BY Ty 1. AGENT 3,412,040 United States Patent Office Patented Nov

Total Page:16

File Type:pdf, Size:1020Kb

BY Ty 1. AGENT 3,412,040 United States Patent Office Patented Nov Nov. 19, 1968 P. SACCARDO EA 3,412,040 CHROMYL-OXYHALIDE TREATED CARRIER AS AN OLEFIN FOLYMERIZATION CATALYST Filed Aug. 5, 1964 FLUIDZED-BED E-Wasta Gasos REACTOR - SiOlAO : O. 15O-8OOC (Activation) PIETRO SACCARDO GIANNI TRADA VIITORIO FATTORE JEAN HERZENBERG INVENTORS. BY ty 1. AGENT 3,412,040 United States Patent Office Patented Nov. 19, 1968 1 2 3,412,040 the oxide which appears to be present as a molecular CHROMYL-OXYHALIDE TREATED CARRIER AS layer. AN OLEFIN POLYMERIZATION CATALYST It is the principal object of the present invention to Pietro Saccardo, Gianni Trada, Vittorio Fattore, and Jean provide an improved method of producing chromium Herzenberg, Milan, Italy, assignors to Montecatini Edi 5 containing catalytic systems suitable for use in the polym son, S.p.A., Milan, Italy, a corporation of Italy erization of olefins and for similar purposes. Filed Aug. 5, 1964, Ser. No. 387,732 Still another object of this invention is to provide a Claims priority, application Italy, Aug. 9, 1963, catalyst system having particular effectiveness in promot 16,875/63 2 Claims. (Cl. 252-441) ing polymerization reactions as described above. 10 These objects and others which will become apparent hereinafter are attained, in accordance with the method of the present invention, by treating a catalyst carrier ABSTRACT OF THE DISCLOSURE with a chromium oxychloride and, more specifically, with A single-component catalyst for the polymerization of a chromyl halide containing chlorine. The catalyst car alpha-olefins, consisting essentially of a silica-containing rier, thus coated with the chromium compound, is then catalyst carrier reacted with chromyl chloride (CrO2Cl2) subjected to activation by heating in the presence of a and/or chromyl fluorochloride (CrOFCI), alone or in fluid such as pure orygen, oxygen-containing gases or the presence of chromyl fluoride (CrOF), and there inert gases. It has been found that catalyst systems pro after activated for subsequent direct use in the polymer duced in this manner, i.e. by impregnating the catalyst ization process by heating the single-component catalyst 20 carrier with a chromyl chloride and activating the result ing mass, are particularly active and effective in the po in oxygen or inert gas to a temperature of 300 to 600 C. lymerization of alpha-olefins to the corresponding poly olefins. The catalyst carrier can, according to the present invention, be any of those considered heretofore to be Our present invention relates to improved catalytic Suitable carriers for chromium compounds. Suitable car systems and a method of producing such Systems. riers, for the purposes of the present invention, are silica, More particularly, this invention is concerned with cata alumina, kieselguhr, pumice, aluminum phosphate and lyst systems containing chromium (e.g. as chromium titanium dioxide as well as mixtures thereof. When the oxides) deposited upon a catalyst carrier or Support. polymerization of alpha-olefins is desired, silica, alumina Chromium-containing catalyst systems are commonly 30 or silica-aluminas are most suitable. used in the polymerization of various monomers and, According to another feature of this invention, the especially, olefinic monomers. Thus, catalyst compositions treatment with chromyl chloride is effected in the liquid of this general type can be used in the polymerization phase whereby the liquid chromyl chloride contacts the of alpha-olefins (e.g. ethylene) in the production of cor catalyst carrier directly. In a modification of the liquid responding polyolefins. - 3. 5 phase technique, the chromyl chloride can be dissolved in In most cases, the catalyst system comprises a carrier a solvent (e.g. 1,2-dibromoethane nitrobenzene, chloro consisting predominantly of a silicon oxide (e.g. silica) form and carbon tetrachloride). In another advantageous and/or alumina. The chromium oxide most suitable for method of treating the catalyst carrier with chromyl. producing polyolefins and for depositing on carrier of this chloride, the latter is constituted as part of a gas stream type is chromium trioxide. In earlier techniques for the 40 which is employed to contact the carrier. In this case, it production of catalyst systems, the carrier was usually is desirable to convey the chromyl chloride to the carrier impregnated with a solution of chromium trioxide or a in a gas stream containing an inert gas (e.g. nitrogen), chromium salt which, upon heating, yields chromium tri i.e. a gas incapable of reacting with the chromyl com oxide, chromium sesquioxide or mixtures thereof. The pound. According to another feature of this invention, the catalyst system obtained in this manner can then be ac chromyl chloride (CrO2Cl2) is reacted with hydrogen tivated by heating to relatively high temperatures in the flouride to produce chromyl fluoride, which reacts with