The Roles of Vitamin D and Cathelicidin in Type 1 Diabetes Susceptibility

Total Page:16

File Type:pdf, Size:1020Kb

The Roles of Vitamin D and Cathelicidin in Type 1 Diabetes Susceptibility ID: 20-0484 10 1 C Cristelo et al. Vitamin D, cathelicidin and 10:1 R1–R12 type 1 diabetes REVIEW The roles of vitamin D and cathelicidin in type 1 diabetes susceptibility Cecília Cristelo1,2, Alexandra Machado2, Bruno Sarmento1,3 and Francisco Miguel Gama2 1i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal 2CEB – Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal 3CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal Correspondence should be addressed to F M Gama: [email protected] Abstract Type 1 diabetes has an increasingly greater incidence and prevalence with no cure Key Words available. Vitamin D supplementation is well documented to reduce the risk of developing f β cell protection type 1 diabetes. Being involved in the modulation of cathelicidin expression, the question f cathelicidin whether cathelicidin may be one of the underlying cause arises. Cathelicidin has been f diabetes implicated in both the development and the protection against type 1 diabetes by f immunomodulation mediating the interplay between the gut microbiome, the immune system and β cell f vitamin D function. While its potential on type 1 diabetes treatment seems high, the understanding of its effects is still limited. This review aims to contribute to a more comprehensive understanding of the potential of vitamin D and cathelicidin as adjuvants in type 1 Endocrine Connections diabetes therapy. (2021) 10, R1–R12 Type 1 diabetes Diabetes mellitus refers to a group of metabolic diseases This is most concerning in children with less than 15 characterised by chronic hyperglycaemia due to absent years and particularly less than 5 years (8). insulin secretion, insulin action or both (1). Diabetes Type 1 diabetes is a multifactorial disease. Genetic is classically divided in type 1 and type 2 diabetes (2) factors associated with certain haplotypes from the HLA and of all individuals diagnosed with this disease, type 1 complex have been shown to decisively influence the diabetes represents up to 10%, of which 80–90% are susceptibility (9). Additionally, environmental factors children or adolescents (3). Type 1 diabetes is commonly such as the seasonal environment at birth (3), infant diet referred to as autoimmune diabetes and results from (10), viral infections (11) and the gut microbiome (12) the autoimmune destruction of pancreatic β cells. have also been suggested to play a role on type 1 diabetes On the other hand, type 2 diabetes, which accounts development. The heterogeneity and variation in the for the remaining 90% of cases, affects mostly adults, pathogenic process and phenotypic characteristics makes although its incidence in youth is increasing due to it difficult to diagnose and to treat the disease at an early changes in lifestyle and increased obesity (4). Differently stage (13). from type 1 diabetes, type 2 diabetes is characterised by insulin resistance and defective insulin secretion, Pathophysiology which may be accompanied by the destruction of β cells (5). Type 1 diabetes is a chronic disease resulting from the Type 1 diabetes is one of the most common endocrine autoimmune destruction of the insulin-producing β cells diseases in children (6); recent reports indicate a yearly in the pancreas. Not all cases of type 1 diabetes are increase from 3 to 4% on the incidence in childhood (7). autoimmune mediated. For around 10–30% of patients, https://ec.bioscientifica.com © 2021 The authors This work is licensed under a Creative Commons https://doi.org/10.1530/EC-20-0484 Published by Bioscientifica Ltd Attribution-NonCommercial 4.0 International License. Downloaded from Bioscientifica.com at 09/25/2021 05:33:06AM via free access -20-0484 PB–XX C Cristelo et al. Vitamin D, cathelicidin and 10:1 R2 type 1 diabetes the cause is idiopathic and the specific pathogenesis is also be looked as a multivalent