Motor Actuators Basics

Total Page:16

File Type:pdf, Size:1020Kb

Motor Actuators Basics Motor Actuators Basics - 1 - Note: All specifications and other information are not guaranteed and are subject to change without notice. Prior to any new usage of JE motor actuators it is recommended to contact Johnson Electric. All information below and content of links are subject to the disclaimer of the Johnson Electric website - 2 - Contents Overview ....................................................................................................................................................................... 4 Classification ............................................................................................................................................................. 5 DC Motors ................................................................................................................................................................. 6 Universal Motors ....................................................................................................................................................... 7 BLDC Motors ............................................................................................................................................................. 8 Synchronous Motors ................................................................................................................................................. 9 Stepper Motors ........................................................................................................................................................ 10 Shaded Pole Motors ................................................................................................................................................ 11 Solenoids ................................................................................................................................................................. 12 Piezo Motors ........................................................................................................................................................... 13 DC Motors ................................................................................................................................................................... 14 Basics ...................................................................................................................................................................... 15 Encoders.............................................................................................................................................................. 23 BLDC Motors ............................................................................................................................................................. 24 Basics ...................................................................................................................................................................... 25 Closed Loop Speed Control ................................................................................................................................ 30 Stepper Motors ........................................................................................................................................................... 31 Basics ...................................................................................................................................................................... 32 Gearmotors ................................................................................................................................................................. 45 Basics ...................................................................................................................................................................... 46 Motor mounting .................................................................................................................................................... 52 Linear motors .............................................................................................................................................................. 53 Basics ...................................................................................................................................................................... 54 - 3 - Overview - 4 - Classification DC AC 1~ Voltage Supply Voltage supply Brushed DC Motors Universal Motors Solenoids Synchronous Motors Brushless Shaded Pole Motors Brushless BLDC Motors Driver electronics Stepper Motors required Claw Pole Motors Hybrid Motors Piezo Motors JE product range - 5 - DC Motors  Contents Power supply DC Battery supply possible Driver electronics need No Effected by load torque Speed accuracy Low Manufacture tol +-10% of no load speed Open loop or closed loop speed control Speed control ↕ Voltage Closed loop – high accuracy, but sensor need Closed loop position control and sensor need Position control High effort High start torque or peak load torque Overloadablity / load inertia High Able to accelerate high load inertia 300…2000 h (limited by wear of brushes) Lifetime Low Depend on speed, current and brush config. Speed range [rpm] 1000…25000 No load speed Efficiency 60…80% At operating point of max.efficiency Power vs. size High If overload (mechan.blocking) not excluded - Winding thermal protection Need Current limitation or thermal contacts Load sensing Easy Current rises with load Stalling permissible No No or only short time (winding overheat) Electromag.interference EMI Critical Suppression means (capacitors / varistors) Detent torque Braking/Holding torque Low Braking improveable by winding short circuit Max.output power from JE [W] Linear motors from JE No JE Brand - 6 - Universal Motors  Contents Power supply AC or DC Mainly AC , direct connection to mains Driver electronics need No Effected by load torque Speed accuracy Low Manufacture tol +-10% of no load speed Open loop speed control Speed control ↕ Voltage Closed loop position control and sensor need Position control High effort Very high start torque or peak load torque Overloadablity / load inertia High Able to accelerate high load inertia 300…2000 h (limited by wear of brushes) Lifetime Low Depends on speed, current and brush config. Speed range [rpm] 10000…50000 No load speed Efficiency 60…80% Operating point of max.efficiency Power / motor size High If overload (mechan.blocking) not excluded - Winding thermal protection Need Current limitation or thermal contacts Load sensing Easy Current