Mechanism of Mammalian Cell Lysis Mediated by Peptide Defensins

Total Page:16

File Type:pdf, Size:1020Kb

Mechanism of Mammalian Cell Lysis Mediated by Peptide Defensins Mechanism of Mammalian Cell Lysis Mediated by Peptide Defensins Evidence for an Initial Alteration of the Plasma Membrane Alan Lichtenstein Division ofHematology/Oncology, Department ofMedicine, Veterans Administration Wadsworth-UCLA Medical Center, Los Angeles, California 90073 Abstract targets, are three small (mol wt 3,900) cationic peptides termed defensins or human neutrophil peptides 1, 2, and 3 (HNP Defensins induce ion channels in model lipid bilayers and per- 1-3).' The human defensins are secreted by activated PMNs meabilize the membranes of Escherichia coli. We investigated (10) and could, therefore, function as cytotoxins during anti- whether similar membrane-active events occur during defensin- body-dependent cellular cytotoxicity. In addition, a synergistic mediated cytolysis of tumor cells. Although defensin-treated cytotoxic effect occurs when target cells are exposed to a combi- K562 targets did not release chromium-labeled cytoplasmic nation of defensins and toxic oxidants (8). It is, thus, conceiv- components for 5-6 h, they experienced a rapid collapse able that defensins may play a role in tissue injury seen during (within minutes) of the membrane potential, efflux of rubidium, inflammatory or infectious processes. and influx of trypan blue. Defensin treatment also blunted the To investigate the mechanism of defensin-induced injury, subsequent acidification response induced by nigericin, thereby we have utilized continuously cultured tumor cells as model further supporting the notion of enhanced transmembrane ion targets. In previous studies (11, 12), K562 cells exposed to de- flow during exposure. These initial effects on the plasma mem- fensins began to release radiolabeled chromium after a lag pe- brane were not sufficient for subsequent lysis; a second phase of riod of 3-4 h. Cytotoxicity depended upon energy metabolism injury was required which involved the continued presence of and cytoskeletal activities of the target ( 12). These results sug- defensin. The rapid membrane permeabilization phase was in- gested that HNP-mediated lysis was not due to a rapid creation hibited by azide/2-deoxyglucose, cytochalasin B, and increased of plasma membrane lesions and that endocytosis of HNP concentrations of extracellular potassium and was unaffected might have to occur before lysis could be realized. However, by actinomycin-D, cycloheximide, and varying the calcium con- other evidence indicates defensins rapidly damage biological centration. In contrast, the second phase was unaffected by cy- membranes. They are only active against enveloped viruses tochalasin B, inhibited by azide/2-deoxyglucose, enhanced by (13); they create ion channels in model lipid bilayers (14), and; actinomycin D and cycloheximide, and varied with calcium con- their lethal effect on Escherichia coli is due to rapid sequential centration. These results indicate the initial adverse effect of permeabilization of the outer and inner membrane (15). The defensins on mammalian cells occurs at the cell membrane. It is results of the present study indicate the initial target structure possible that the second phase of injury is mediated intracellu- for defensins on human tumor cells is also the plasma mem- larly by defensin that has been internalized through this leaky brane. However, rapid membrane permeabilization, by itself, membrane. (J. Clin. Invest. 1991. 88:93-100.) Key words: was insufficient for cell lysis. Ultimate target destruction also cytotoxicity - membrane permeabilization - neutrophils * poly- depended upon a second phase of injury which required the morphonuclear leukocyte granule proteins continued presence of HNP, thus explaining the lag in chro- mium release. The two phases of injury were independently Introduction regulated. Neutrophils (PMNs) possess at least two mechanisms by which Methods they can lyse mammalian target cells. One of these depends upon the production of toxic oxidative metabolites that are Tumor targets. The K562, Raji, L929, and YAC-l lines were main- generated from the PMNs' respiratory burst (1, 2). However, a tained in vitro by biweekly