a presence of oxygen or oxygen-containing gases (e.g. air). silicecus-catalyst carrier as described in our copending In our copending application Serial No. 379,608, filed application referred to above. The reaction also yields July 1, 1964, and entitled: "Process for producing cata chromyl fluorochloride which is capable of reacting with lyst compositions and the product of this process,” how 50 silica to yield silicon tetrafluoride and deposits a chromyl ever, we describe and claim an improved method of pro containing compound upon the surface of a carrier. ducing catalyst systems of the general class referred to It has been discovered that the technique of the present above. In this improved technique, a chromium oxide invention is surprisingly effective in depositing relatively can be deposited upon a siliceous carrier by reacting the large quantities of chromium on thet carrier. Catalyst carrier with a fluorine-containing compound of chromium, systems of this type, however, are most effective when preferably a chromium oxyfluoride, to yield volatile sili the chromium content is between substantially 0.1 and con fluoride and chromium oxides which are thus de 10% by weight of the catalyst system and preferably be posited on the surface of the silicon contaihing carrier. tween 0.1 and 4% by weight when the catalyst is em While this system has application to other chromium com ployed in the polymerization of alpha-olefins. Activation pounds containing fluorine, it is desirable to make use 60 of the catalyst system is effected, according to this inven of chromyl fluoride (CrOF2) thereby ensuring that the tion, by heating it to temperatures ranging between sub deposited compound is an oxide. The preparation of the stantially 150 and 800° C. in the presence of oxygen, catalyst system in this manner, by displacement of atoms an oxygen-containing gas or an inert gas (e.g. nitrogen). of silicon from the carrier, renews the effective surface of Activation temperatures between 300 and 600 C. are the catalyst so that the chromium oxide is deposited at most desirable when the catalyst system is to be em the newly formed faces which give rise to particularly ployed for the production of alpha-olefins. It should be effective active centers. There is evidence that the method further noted that catalyst systems prepared in accord results in the formation of a uniform layer of Substan ance with the principles of our invention, using chromyl tially constant thickness on the carrier, presumably be chlorides and chromyl fluorides, in conjunction with or cause the initial molecular layer acts as a barrier to fur 70 without activation have been found to evidence synergis ther reaction of the fluorinated compound with silicon. tic activity giving rise to catalyst efficiencies in excess of Thus the reaction terminates locally after formation of those obtained when the chromyl fluoride and the chromyl 3,412,040 3 4. chloride are used alone. Still higher efficiencies result through the second reactor. After this treatment a cata when activation is employed. lytic mass, active in the polymerization of ethylene, was The invention will become more readily apparent from obtained and found to contain 1.58% by weight chro the following description, reference being made to the mium. accompanying drawing, the sole figure of which is a 5 Example V diagrammatic view of an apparatus for producing a cata 1.4 grams of chromyl chloride and 23 grams of y-au lyst system according to this invention, and the specific mina (Ketjen grade A), previously dried for 3 hours at examples given hereunder as the best mode known to 500 C., were introduced into an apparatus analogous to the inventors for taking advantage of the present dis the one described in Example IV. The chromyl chloride covery. O was deposited on the alumina as set forth in this Example. Example I After heating at 300° C. for about half an hour, in stream 0.9 grams of chromyl chloride (CrO2Cl2) were intro of dry air, an activated catalytic mass was obtained con duced into a reactor provided with a bubbling pipe and taining 2.14% by weight of chromium. an outlet pipe at the top of the reactor. The bubbling Example VI pipe was connected with a nitrogen source, whereas the In’o a 0.5 liter glass flask equipped with stirrer and re outlet pipe was connected with a second reactor, which flux condenser were introduced 120 ml. of carbon tetra was constructed so as to oeprate according to the fluidized chloride and 4.5 grams of chromyl chloride. With stirring bed technique; the latter reactor contained 10 grams of 50 grams of silica-alumina (Davison, 87% by weight sil silica-alumina (87% by weight silica and 13% by weight ica and 13% by weight alumina) previously dried for 3 alumina). By bubbling nitrogen through the chromyl hours at 400° C. were introduced. chloride in the first vessel, vapors of this component Were After stirring of the suspension thus produced for 90 conveyed to the silica-alumina of the second vessel which minutes at about 70° C.
