Winners Lipids are considered to be high energy compounds, some of MSA 2009 Abstracts (Additional) which are important for energy storage. Lipids can be con - Mycological News A North American Flora for Mushroom-Forming Fungi tained in membrane bound vesicles called lipid globules Marine Mycology Class which can easily be seen in the cytoplasm of fungal Mycohistorybytes Peripatetic Mycology zoospores with both the light and electron microscopes Student Research Opportunities in Thailand (Munn et al . 1981; Powell 1993; Barr 2001). Koch (1968) MSA Meeting 2010 MycoKey version 3.2 and Bernstein (1968) both noted variation in the size and MycoRant numbers of lipoid globules within zoospores in the light mi - Dr Paul J Szaniszlo croscope. The ultrastructure of the lipid globule complex Symposium : Gondwanic Connections in Fungi Mycologist’s Bookshelf was carefully examined by Powell and Roychoudhury A Preliminary Checklist of Micromycetes in Poland (1992). Fungal Pathogenesis in Plants and Crops Pathogenic Fungi in the Cryphonectriaceae Preliminary studies reviewed by Cantino and Mills Recently Received Books (1976) revealed a rich supply of lipids in the cells of Blasto - Take a Break cladiella emersonii .
    [Show full text]
  • Article Is Available Ral Lysis of Bacteria in the Photic Zone
    Biogeosciences, 15, 809–819, 2018 https://doi.org/10.5194/bg-15-809-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Virus-mediated transfer of nitrogen from heterotrophic bacteria to phytoplankton Emma J. Shelford1 and Curtis A. Suttle1,2,3,4 1Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada 2Department of Botany, University of British Columbia, Vancouver, Canada 3Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada 4Institute of Oceans and Fisheries, University of British Columbia, Vancouver, Canada Correspondence: Curtis A. Suttle ([email protected]) Received: 29 June 2017 – Discussion started: 18 July 2017 Revised: 27 November 2017 – Accepted: 8 January 2018 – Published: 9 February 2018 Abstract. Lytic infection of bacteria by viruses releases nu- rich in free and combined amino acids (Middelboe and Jør- trients during cell lysis and stimulates the growth of primary gensen, 2006) that are taken up and metabolised by bacte- producers, but the path by which these nutrients flow from ria (Middelboe et al., 1996, 2003). When the C V N of DOM lysates to primary producers has not been traced. This study is low relative to bacterial nutritional requirements, bacte- examines the remineralisation of nitrogen (N) from Vibrio ria deaminate DOM and release ammonium (Hollibaugh, lysates by heterotrophic bacterioplankton and its transfer 1978; Goldman et al., 1987) to acquire carbon for energy to primary producers. In laboratory trials, Vibrio sp. strain and growth (e.g. Brussaard et al., 1996; Fouilland et al., PWH3a was infected with a lytic virus (PWH3a-P1) and 2014); the release of ammonium can support phytoplank- the resulting 36.0 µmol L−1 of dissolved organic N (DON) ton growth (Haaber and Middelboe, 2009; Weinbauer et al., in the lysate was added to cultures containing cyanobacte- 2011; Shelford et al., 2012).
    [Show full text]
  • 2013 Mystic, CT
    Table of Contents & Acknowledgements Welcome note ……………………………………………………………..….. 2 General program …………………………………………………………..….. 3-7 Poster presentation summary …………………………………..……………… 8-10 Oral abstracts (in order of presentation) …….………………………………… 11-25 Poster abstracts (numbered presentation boards) ……..……….……………… 26-38 Biographies of our distinguished speakers: James Carlton, Mark Edlund, Alan Steinman ……………. 39 Sincere appreciation The co-conveners acknowledge the generous support of our sponsors for this event, Woods Hole Sea Grant, Dominion Resources, Connecticut Sea Grant. Our vendors include Balogh Books (Scott Balogh), Environmental Proteomics (Jackie Zorz), Microtech Optical (Mark Specht), Reed Mariculture (Eric Henry), Saltwater Studio (Mary Jameson), and Willywaw (Ashley Van Etten). We thank our student volunteers: Shelby Rinehart, Meg McConville, Emily Bishop (U. Rhode Island) and Catharina Grubaugh, Sarah Whorley, and Xian Wang (Fordham U.) for their assistance in registration and meeting audio/visual support. We thank the award judges for the Wilce Graduate Oral Award Committee (Brian Wysor (Chair), Nic Blouin, Ursula Röse), Trainor Graduate Poster Award Committee (Karolina Fučíková (Chair), Charles O'Kelly, Michele Guidone, Ruth Schmitter) and President’s Undergraduate Presentation (oral & poster) Award Committee (Anita Klein (Chair), Julie Koester, Dion Durnford, Kyatt Dixon, Ken Hamel). We also thank the session moderators: Jessie Muhlin, Lorraine Janus, Anne-Marie Lizarralde, Dale Holen, Hilary McManus, and Amy Carlile. We are grateful to our invited speakers Jim Carlton, Mark Edlund, and Alan Steinman. We extend sincere gratitude to Bridgette Clarkston, who designed the 50th NEAS logo and Nic Blouin for modifying that logo for this meeting, and the staff at the Mystic Hilton, particularly Eileen Menard, for providing logistical support for this meeting. 1 Welcome to the 52nd Northeast Algal Symposium! We are delighted to welcome everyone to Mystic, Connecticut, and the Mystic Hilton.
    [Show full text]
  • Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure
    Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure Authors: Suzanne L. Ishaq, Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled The final publication is available at Springer via http://dx.doi.org/10.1007/s00248-016-0861-2. Ishaq, Suzanne L. , Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled. "Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure." Microbial Ecology 73, no. 2 (February 2017): 417-434. DOI: 10.1007/s00248-016-0861-2. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure 1,2 & 2 & 3 & 4 & Suzanne L. Ishaq Stephen P. Johnson Zach J. Miller Erik A. Lehnhoff 1 1 2 Sarah Olivo & Carl J. Yeoman & Fabian D. Menalled 1 Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, MT 59717, USA 2 Department of Land Resources and Environmental Sciences, Montana State University, P.O. Box 173120, Bozeman, MT 59717, USA 3 Western Agriculture Research Center, Montana State University, Bozeman, MT, USA 4 Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA Abstract Farming practices affect the soil microbial commu- then individual farm. Living inoculum-treated soil had greater nity, which in turn impacts crop growth and crop-weed inter- species richness and was more diverse than sterile inoculum- actions.
    [Show full text]