rises with load Stalling permissible No No or only short time (winding overheat) Electromag.interference EMI Critical Suppression means (capacitors / varistors) No permanent magnets (field winding instead) Braking (Holding) torque Low Braking improvable by winding short circuit Max.output power from JE [W] Linear motors from JE No JE Brand - 7 - BLDC Motors  Contents Power supply DC Battery supply possible Driver electronics need Yes External or inside motor Effected by load torque Speed accuracy Low Manufacture tol +-10% of no load speed Driver output voltage controlled by PWM Speed control ↕ Voltage Closed loop – using integrated Hall sensors Closed loop position control and sensor need Position control High effort Possibly Hall sensors applicable High start torque or peak load torque Overloadablity / load inertia High Able to accelerate high load inertia Only limited by bearings Lifetime High Depends on lateral force and speed Speed range [rpm] 1000…25000 For no load speed Efficiency 60…80% At operating point of max.efficiency Power vs. size High If overload (mechan.blocking) not excluded - Winding thermal protection Need Current limitation in Driver circuitry Load sensing Easy Current rises with load Stalling permissible No No or only short time (winding overheat) Electromag.interference EMI Not critical No brushes ; PWM voltage may cause EMI Detent torque Braking/Holding torque Low Braking improvable by winding short circuit Max.output power from JE [W] 80 Approximately, for continuous duty cycle Linear motors from JE No JE Brand - 8 - Synchronous Motors  Contents Power supply AC Driver electronics need No Not effected by load torque Speed accuracy High No closed loop speed control need Not possible Speed control No Speed fixed by mains supply frequency Not possible Position control No Only by limit switches Only little reserve for peak load torque Overloadablity / load inertia Low Can’t accelerate high inertia Limited by bearings Lifetime High Depends on lateral force Speed range [rpm] 250…3600 Depend on pole number and mains frequency Efficiency 15…45% Power vs. size Low Higher for 2pole motor Inductance protected Winding thermal protection No need (if winding designed for 100% duty cycle) Load sensing Difficult Load has little impact on current Stalling permissible Yes If winding designed for continuous duty cycle Electromagn.interference EMI Not critical No brushes Braking/Holding torque Low Detent torque (when power switched off) Max.output power from JE [W] 14 Approximately, for short time duty cycle S2 Linear motors from JE Yes JE brand - 9 - Stepper Motors  Contents Power supply DC Battery supply possible Driver electronics need Yes Constant voltage or Chopper driver circuitry Not effected by load torque Speed accuracy High No closed loop speed control need No additional electronics need Speed control Step frequency ↕ No sensor need Commanded by number of steps Position control Low effort No sensor need Only little reserve for peak load torque Overloadablity / load inertia
Recommended publications
  • Stepping Motors Fundamentals
    AN907 Stepping Motors Fundamentals Author: Reston Condit TYPES OF STEPPING MOTORS Microchip Technology Inc. There are three basic types of stepping motors: Dr. Douglas W. Jones permanent magnet, variable reluctance and hybrid. University of Iowa This application note covers all three types. Permanent magnet motors have a magnetized rotor, while variable reluctance motors have toothed soft-iron rotors. Hybrid INTRODUCTION stepping motors combine aspects of both permanent Stepping motors fill a unique niche in the motor control magnet and variable reluctance technology. world. These motors are commonly used in measure- The stator, or stationary part of the stepping motor ment and control applications. Sample applications holds multiple windings. The arrangement of these include ink jet printers, CNC machines and volumetric windings is the primary factor that distinguishes pumps. Several features common to all stepper motors different types of stepping motors from an electrical make them ideally suited for these types of point of view. From the electrical and control system applications. These features are as follows: perspective, variable reluctance motors are distant 1. Brushless – Stepper motors are brushless. The from the other types. Both permanent magnet and commutator and brushes of conventional hybrid motors may be wound using either unipolar motors are some of the most failure-prone windings, bipolar windings or bifilar windings. Each of components, and they create electrical arcs that these is described in the sections below. are undesirable or dangerous in some environments. Variable Reluctance Motors 2. Load Independent – Stepper motors will turn at Variable Reluctance Motors (also called variable a set speed regardless of load as long as the switched reluctance motors) have three to five load does not exceed the torque rating for the windings connected to a common terminal.
    [Show full text]
  • Difference Between Bipolar Drives and Unipolar Drives for Stepper Motors
    WHITE PAPER DIFFERENCE BETWEEN BIPOLAR DRIVES AND UNIPOLAR DRIVES FOR STEPPER MOTORS orking on a motorized development requires some knowledge about motors and controllers. This article Wis focused on the stepper motors which is a type of brushless DC motor with a high number of poles. This technology is generally driven in open loop without any feedback sensor, meaning the current is typically applied on the phases without knowing the rotor position. The rotor moves to be aligned with the stator magnetic flux, then the current can be supplied to the next phase. We will consider two ways to supply current in the coil: bipolar way and unipolar way. In this article, we will explain the differences of bipolar and unipolar motors and driving methods. We will show the advantages and limits of both technologies. Let’s take an example of a four step, permanent magnet stepper motor (see figure 1). The rotor is made with a one pole pair magnet, and the stator is composed of two phases, Phase A and Phase B. • In unipolar: the current always flows in the same direction. Each coil is dedicated to one current direction, meaning either the coil A+ or the coil A- is powered. The coils A+ and A- are never powered together. • In bipolar: the current can flow in both directions in all coils. The phases A+ and A- are powered together. A bipolar motor requires one coil minimum per phase and unipolar motor Figure 1. 4-Step Stepper Motor requires two coils minimum per phase. Let’s review both options in more detail.