Recommended publications
  • Packet of Wiser Reports on Acetone Acetonitrile
    Ac&tone ^Hazmat - NFPA Hazard Classification Page 1 of Acetone CAS RN: 67-64-1 Hazmat - NFPA Hazard Classification SOMS DocID 2085807 Health: 1 (Slight) Materials that, on exposure, would cause significant irritation, but only minor residual injury, including those requiring the use of an approved air-purifying respirator. These materials are only slightly hazardous to health and only breathing protection is needed. Flammability: 3 (Severe) rhis degree includes Class IB and 1C flammable liquids and materials that can be easily ignited under almost all normal temperature conditions. Water may be ineffective in controlling or extinguishing fires in such materials. Instability: 0 (Minimal) This degree includes materials that are normally stable, even under fire exposure conditions, and that do not react with water.- Norma lire fighting procedures may be used. Printed by WISER for Windows (v2.3.231, database v2.108) HHS/NIH, National Library of Medicine AR000018 iile://C:\Documents and Settings\Gham\Application Data\National Library of Medicine\WISER\2.3.231.628... 9/27/20 Acetone ^Key Info Page 1 of Acetone CAS RN: 67-64-1 Key Info FLAMMABLE LIQUIDS (Polar / Water-Miscible) • HIGHLY FLAMMABLE: Easily ignited by heat, sparks or flames • CAUTION: Very low flash point; use of water spray when fighting fire may be inefficient Printed by WISER for Windows (v2.3.231, database v2.108) HHS/NIH, National Library of Medicine AR000019 file://C:\Documents and Settings\Gham\Application Data\National Library of Medicine\WISER\2.3.231.628../ 9/27/20 Acetone - -Hazmat - Explosive Limits / Potential Page 1 of Acetone CAS RIM: 67-64-1 Hazmat - Explosive Limits / Potential Highly flammable liquid.
    [Show full text]
  • (VI) and Chromium (V) Oxide Fluorides
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1976 The chemistry of chromium (VI) and chromium (V) oxide fluorides Patrick Jay Green Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Green, Patrick Jay, "The chemistry of chromium (VI) and chromium (V) oxide fluorides" (1976). Dissertations and Theses. Paper 4039. https://doi.org/10.15760/etd.5923 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. All ABSTRACT OF THE TllESIS OF Patrick Jay Green for the Master of Science in Chemistry presented April 16, 1976. Title: Chemistry of Chromium(VI) and Chromium(V) Oxide Fluorides. APPROVEO BY MEMBERS OF THE THESIS CO'"o\l TIEE: y . • Ii . ' I : • • • • • New preparative routes to chromyl fluoride were sought. It was found that chlorine ironofluoride reacts with chromium trioxide and chromyl chlo­ ride to produce chromyl fluoride. Attempts were ~ade to define a mechan­ ism for the reaction of ClF and Cr0 in light of by-products observed 3 and previous investigations. Carbonyl fluoride and chromium trioxide react to fom chro·yl fluoride and carbo:i dioxide. A mechanism was also proposed for this react10n. Chromium trioxide 11itl\ l~F6 or WF5 reacts to produce chromyl fluoride and the respective oxide tetrafluoride. 2 Sulfur hexafluoride did not react with Cr03.