strategy. Alternative unclear (14). strategies have been explored, including the use of The triggering event that leads to the autoimmune immunosuppressant therapies, which leave the patients elimination of β cells is still unknown but may be immunocompromised and susceptible to infections; related to a failure in the elimination of self-reactive the use of antigenic tolerance therapies, the protection T cells, in the thymus. This leads to the escape of T cell of β cells and selective stimulation of their proliferation populations – autoreactive against β cell proteins such as or reprograming of non-β cells into functional β cells insulin, glutamic acid decarboxylase (GAD) and protein (19). Although islets have limited regenerative capacity tyrosine phosphatase IA-2 – to the periphery (15, 16, 17). it has been found that, within islets, α cells and δ cells Upon encounter with the self-antigens, T cells undergo can undergo transdifferentiation to functional β cells or activation and expansion, releasing proinflammatory β-like cells (25, 26). Pancreatic β cells replicate at a high cytokines. This promotes pancreatic infiltration of more rate during the foetal and neonatal stages, a process that T cells, macrophages, B lymphocytes and plasma cells, with rapidly declines with age (27). Inducing β cells to undergo resultant autoimmune destruction of the insulin-secreting mitosis using harmine and 5-iodotubercidin, inhibitors of β cells (18). The symptoms are observed only when around the dual-specificity tyrosine phosphorylation-regulated two-thirds of the β cell mass is lost (19). During the pre- kinase 1A (DYRK1A), has shown promising to the recovery symptomatic stage, markers of autoimmunity, presence of of β cell mass (28, 29). However, the limited potency islet autoantibodies in circulation, as well as dysregulation and lack of β cell specificity, with undesirable off-target of blood glucose start to arise due to the loss of β cells. effects, limit their applicability. A drug able to stimulate With the continuous decline in β cells, the symptomatic β cell regeneration while simultaneously shifting the stage is reached and signs of diabetes, polyuria, polydipsia, proinflammatory autoimmune islet milieu to an anti- weight loss, fatigue, diabetic ketoacidosis (DKA) are inflammatory one, to prevent future insulitis, would be identified (20). The rate of progression to the symptomatic the ideal candidate for type 1 diabetes cure (19). stage can vary from months to decades, in both children Vitamin D and the antimicrobial peptide cathelicidin and adults (13). have been proposed as promising candidates for this endeavour. On one hand, both pre-clinical and clinical research demonstrated vitamin D has a well-established Type 1 diabetes management strategies role in the protection from type 1 diabetes development. Given the absence or reduced insulin secretion, an On the other hand, although cathelicidin expression is obvious strategy for type 1 diabetes management involves directly induced by vitamin D, the mechanistic effects of its exogenous administration (21). Since the discovery of cathelicidin in type 1 diabetes susceptibility and therapy insulin in 1922, much advances in health care has been are still poorly understood. achieved, such that the previously terminal disease is now treatable. Nowadays, the availability of new insulin analogues, with varying duration of activity, allows for Vitamin D a multiple-dose insulin therapy that better resembles the physiologic insulin release (22). The combination of Vitamin D3 (cholecalciferol, hereafter mentioned as D3) the rigorous monitoring of blood glucose levels with the is a liposoluble molecule precursor of human steroid multifunctional insulin therapy enables the glycaemic hormones, which can be obtained through diet or control, and to prevent, or delay, the complications of exposure to UV-B sunlight. After production, D3 is partially type 1 diabetes (23). stored in adipose tissues in a few hours, while other Despite these advances, type 1 diabetes is still part is converted to 25-hydroxyvitamin D3 (25(OH)D3) associated with a high medical, psychological and by the liver. 