passage in RPMI media with 10% fetal calf second mechanism, often detected during studies of PMN-in- serum (FCS, Reheis, Phoenix, AZ). duced antibody-dependent cellular cytotoxicity, is indepen- Reagents. Human defensins were purified from PMNs to homoge- dent of the respiratory burst (3-5). This latter mechanism is neity as previously described (9) by applying ion exchange and reverse- less well understood, but some evidence (6, 7) suggests it is phase HPLC followed by gel exclusion chromatography on a long Bio- mediated by one or more toxic proteins released from PMN Gel P-10 column (Bio-Rad Laboratories, Richmond, CA). A mixture granules. ofthe three defensins (HNP 1, 2, and 3 in a ratio of 2:2:1 by weight) was The most potent cytolytic proteins of PMN granules, at used in all experiments except in the binding assay where iodinated least for leukemia (8) and purified HNP-1 was used (see below). (2',7')-Bis-carboxy-ethyl)-(5,6)- pulmonary (9) and endothelial (9) carboxyfluorescein acetoxymethyl-ester (BCECF-AM) was purchased from Molecular Probes, Eugene, OR. All other reagents were pur- chased from Sigma Chemical Co., St. Louis, MO. Address reprint requests to Dr. Lichtenstein, 691/Wi 1 1H, VA Wads- Rubidium release. Targets (105 in 0.1 ml) were incubated with 25 worth Hospital, Wilshire and Sawtelle Blvds., Los Angeles, CA 90073. gCi of 86RbCI in 0.1 ml of RPMI for 1 h and washed four times. Cells Receivedfor publication S December 1990 and in revisedform 15 were then incubated with or without HNP in RPMI without FCS in March 1991. The Journal of Clinical Investigation, Inc. 1. Abbreviations used in this paper: HNP, human neutrophil peptide; Volume 88, July 1991, 93-100 TPP+, tetraphenylphosphonium ion. Defensin-mediated Cell Injury 93 microtiter plates for varying durations. 4 x I04 targets were incubated blade, and the radioactivity of the pellet was assayed in a y-counter per well. Plates were then centrifuged and 0.1 ml of cell-free superna- (model I 191, Tracor, Inc., Austin, TX). The mean coefficient of varia- tant was removed and assayed in a y-counter. Percent specific release tion for counts per minute from the triplicate samples was < 5%. Con- was calculated by: (cpm,,p - cpm<OtrO.cpm.. - cpmO,4,nt) X 100. trol experiments, with ['4C]sucrose as an extracellular fluid marker, Counts per minute-maximal was determined by lysis with detergent confirmed that negligible quantities of supernatant fluid contaminated and control release was determined by incubating cells alone without the tumor cell pellet by this technique. Binding experiments were per- HNP. Maximal release was always > 90% of incorporated counts and formed in RPMI media. The trace-labeled HNP- I induced chromium control release remained < 30% of incorporated counts during the first release from K562 cells at 6 h with comparable efficiency compared to 35 min of incubation. Samples were run in quadruplicate and the stan- native preparations. The percent HNP bound was determined after dard deviation (SD) of replicates was always < 5% of the mean. incubating '25I-HNP with K562 cells for varying intervals at 370C. Chromium release assay. Targets were chromated as previously Measurement of intracellular pH. Measurements of intracellular described (7) and then washed four times. Labeled targets (104 in 0.1 ml pH (pHi) were made as previously described (I18). Briefly, the pH-sensi- of RPMI) were incubated with or without defensin (in 0.1 ml of RPMI) tive dye BCECF was incorporated into K562 cells by incubating 107 in microtiter plates at 370C for varying durations. After incubation, cells with 2 MM BCECF-AM for 30 min at 370C in a solution contain- plates were centrifuged, 0.1 ml of supernatant was removed, and ing 140 mM NaCl, 5 mM KCI, 1 mM MgCl2, 0.5 mM CaCl2, 5 mM counted in a y-counter. Percent specific chromium release was calcu- sodium pyruvate, 10 mM Hepes, 5 mM glucose, and 0.1% bovine lated as described above for specific 'Rb release. Maximal (> 90% of serum albumin (BSA). The solution was adjusted to pH 7.35-7.45 with incorporated counts) and control values (always < 25% ofincorporated saturated Tris base. Cells were then washed twice and resuspended in counts) were also determined as for ssRb release. In some experiments the same solution except