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • User's Guide for the Emissions Modeling
    Appendix C EMS-HAP User’s Guide United States Office of Air Quality EPA-454/R-00-018 Environmental Protection Planning and Standards October 2000 Agency Research Triangle Park, NC 27711 Air USER’S GUIDE FOR THE EMISSIONS MODELING EPA SYSTEM FOR HAZARDOUS AIR POLLUTANTS (EMS-HAP, VERSION 1.1) Air Q of ua ice li ff ty O Clean Air Pla s nn a rd in nd g a n d S ta This page intentionally left blank. EPA-454/R-00-018 USER’S GUIDE FOR THE EMISSIONS MODELING SYSTEM FOR HAZARDOUS AIR POLLUTANTS (EMS-HAP, VERSION 1.1) U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division Research Triangle Park, North Carolina 27711 October 2000 DISCLAIMER The information in this document has been reviewed in accordance with the U.S. EPA administrative review policies and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for their use. The following trademarks appear in this document: UNIX is a registered trademark of AT&T Bell Laboratories. SAS® is a registered trademark of SAS Institute. SUN is a registered trademark of Sun Microsystems, Inc. ACKNOWLEDGMENTS Madeleine Strum (EPA) served as the primary technical editor and developer of this document. Contributors to the technical content include Joe Touma (NOAA) and code developers: Bill Battye, Diane Linderman (EC/R), John Langstaff (EPA, formerly with EC/R) and Richard Mason (Dyntel). Tom Murawski, (The Murawski Group) assisted with document organization. Patricia McGhee (Dyntel) assisted with formatting and editing.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Criteria Pollutants As Reported in the North Carolina Emission Inventories
    Criteria Pollutants as Reported in the North Carolina Emission Inventories (Note: Ammonia is considered a criteria pollutant precursor but is reported in NC as a TAP) Symbol Pollutants PM2.5 PM2.5 (Particles smaller than 2.5 micrometers aerodynamic, including condensibles) PM10 PM10 (Particles smaller than 10 micrometers aerodynamic, including condensibles) PT PM (TSP-larger, non-sized airborne particles, including condensibles) SO2 SO2 NO2 NOx (as NO2) CO CO (carbon monoxide) VOC VOC (Meeting Federal Definition as photochemically reactive) Compilation of Hazardous and Toxic Air Pollutants For North Carolina Emission Inventory and Permitting Purposes Pollutant Description TAP HAP VOC PM de Code minimus* or CAS (pounds/yr) A 83329 Acenaphthene (Component of 83329/POMTV) Y Y 1 208968 Acenaphthylene (Component of 83329/POMTV) Y Y 1 75070 Acetaldehyde Y Y Y 10 60355 Acetamide Y Y 10 64197 Acetic acid Y Y 100 75058 Acetonitrile Y Y 100 98862 Acetophenone Y Y 100 53963 Acetylaminofluorene,2 (Component of 83329/POMTV) Y Y Y 1 107028 Acrolein Y Y Y 10 79061 Acrylamide Y Y 100 79107 Acrylic acid Y Y 10 107131 Acrylonitrile Y Y Y 10 107051 Allyl chloride Y Y 100 92671 Aminobiphenyl, 4- (Component of 83329/POMTV) Y Y 1 7664417 Ammonia (as NH3) Y 100 7788989 Ammonium chromate (VI) (Component of SolCR6 ) Y Y Y 0.01 7789095 Ammonium dichromate(VI)(Component of SolCR6 ) Y Y Y 0.01 62533 Aniline Y Y Y 1 90040 Anisidine, o- Y Y 1 120127 Anthracene (Component of 83329/POMTV) Y Y 1 SBC Antimony & Compounds (total mass, inc elemental SB) Y Y 10 7440360 Antimony
    [Show full text]
  • Systematic Qualitative Analysis
    UNIT-7 SYSTEMATIC QUALITATIVE ANALYSIS NALYSIS always does not mean breaking of substance into its ultimate constituents. Finding out the nature of substance and identity of Aits constituents is also analysis and is known as qualitative analysis. Qualitative analysis of inorganic salts means the identification of cations and anions present in the salt or a mixture of salts. Inorganic salts may be obtained by complete or partial neutralisation of acid with base or vice-versa. In the formation of a salt, the part contributed by the acid is called anion and the part contributed by the base is called cation. For example, in the salts CuSO4 and 2+ + 2– – NaCl, Cu and Na ions are cations and SO4 and Cl ions are anions. Qualitative analysis is carried out on various scales. Amount of substance employed in these is different. In macro analysis, 0.1 to 0.5 g of substance and about 20 mL of solution is used. For semimicro analysis, 0.05 g substance and 1 mL solution is needed while for micro analysis amount required is very small. Qualitative analysis is carried out through the reactions which are easily perceptible to our senses such as sight and smell. Such reactions involve: (a) Formation of a precipitate (b) Change in colour (c) Evolution of gas etc. Systematic analysis of an inorganic salt involves the following steps: (i) Preliminary examination of solid salt and its solution. (ii) Determination of anions by reactions carried out in solution (wet tests) and confirmatory tests. (iii) Determination of cations by reactions carried out in solution (wet tests) and confirmatory tests.