25(OH)D3 is further hydroxylated into the financial burden. Hypoglycaemia and ketoacidosis remain active form 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) life-threatening complications, as well as an increased risk in the kidneys (30), which then acts to maintain serum of co-morbidities (cardiovascular disease, retinopathy and calcium levels, although its activities go beyond calcium nephropathy) and premature death (22, 24). homeostasis and bone metabolism (31). Efforts to manage the disease are not able to reach The vitamin D receptor (VDR) has been identified in a cure but only a control of the symptoms. Given the practically all immune cell types (32). After intracellular heterogeneity of type 1 diabetes, treatment should enzymatic activation of vitamin D and subsequent VDR https://ec.bioscientifica.com © 2021 The authors This work is licensed under a Creative Commons https://doi.org/10.1530/EC-20-0484 Published by Bioscientifica Ltd Attribution-NonCommercial 4.0 International License. Downloaded from Bioscientifica.com at 09/25/2021 05:33:06AM via free access C Cristelo et al. Vitamin D, cathelicidin and 10:1 R3 type 1 diabetes Figure 1 Classic vitamin D signalling pathway. Serum 25(OH)D3 is converted to 1,25(OH)2D3 by mitochondrial 1α-hydroxylase, initiating the signalling cascade by binding to VDR, which dimers with RXR, and binds to specific DNA sequences, VDREs,
Recommended publications
  • Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance As a Prognostic Biomarker in Ovarian
    cells Review Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients Michal Kielbik *, Izabela Szulc-Kielbik and Magdalena Klink Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; [email protected] (I.S.-K.); [email protected] (M.K.) * Correspondence: [email protected]; Tel.: +48-42-27-23-636 Abstract: Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant dis- ease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
    [Show full text]
  • Apoptosis by Incomplete Infection
    rESEArcH HIGHLIGHtS Apoptosis by incomplete infection Constraining inflammation κ Infection with human immunodeficiency virus (HIV) is The transcription factor NF- B is a critical mediator of Toll-like recep- characterized by progressive apoptosis of CD4+ T cells, and tor (TLR) signaling in response to a range of activators. In Genes & although some of the molecular participants in this process are Development, Barish et al. provide genetic and genomic evidence that known, the precise details remain unclear. Greene and colleagues the transcription factor Bcl-6 broadly antagonizes the TLR–NF-κB in Cell report the unexpected finding that nonproductive infection network. Genome-wide expression analyses and chromatin-immuno- of CD4+ T cells can also result in apoptosis. The authors use a precipitation sequencing (ChIP-Seq) show that Bcl-6 is a basal- and human lymphoid aggregation culture system to recapitulate in lipopolysaccharide (LPS)-induced inhibitor of many inflammatory vitro the events of HIV infection in the lymph node. The addition modules in bone marrow–derived macrophages. Bcl-6 controls one of HIV to this culture system results in the apoptosis of not only third of the LPS-elicited transcriptome, and sites for Bcl-6 and the productively infected but also nonpermissive CD4+ cells. Apoptosis NF-κB subunit p65 are located together in a nucleosomal window of the latter requires fusion with HIV and the initiation but not (200 base pairs) in 25% of the gene network controlled by TLR–NF-κB. completion of viral reverse transcription. The accumulation Stimulation of TLR4 reciprocally diminishes or enhances the binding of of incomplete HIV reverse transcripts results in activation of Bcl-6 and p65 to enhancer regions at target genes encoding key inflam- caspase-1 and caspase-3 and release of the inflammatory cytokine matory molecules, such as IL-1 and various chemokines.