that BSA was excluded. The dye signal was (see Tables II and IV), the chromium release assay was performed in 10 calibrated by releasing the dye from K562 cells with 50 MM digitonin x 75 borosilicate test tubes with 10' chromated targets incubated per and measuring the fluorescence at pH 6.1-8.2. A linear response was tube. The test tubes were centrifuged at 30 or 60 min, HNP-containing obtained in the pH range 6.3-8.0. Fluorescence was continuously re- media was removed, and targets were resuspended for continuation of corded in a fluorescence spectrophotometer (model 650-40, Perkin- the assay. Both cell-free supernatant and pellet were then counted Elmer Corp., Norwalk, CT) with excitation and emission wavelengths in a y-counter. Simple percent chromium release (in contrast to spe- of 500 and 530 nm and slits of 3 and 12 nm. Approximately 106 cells cific chromium release) was calculated as: cpms,,,icpm,.pa,, were used in each experiment. In preliminary experiments, the sponta- + cpmPu,,,) X 100. neous release of BCECF-AM from resting K562 cells incubated in the Protein synthesis. Protein synthesis was determined as previously buffer over 60 min was < 5%. described (12) by assaying [3H]leucine (New England Nuclear, Boston, Assay for trypan blue internalization. Targets (I0O in 0.1 ml) were MA) incorporation into TCA-precipitable material. After pulsing with incubated with or without defensins (in 0.1 ml) in microtiter plates. 2 MtCi/well (I0s targets per well) of [3H]leucine for 1 h, cells were precipi- Assays were run in RPMI without FCS. After varying durations of tated with 5% TCA, redissolved in 0.1 N NaOH, added to Aquasol incubation at 370C, 20 Ml of 0.4% trypan blue was added to each well (New England Nuclear), and counted in a scintillation counter.
Recommended publications
  • Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance As a Prognostic Biomarker in Ovarian
    cells Review Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients Michal Kielbik *, Izabela Szulc-Kielbik and Magdalena Klink Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; [email protected] (I.S.-K.); [email protected] (M.K.) * Correspondence: [email protected]; Tel.: +48-42-27-23-636 Abstract: Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant dis- ease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
    [Show full text]
  • Apoptosis by Incomplete Infection
    rESEArcH HIGHLIGHtS Apoptosis by incomplete infection Constraining inflammation κ Infection with human immunodeficiency virus (HIV) is The transcription factor NF- B is a critical mediator of Toll-like recep- characterized by progressive apoptosis of CD4+ T cells, and tor (TLR) signaling in response to a range of activators. In Genes & although some of the molecular participants in this process are Development, Barish et al. provide genetic and genomic evidence that known, the precise details remain unclear. Greene and colleagues the transcription factor Bcl-6 broadly antagonizes the TLR–NF-κB in Cell report the unexpected finding that nonproductive infection network. Genome-wide expression analyses and chromatin-immuno- of CD4+ T cells can also result in apoptosis. The authors use a precipitation sequencing (ChIP-Seq) show that Bcl-6 is a basal- and human lymphoid aggregation culture system to recapitulate in lipopolysaccharide (LPS)-induced inhibitor of many inflammatory vitro the events of HIV infection in the lymph node. The addition modules in bone marrow–derived macrophages. Bcl-6 controls one of HIV to this culture system results in the apoptosis of not only third of the LPS-elicited transcriptome, and sites for Bcl-6 and the productively infected but also nonpermissive CD4+ cells. Apoptosis NF-κB subunit p65 are located together in a nucleosomal window of the latter requires fusion with HIV and the initiation but not (200 base pairs) in 25% of the gene network controlled by TLR–NF-κB. completion of viral reverse transcription. The accumulation Stimulation of TLR4 reciprocally diminishes or enhances the binding of of incomplete HIV reverse transcripts results in activation of Bcl-6 and p65 to enhancer regions at target genes encoding key inflam- caspase-1 and caspase-3 and release of the inflammatory cytokine matory molecules, such as IL-1 and various chemokines.