    [Show full text]
  • Cogging Torque Reduction in Brushless Motors by a Nonlinear Control Technique
    Article Cogging Torque Reduction in Brushless Motors by a Nonlinear Control Technique Pierpaolo Dini and Sergio Saponara * Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56127 Pisa, Italy; [email protected] * Correspondence: [email protected] Received: 1 April 2019; Accepted: 9 June 2019; Published: 11 June 2019 Abstract: This work addresses the problem of mitigating the effects of the cogging torque in permanent magnet synchronous motors, particularly brushless motors, which is a main issue in precision electric drive applications. In this work, a method for mitigating the effects of the cogging torque is proposed, based on the use of a nonlinear automatic control technique known as feedback linearization that is ideal for underactuated dynamic systems. The aim of this work is to present an alternative to classic solutions based on the physical modification of the electrical machine to try to suppress the natural interaction between the permanent magnets and the teeth of the stator slots. Such modifications of electric machines are often expensive because they require customized procedures, while the proposed method does not require any modification of the electric drive. With respect to other algorithmic-based solutions for cogging torque reduction, the proposed control technique is scalable to different motor parameters, deterministic, and robust, and hence easy to use and verify for safety-critical applications. As an application case example, the work reports the reduction of the oscillations for the angular position control of a permanent magnet synchronous motor vs. classic PI (proportional-integrative) cascaded control. Moreover, the proposed algorithm is suitable to be implemented in low-cost embedded control units.
    [Show full text]
  • Stepper Motor Basics
    Industrial Circuits Application Note Stepper Motor Basics A stepper motor is an electromechanical Disadvantages device which converts electrical pulses into 15° discrete mechanical movements. The shaft 1. Resonances can occur if not A or spindle of a stepper motor rotates in properly controlled. D' discrete step increments when electrical 2. Not easy to operate at extremely B command pulses are applied to it in the high speeds. 1 proper sequence. The motors rotation has 6 several direct relationships to these applied 2 C' C input pulses. The sequence of the applied Open Loop Operation 5 pulses is directly related to the direction of One of the most significant advantages 3 motor shafts rotation. The speed of the of a stepper motor is its ability to be 4 B' motor shafts rotation is directly related to accurately controlled in an open loop D the frequency of the input pulses and the system. Open loop control means no length of rotation is directly related to the feedback information about position is A' number of input pulses applied. needed. This type of control eliminates the need for expensive Figure 1. Cross-section of a variable- sensing and feedback devices such as reluctance (VR) motor. Stepper Motor Advantages optical encoders. Your position is and Disadvantages known simply by keeping track of the input step pulses. Advantages 1. The rotation angle of the motor is Stepper Motor Types proportional to the input pulse. There are three basic stepper motor types. They are : 2. The motor has full torque at stand- N N S N S N still (if the windings are energized) • Variable-reluctance 3.
    [Show full text]
  • Motor Actuators Basics
    Motor Actuators Basics - 1 - Note: All specifications and other information are not guaranteed and are subject to change without notice. Prior to any new usage of JE motor actuators it is recommended to contact Johnson Electric. All information below and content of links are subject to the disclaimer of the Johnson Electric website - 2 - Contents Overview ....................................................................................................................................................................... 4 Classification ............................................................................................................................................................. 5 DC Motors ................................................................................................................................................................. 6 Universal Motors ....................................................................................................................................................... 7 BLDC Motors ............................................................................................................................................................. 8 Synchronous Motors ................................................................................................................................................. 9 Stepper Motors ........................................................................................................................................................ 10 Shaded
    [Show full text]
  • Simple Discussion on Stepper Motors for the Development of Electronic
    International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 1089 ISSN 2229-5518 Simple Discussion on Stepper Motors for the Development of Electronic Device Tanu Shree Roy, Humayun Kabir, Md A. Mannan Chowdhury Abstract— This paper is designed and developed to have the general as well as basic knowledge about the modern electronic device named ‘Stepper motor’. A step motor can be viewed as a synchronous AC motor with the number of poles (on both rotor and stator) in- creased, taking care that they have no common denominator. Additionally, we have discussed about its characteristics, classification, oper- ation, advantages and electric magnetic effects. Index Terms— Electronic device, stepper motor, synchronous, rotor, stator, electric and magnetic effects. —————————— —————————— 1 INTRODUCTION Stepper motors can be viewed as electric motors without trol. Stepper systems are economical to implement, intuitive to commentators. Typically all windings in the motor are part control, and have good low speed torque, making them ideal of the stator and the rotor is permanent magnet or in the case for many low power, computer-controlled applications. They of variable reluctance motors, a toothed block of some magneti- can be for example interfaced to computer using few transistors cally soft material. All of the commutation must be handled and made to rotate using a small piece of software. Stepper mo- externally by the motor controller, and typically, the motors and tors provide good position repeatability. Stepper motors are controllers are designed so that the motor may be held in any used in robotics control and in computer accessories (disk fixed position as well as being rotated one way or the other [1, drives, printers, scanners etc.).