    [Show full text]
  • Mechanism of Mammalian Cell Lysis Mediated by Peptide Defensins
    Mechanism of Mammalian Cell Lysis Mediated by Peptide Defensins Evidence for an Initial Alteration of the Plasma Membrane Alan Lichtenstein Division ofHematology/Oncology, Department ofMedicine, Veterans Administration Wadsworth-UCLA Medical Center, Los Angeles, California 90073 Abstract targets, are three small (mol wt 3,900) cationic peptides termed defensins or human neutrophil peptides 1, 2, and 3 (HNP Defensins induce ion channels in model lipid bilayers and per- 1-3).' The human defensins are secreted by activated PMNs meabilize the membranes of Escherichia coli. We investigated (10) and could, therefore, function as cytotoxins during anti- whether similar membrane-active events occur during defensin- body-dependent cellular cytotoxicity. In addition, a synergistic mediated cytolysis of tumor cells. Although defensin-treated cytotoxic effect occurs when target cells are exposed to a combi- K562 targets did not release chromium-labeled cytoplasmic nation of defensins and toxic oxidants (8). It is, thus, conceiv- components for 5-6 h, they experienced a rapid collapse able that defensins may play a role in tissue injury seen during (within minutes) of the membrane potential, efflux of rubidium, inflammatory or infectious processes. and influx of trypan blue. Defensin treatment also blunted the To investigate the mechanism of defensin-induced injury, subsequent acidification response induced by nigericin, thereby we have utilized continuously cultured tumor cells as model further supporting the notion of enhanced transmembrane ion targets. In previous studies (11, 12), K562 cells exposed to de- flow during exposure. These initial effects on the plasma mem- fensins began to release radiolabeled chromium after a lag pe- brane were not sufficient for subsequent lysis; a second phase of riod of 3-4 h.
    [Show full text]
  • I M M U N O L O G Y Core Notes
    II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111
    [Show full text]
  • 1. Introduction to Immunology Professor Charles Bangham ([email protected])
    MCD Immunology Alexandra Burke-Smith 1. Introduction to Immunology Professor Charles Bangham ([email protected]) 1. Explain the importance of immunology for human health. The immune system What happens when it goes wrong? persistent or fatal infections allergy autoimmune disease transplant rejection What is it for? To identify and eliminate harmful “non-self” microorganisms and harmful substances such as toxins, by distinguishing ‘self’ from ‘non-self’ proteins or by identifying ‘danger’ signals (e.g. from inflammation) The immune system has to strike a balance between clearing the pathogen and causing accidental damage to the host (immunopathology). Basic Principles The innate immune system works rapidly (within minutes) and has broad specificity The adaptive immune system takes longer (days) and has exisite specificity Generation Times and Evolution Bacteria- minutes Viruses- hours Host- years The pathogen replicates and hence evolves millions of times faster than the host, therefore the host relies on a flexible and rapid immune response Out most polymorphic (variable) genes, such as HLA and KIR, are those that control the immune system, and these have been selected for by infectious diseases 2. Outline the basic principles of immune responses and the timescales in which they occur. IFN: Interferon (innate immunity) NK: Natural Killer cells (innate immunity) CTL: Cytotoxic T lymphocytes (acquired immunity) 1 MCD Immunology Alexandra Burke-Smith Innate Immunity Acquired immunity Depends of pre-formed cells and molecules Depends on clonal selection, i.e. growth of T/B cells, release of antibodies selected for antigen specifity Fast (starts in mins/hrs) Slow (starts in days) Limited specifity- pathogen associated, i.e.
    [Show full text]
  • Which Is Directly Mediated by Fumigatus Aspergillus Antifungal Activity Against Human NK Cells Display Importa
    Human NK Cells Display Important Antifungal Activity against Aspergillus fumigatus , Which Is Directly Mediated by IFN- γ Release This information is current as of September 28, 2021. Maria Bouzani, Michael Ok, Allison McCormick, Frank Ebel, Oliver Kurzai, C. Oliver Morton, Hermann Einsele and Juergen Loeffler J Immunol 2011; 187:1369-1376; Prepublished online 22 June 2011; Downloaded from doi: 10.4049/jimmunol.1003593 http://www.jimmunol.org/content/187/3/1369 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2011/06/22/jimmunol.100359 Material 3.DC1 References This article cites 41 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/187/3/1369.full#ref-list-1 Why The JI? Submit online. by guest on September 28, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human NK Cells Display Important Antifungal Activity against Aspergillus fumigatus, Which Is Directly Mediated by IFN-g Release Maria Bouzani,* Michael Ok,* Allison McCormick,† Frank Ebel,† Oliver Kurzai,‡,x C.