    [Show full text]
  • I M M U N O L O G Y Core Notes
    II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111
    [Show full text]
  • 1. Introduction to Immunology Professor Charles Bangham ([email protected])
    MCD Immunology Alexandra Burke-Smith 1. Introduction to Immunology Professor Charles Bangham ([email protected]) 1. Explain the importance of immunology for human health. The immune system What happens when it goes wrong? persistent or fatal infections allergy autoimmune disease transplant rejection What is it for? To identify and eliminate harmful “non-self” microorganisms and harmful substances such as toxins, by distinguishing ‘self’ from ‘non-self’ proteins or by identifying ‘danger’ signals (e.g. from inflammation) The immune system has to strike a balance between clearing the pathogen and causing accidental damage to the host (immunopathology). Basic Principles The innate immune system works rapidly (within minutes) and has broad specificity The adaptive immune system takes longer (days) and has exisite specificity Generation Times and Evolution Bacteria- minutes Viruses- hours Host- years The pathogen replicates and hence evolves millions of times faster than the host, therefore the host relies on a flexible and rapid immune response Out most polymorphic (variable) genes, such as HLA and KIR, are those that control the immune system, and these have been selected for by infectious diseases 2. Outline the basic principles of immune responses and the timescales in which they occur. IFN: Interferon (innate immunity) NK: Natural Killer cells (innate immunity) CTL: Cytotoxic T lymphocytes (acquired immunity) 1 MCD Immunology Alexandra Burke-Smith Innate Immunity Acquired immunity Depends of pre-formed cells and molecules Depends on clonal selection, i.e. growth of T/B cells, release of antibodies selected for antigen specifity Fast (starts in mins/hrs) Slow (starts in days) Limited specifity- pathogen associated, i.e.
    [Show full text]
  • Which Is Directly Mediated by Fumigatus Aspergillus Antifungal Activity Against Human NK Cells Display Importa
    Human NK Cells Display Important Antifungal Activity against Aspergillus fumigatus , Which Is Directly Mediated by IFN- γ Release This information is current as of September 28, 2021. Maria Bouzani, Michael Ok, Allison McCormick, Frank Ebel, Oliver Kurzai, C. Oliver Morton, Hermann Einsele and Juergen Loeffler J Immunol 2011; 187:1369-1376; Prepublished online 22 June 2011; Downloaded from doi: 10.4049/jimmunol.1003593 http://www.jimmunol.org/content/187/3/1369 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2011/06/22/jimmunol.100359 Material 3.DC1 References This article cites 41 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/187/3/1369.full#ref-list-1 Why The JI? Submit online. by guest on September 28, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human NK Cells Display Important Antifungal Activity against Aspergillus fumigatus, Which Is Directly Mediated by IFN-g Release Maria Bouzani,* Michael Ok,* Allison McCormick,† Frank Ebel,† Oliver Kurzai,‡,x C.
    [Show full text]
  • The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth
    The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth This information is current as Amanda S. Büchau, Shin Morizane, Janet Trowbridge, of September 27, 2021. Jürgen Schauber, Paul Kotol, Jack D. Bui and Richard L. Gallo J Immunol 2010; 184:369-378; Prepublished online 30 November 2009; doi: 10.4049/jimmunol.0902110 Downloaded from http://www.jimmunol.org/content/184/1/369 References This article cites 68 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/184/1/369.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth Amanda S. Bu¨chau,*,† Shin Morizane,*,† Janet Trowbridge,*,†,1 Ju¨rgen Schauber,*,†,‡ Paul Kotol,*,† Jack D.