    [Show full text]
  • IIIHIIII USOO55.71489A United States Patent 19 11) Patent Number: 5,571,489 Holsen Et Al
    IIIHIIII USOO55.71489A United States Patent 19 11) Patent Number: 5,571,489 Holsen et al. (45) Date of Patent: Nov. 5, 1996 54) PROCESS FOR CHROMUM RECOVERY 4,349,514 9/1982 Watanabe et al. ........................ 423154 FROMAQUEOUS SOLUTIONS 4,446,026 5/1984 Beutier et al. ..... ... 42.3/54 4,704,259 11/1987 Lipsztajn ............ ... 42.3/55 75) Inventors: Thomas M. Holsen, Oak Forest; Jan 5,112,583 5/1992 Bruzzone et al. ... 42.3/55 5,120,523 6/1992 Nakao et al. ...... ... 423/22 R. Selman; Subbarao L. Guddati, 5,260,039 11/1993 Schwab et al. ........ ... 423/24 both of Chicago, all of Ill. 5,271,910 12/1993 van der Meer et al. ................. 423/55 73) Assignee: Illinois Institute of Technology, FOREIGN PATENT DOCUMENTS Chicago, Ill. 1249841 9/1967 Germany ............................... 423f472 54-043172 4/1979 Japan ........ ... 423/53 21 Appl. No.: 380,851 56-015883 2/1981 Japan ... 423,595 22 Filed: Jan. 27, 1995 57-135724 8/1982 Japan ....................................... 423/53 OTHER PUBLICATIONS (51) Int. Cl.' .......................... C01G 37/00; CO1G 37/14; COG 37/02; CO1B 11/00 West, T. S., "Liquid-Liquid Extraction Procedures in Inor (52) U.S. C. ............................... 423/53; 423/54; 423/58; ganic Analysis', Metallurigia, p. 47, Jul., 1956. 423/472; 423/595; 42.3/596; 42.3/597; 423/607 Primary Examiner-Steven Bos (58 Field of Search .................................. 423/53, 54,58, Attorney, Agent, or Firm-Speckman, Pauley & Fejer 423/61, 472,595,596,597, 607 57 ABSTRACT 56 References Cited A process for recovery of chromium in an aqueous solution U.S.
    [Show full text]
  • United States Patent Office Patented Mar
    3,651,105 United States Patent Office Patented Mar. 21, 1972 3,651,105 CHROMUM COMPLEXES OF FILUOROISO ALKOXYALKYL CARBOXYLCACDS Louis G. Anello, Basking Ridge, Edward Michael Boghosian, Fort Lee, Edward S. Jones, Whippany, Pritam S. Minhas, Morris Plains, Alison K. Price, Mor ristown, and Richard F. Sweeney, Randolph Township, Dover, N.J., assignors to Allied Chemical Corporation, New York, N.Y. No Drawing. Filed Nov. 1, 1968, Ser. No. 772,849 0 nt. C. C08h 17/36 wherein R1 and Ra have the meanings given above, with U.S. C. 260-414 7 Claims telomerizable unsaturated compounds having the formula ZZCFCZ3Z4 and/or XXCFCXX, wherein Z-X and ABSTRACT OF THE DISCLOSURE X.1-X have the meanings given above. Suitable telom 5 erizable compounds include ethylene, tetrafluoroethyl Chromium complexes of fluorocarbon carboxylic acids ene, difluoroethylene, chlorodifluoroethylene, and the characterized by having a polyfluoroisoalkoxyalkyl tail like. The telomerization reaction can be initiated by heat wherein an ether oxygen atom links a fluorinated carbon or by a free radical initiator. atom connected to two fluoroalkyl groups and at least The polyhaloisoalkoxyalkyl iodides can be prepared one -CFCF-group. These chromium complexes are 20 by reacting a suitable halogenated ketone with an ioniz useful to impart oil and water resistance to various sub able fluoride salt, e.g. CsP or KF, to form a fluorinated strates, including paper, leather, and the like. organic salt, and reacting the organic salt with tetrafluoro ethylene and iodine. Preparation of the polyhaloiso alkoxyalkyl iodides is described in detail in copending This invention relates to novel chromium complexes 25 U.S.
    [Show full text]