    [Show full text]
  • The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth
    The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth This information is current as Amanda S. Büchau, Shin Morizane, Janet Trowbridge, of September 27, 2021. Jürgen Schauber, Paul Kotol, Jack D. Bui and Richard L. Gallo J Immunol 2010; 184:369-378; Prepublished online 30 November 2009; doi: 10.4049/jimmunol.0902110 Downloaded from http://www.jimmunol.org/content/184/1/369 References This article cites 68 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/184/1/369.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth Amanda S. Bu¨chau,*,† Shin Morizane,*,† Janet Trowbridge,*,†,1 Ju¨rgen Schauber,*,†,‡ Paul Kotol,*,† Jack D.
    [Show full text]
  • Cytolytic Effector Functions at the Site of Mycobacterium Tuberculosis Infection
    From Center for Infectious Medicine, Department of Medicine Karolinska Institutet, Stockholm, Sweden LOCAL IMMUNE RESPONSES IN TUBERCULOSIS: CYTOLYTIC EFFECTOR FUNCTIONS AT THE SITE OF MYCOBACTERIUM TUBERCULOSIS INFECTION Sayma Rahman Stockholm 2013 All previously published papers were reproduced with permission from the publisher. Cover figure provided by: Dr. Susanna Brighenti Published by Karolinska Institutet. ©Sayma Rahman, 2013 ISBN 978-91-7549-062-5 MY FATHER MY LIFETIME HERO "But I have promises to keep And miles to go before I sleep…….." -Robert Lee Frost ABSTRACT Despite recent advances in tuberculosis (TB) research, shortage of knowledge still exists that limits the understanding of host-pathogen interactions in human TB. Cell-mediated immunity has been shown to confer protection in TB, although the relative importance of cytolytic T cells (CTLs) expressing granule-associated effector molecules perforin and granulysin is debated. A typical hallmark of TB is granuloma formation, which includes organized collections of immune cells that form around Mycobacterium tuberculosis (Mtb)- infected macrophages to contain Mtb infection in the tissue. This thesis aimed to increase insights to the immunopathogenesis involved in the progression of clinical TB, with an emphasis to explore antimicrobial effector cell responses at the local site of Mtb infection. A technological platform including quantitative PCR and in situ computerized image analysis was established to enable assessment of local immune responses in tissues collected from lung or lymph nodes of patients with active pulmonary TB or extrapulmonary TB. The results from this thesis revealed enhanced inflammation and granuloma formation in Mtb-infected organs from patients with active TB disease. CD68+ macrophages expressing the Mtb-specific antigen MPT64 were abundantly present inside the granulomas, which suggest that the granuloma is the main site of bacterial persistence.
    [Show full text]
  • Human Antimicrobial Peptides and Proteins
    Pharmaceuticals 2014, 7, 545-594; doi:10.3390/ph7050545 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Human Antimicrobial Peptides and Proteins Guangshun Wang Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA; E-Mail: [email protected]; Tel.: +402-559-4176; Fax: +402-559-4077. Received: 17 January 2014; in revised form: 15 April 2014 / Accepted: 29 April 2014 / Published: 13 May 2014 Abstract: As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism.
    [Show full text]
  • Perforin-2 Is Essential for Intracellular Defense of Parenchymal Cells And
    RESEARCH ARTICLE elifesciences.org Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria Ryan M McCormack1, Lesley R de Armas1, Motoaki Shiratsuchi1, Desiree G Fiorentino1, Melissa L Olsson1, Mathias G Lichtenheld1, Alejo Morales1, Kirill Lyapichev1, Louis E Gonzalez1, Natasa Strbo1, Neelima Sukumar2, Olivera Stojadinovic3, Gregory V Plano1, George P Munson1, Marjana Tomic- Canic3, Robert S Kirsner3, David G Russell2, Eckhard R Podack1* 1Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States; 2Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States; 3Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States Abstract Perforin-2 (MPEG1) is a pore-forming, antibacterial protein with broad-spectrum activity. Perforin-2 is expressed constitutively in phagocytes and inducibly in parenchymal, tissue-forming cells. In vitro, Perforin-2 prevents the intracellular replication and proliferation of bacterial pathogens in these cells. Perforin-2 knockout mice are unable to control the systemic dissemination of methicillin-resistant Staphylococcus aureus (MRSA) or Salmonella typhimurium and perish shortly after epicutaneous or orogastric infection respectively. In contrast, Perforin-2-sufficient littermates clear the infection. Perforin-2 is a transmembrane protein of cytosolic vesicles -derived from multiple organelles- that translocate to and fuse with bacterium containing vesicles. Subsequently, Perforin-2 polymerizes and forms large clusters of 100 A˚ pores in the bacterial surface with Perforin-2 cleavage products present in bacteria. Perforin-2 is also required for the bactericidal activity of reactive oxygen and nitrogen species and hydrolytic enzymes.