    [Show full text]
  • Cytolytic Effector Functions at the Site of Mycobacterium Tuberculosis Infection
    From Center for Infectious Medicine, Department of Medicine Karolinska Institutet, Stockholm, Sweden LOCAL IMMUNE RESPONSES IN TUBERCULOSIS: CYTOLYTIC EFFECTOR FUNCTIONS AT THE SITE OF MYCOBACTERIUM TUBERCULOSIS INFECTION Sayma Rahman Stockholm 2013 All previously published papers were reproduced with permission from the publisher. Cover figure provided by: Dr. Susanna Brighenti Published by Karolinska Institutet. ©Sayma Rahman, 2013 ISBN 978-91-7549-062-5 MY FATHER MY LIFETIME HERO "But I have promises to keep And miles to go before I sleep…….." -Robert Lee Frost ABSTRACT Despite recent advances in tuberculosis (TB) research, shortage of knowledge still exists that limits the understanding of host-pathogen interactions in human TB. Cell-mediated immunity has been shown to confer protection in TB, although the relative importance of cytolytic T cells (CTLs) expressing granule-associated effector molecules perforin and granulysin is debated. A typical hallmark of TB is granuloma formation, which includes organized collections of immune cells that form around Mycobacterium tuberculosis (Mtb)- infected macrophages to contain Mtb infection in the tissue. This thesis aimed to increase insights to the immunopathogenesis involved in the progression of clinical TB, with an emphasis to explore antimicrobial effector cell responses at the local site of Mtb infection. A technological platform including quantitative PCR and in situ computerized image analysis was established to enable assessment of local immune responses in tissues collected from lung or lymph nodes of patients with active pulmonary TB or extrapulmonary TB. The results from this thesis revealed enhanced inflammation and granuloma formation in Mtb-infected organs from patients with active TB disease. CD68+ macrophages expressing the Mtb-specific antigen MPT64 were abundantly present inside the granulomas, which suggest that the granuloma is the main site of bacterial persistence.
    [Show full text]
  • Human Antimicrobial Peptides and Proteins
    Pharmaceuticals 2014, 7, 545-594; doi:10.3390/ph7050545 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Human Antimicrobial Peptides and Proteins Guangshun Wang Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA; E-Mail: [email protected]; Tel.: +402-559-4176; Fax: +402-559-4077. Received: 17 January 2014; in revised form: 15 April 2014 / Accepted: 29 April 2014 / Published: 13 May 2014 Abstract: As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism.
    [Show full text]
  • Perforin-2 Is Essential for Intracellular Defense of Parenchymal Cells And
    RESEARCH ARTICLE elifesciences.org Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria Ryan M McCormack1, Lesley R de Armas1, Motoaki Shiratsuchi1, Desiree G Fiorentino1, Melissa L Olsson1, Mathias G Lichtenheld1, Alejo Morales1, Kirill Lyapichev1, Louis E Gonzalez1, Natasa Strbo1, Neelima Sukumar2, Olivera Stojadinovic3, Gregory V Plano1, George P Munson1, Marjana Tomic- Canic3, Robert S Kirsner3, David G Russell2, Eckhard R Podack1* 1Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States; 2Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States; 3Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States Abstract Perforin-2 (MPEG1) is a pore-forming, antibacterial protein with broad-spectrum activity. Perforin-2 is expressed constitutively in phagocytes and inducibly in parenchymal, tissue-forming cells. In vitro, Perforin-2 prevents the intracellular replication and proliferation of bacterial pathogens in these cells. Perforin-2 knockout mice are unable to control the systemic dissemination of methicillin-resistant Staphylococcus aureus (MRSA) or Salmonella typhimurium and perish shortly after epicutaneous or orogastric infection respectively. In contrast, Perforin-2-sufficient littermates clear the infection. Perforin-2 is a transmembrane protein of cytosolic vesicles -derived from multiple organelles- that translocate to and fuse with bacterium containing vesicles. Subsequently, Perforin-2 polymerizes and forms large clusters of 100 A˚ pores in the bacterial surface with Perforin-2 cleavage products present in bacteria. Perforin-2 is also required for the bactericidal activity of reactive oxygen and nitrogen species and hydrolytic enzymes.