    [Show full text]
  • Granulysin: Killer Lymphocyte Safeguard Against Microbes
    Available online at www.sciencedirect.com ScienceDirect Granulysin: killer lymphocyte safeguard against microbes 1 2 Farokh Dotiwala and Judy Lieberman Primary T cell immunodeficiency and HIV-infected patients are of infected target cells, such as perturbations of major plagued by non-viral infections caused by bacteria, fungi, and histocompatibility protein expression or molecular signs parasites, suggesting an important and underappreciated role of cellular stress, as part of innate immunity. Most killer for T lymphocytes in controlling microbes. Here, we review T cells, as part of the adaptive immune response, only recent studies showing that killer lymphocytes use the expand and become cytotoxic about a week after they first antimicrobial cytotoxic granule pore-forming peptide encounter target cells. However, innate-like killer T cells granulysin, induced by microbial exposure, to permeabilize (gd T cells, NK T cells, mucosal associated invariant cholesterol-poor microbial membranes and deliver death- T (MAIT) cells) that have restricted T cell receptors that inducing granzymes into these pathogens. Granulysin and recognize common features of infected cells, including granzymes cause microptosis, programmed cell death in pathogenic lipids and microbial metabolites, are often microbes, by inducing reactive oxygen species and destroying localized at barrier surfaces where infection enters the microbial antioxidant defenses and disrupting biosynthetic and body. These killer cells may have been activated by other central metabolism pathways
    [Show full text]
  • Fas Ligand, Death Gene
    Cell Death and Differentiation (1999) 6, 1174 ± 1181 ã 1999 Stockton Press All rights reserved 13509047/99 $15.00 http://www.stockton-press.co.uk/cdd Review Fas ligand, death gene MJ Pinkoski*,1 and DR Green*,1 or actinomycin D. Rather than protecting against cell death, both of these agents induced significant death in HL-60 cells, 1 Division of Cellular Immunology, La Jolla Institute for Allergy and thus demonstrating that not all apoptosis was dependent on Immunology, 10355 Science Center Drive, San Diego, California, CA 92121, transcription and translation. In fact, this provided an inkling USA of the complexity of programmed cell death that would soon * Corresponding authors: MJ Pinkoski and DR Green, Division of Cellular become evident. However, the fact remained that in some Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California, CA 92121, USA. Tel: (858) 558-3500; cases, transcription is required for apoptosis to occur and it is Fax: (858) 558-3525; E-mail: [email protected]; [email protected] now pretty much agreed that the requirement for novel RNA and protein synthesis in apoptosis is dependent on the cell type and the apoptotic stimulus. In those cases when Received 2.8.99; revised 1.10.99; accepted 5.10.99 apoptosis is dependent on transcription, the genes that Edited by L Fesus must be transcribed have been termed `death genes'. So- called death genes are those that are not transcriptionally active unless there is some sort of death stimulus. Without Abstract proper activation of the appropriate death gene(s), the The concept of death genes goes back to the early days of ultimate goal of cell death cannot be achieved in some programmed cell death, when a researcher's model system settings.
    [Show full text]