    [Show full text]
  • Granulysin: Killer Lymphocyte Safeguard Against Microbes
    Available online at www.sciencedirect.com ScienceDirect Granulysin: killer lymphocyte safeguard against microbes 1 2 Farokh Dotiwala and Judy Lieberman Primary T cell immunodeficiency and HIV-infected patients are of infected target cells, such as perturbations of major plagued by non-viral infections caused by bacteria, fungi, and histocompatibility protein expression or molecular signs parasites, suggesting an important and underappreciated role of cellular stress, as part of innate immunity. Most killer for T lymphocytes in controlling microbes. Here, we review T cells, as part of the adaptive immune response, only recent studies showing that killer lymphocytes use the expand and become cytotoxic about a week after they first antimicrobial cytotoxic granule pore-forming peptide encounter target cells. However, innate-like killer T cells granulysin, induced by microbial exposure, to permeabilize (gd T cells, NK T cells, mucosal associated invariant cholesterol-poor microbial membranes and deliver death- T (MAIT) cells) that have restricted T cell receptors that inducing granzymes into these pathogens. Granulysin and recognize common features of infected cells, including granzymes cause microptosis, programmed cell death in pathogenic lipids and microbial metabolites, are often microbes, by inducing reactive oxygen species and destroying localized at barrier surfaces where infection enters the microbial antioxidant defenses and disrupting biosynthetic and body. These killer cells may have been activated by other central metabolism pathways
    [Show full text]
  • Fas Ligand, Death Gene
    Cell Death and Differentiation (1999) 6, 1174 ± 1181 ã 1999 Stockton Press All rights reserved 13509047/99 $15.00 http://www.stockton-press.co.uk/cdd Review Fas ligand, death gene MJ Pinkoski*,1 and DR Green*,1 or actinomycin D. Rather than protecting against cell death, both of these agents induced significant death in HL-60 cells, 1 Division of Cellular Immunology, La Jolla Institute for Allergy and thus demonstrating that not all apoptosis was dependent on Immunology, 10355 Science Center Drive, San Diego, California, CA 92121, transcription and translation. In fact, this provided an inkling USA of the complexity of programmed cell death that would soon * Corresponding authors: MJ Pinkoski and DR Green, Division of Cellular become evident. However, the fact remained that in some Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California, CA 92121, USA. Tel: (858) 558-3500; cases, transcription is required for apoptosis to occur and it is Fax: (858) 558-3525; E-mail: [email protected]; [email protected] now pretty much agreed that the requirement for novel RNA and protein synthesis in apoptosis is dependent on the cell type and the apoptotic stimulus. In those cases when Received 2.8.99; revised 1.10.99; accepted 5.10.99 apoptosis is dependent on transcription, the genes that Edited by L Fesus must be transcribed have been termed `death genes'. So- called death genes are those that are not transcriptionally active unless there is some sort of death stimulus. Without Abstract proper activation of the appropriate death gene(s), the The concept of death genes goes back to the early days of ultimate goal of cell death cannot be achieved in some programmed cell death, when a researcher's model system settings.
    [Show full text]
  • The Immune System
    CAMPBELL BIOLOGY IN FOCUS URRY • CAIN • WASSERMAN • MINORSKY • REECE 35 The Immune System Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University © 2016 Pearson Education, Inc. SECOND EDITION Overview: Recognition and Response . Pathogens, agents that cause disease, infect a wide range of animals, including humans . The immune system enables an animal to avoid or limit many infections . All animals have innate immunity, a defense that is active immediately upon infection . Vertebrates also have adaptive immunity © 2016 Pearson Education, Inc. Figure 35.1 © 2016 Pearson Education, Inc. Innate immunity includes barrier defenses . A small set of receptor proteins bind molecules or structures common to viruses, bacteria, or other microbes . Binding an innate immune receptor activates internal defensive responses to a broad range of pathogens © 2016 Pearson Education, Inc. Adaptive immunity, or acquired immunity, develops after exposure to agents such as microbes, toxins, or other foreign substances . It involves a very specific response to pathogens © 2016 Pearson Education, Inc. Figure 35.2 Pathogens (such as bacteria, fungi, and viruses) INNATE IMMUNITY Barrier defenses: (all animals) Skin • Recognition of traits shared Mucous membranes by broad ranges of Secretions pathogens, using a small set of receptors Internal defenses: Phagocytic cells • Rapid response Natural killer cells Antimicrobial proteins Inflammatory response ADAPTIVE IMMUNITY Humoral response: (vertebrates only) Antibodies defend against • Recognition of traits infection in body fluids. specific to particular pathogens, using a vast Cell-mediated response: array of receptors Cytotoxic cells defend against infection in body cells. • Slower response © 2016 Pearson Education, Inc. Concept 35.1: In innate immunity, recognition and response rely on traits common to groups of pathogens .
    [Show full text]