    [Show full text]
  • Introduction to Stepper Motors Part 1: Types of Stepper Motors
    Introduction to Stepper Motors Part 1: Types of Stepper Motors © 2007 Microchip Technology Incorporated. All Rights Reserved. Introduction to Stepper Motors Slide 1 Hello, my name is Marc McComb, I am a Technical Training Engineer here at Microchip Technology in the Security, Microcontroller and Technology Division. Thank you for downloading Introduction to Stepper Motors. This is Part 1 in a series of webseminars related to Stepper Motor Fundamentals. The following webseminar will focus on some of the stepper motors available for your applications. So let’s begin. 1 Agenda z Topics discussed in this WebSeminar: − Main components of a stepper motor − How do these components work together − Types of stepper motors © 2007 Microchip Technology Incorporated. All Rights Reserved. Introduction to Stepper Motors Slide 2 During this webseminar I will discuss the main components of a stepper motor and how these components work together to actually turn the rotor. We will also explore three types of stepping motors as well as two sub categories. 2 Stepper Motor Basics © 2007 Microchip Technology Incorporated. All Rights Reserved. Introduction to Stepper Motors Slide 3 So let’s start off with some stepper motor basics 3 What is a Stepper Motor? z Motor that moves one step at a time − A digital version of an electric motor − Each step is defined by a Step Angle Start Position Step 1 Step 2 © 2007 Microchip Technology Incorporated. All Rights Reserved. Introduction to Stepper Motors Slide 4 First, what is a stepper motor? As the name implies, the stepper motor moves in distinct steps during its rotation. Each of these steps is defined by a Step Angle.
    [Show full text]
  • Energy Harvesting Using AC Machines with High Effective Pole Count,” Power Electronics Specialists Conference, P 2229-34, 2008
    The Pennsylvania State University The Graduate School Department of Electrical Engineering ENERGY HARVESTING USING AC MACHINES WITH HIGH EFFECTIVE POLE COUNT A Dissertation in Electrical Engineering by Richard Theodore Geiger 2010 Richard Theodore Geiger Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2010 ii The dissertation of Richard Theodore Geiger was reviewed and approved* by the following: Heath Hofmann Associate Professor, Electrical Engineering Dissertation Advisor Chair of Committee George A. Lesieutre Professor and Head, Aerospace Engineering Mary Frecker Professor, Mechanical & Nuclear Engineering John Mitchell Professor, Electrical Engineering Jim Breakall Professor, Electrical Engineering W. Kenneth Jenkins Professor, Electrical Engineering Head of the Department of Electrical Engineering *Signatures are on file in the Graduate School iii ABSTRACT In this thesis, ways to improve the power conversion of rotating generators at low rotor speeds in energy harvesting applications were investigated. One method is to increase the pole count, which increases the generator back-emf without also increasing the I2R losses, thereby increasing both torque density and conversion efficiency. One machine topology that has a high effective pole count is a hybrid “stepper” machine. However, the large self inductance of these machines decreases their power factor and hence the maximum power that can be delivered to a load. This effect can be cancelled by the addition of capacitors in series with the stepper windings. A circuit was designed and implemented to automatically vary the series capacitance over the entire speed range investigated. The addition of the series capacitors improved the power output of the stepper machine by up to 700%.
    [Show full text]
  • Design Optimization and Analysis of an Outer-Rotor Direct-Drive Permanent-Magnet Motor for Medium- Speed Electric Vehicle
    Article Design Optimization and Analysis of an Outer-Rotor Direct-Drive Permanent-Magnet Motor for Medium- Speed Electric Vehicle Yuan Yuan 1,*, Wenjun Meng 1, Xiaoxia Sun 1 and Liyong Zhang 2 1 School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; [email protected] (W.M.); [email protected] (X.S.) 2 Great Wall Motor Company Limited, Baoding 071000, China; [email protected] * Correspondence: [email protected] Received: 18 February 2019; Accepted: 20 March 2019; Published: 4 April 2019 Abstract: At present, it is the conventional inner rotor motor instead of the internal combustion engine that is adopted by most electric cars. However, compared to the traditional centralized driving pattern, cars adopting a distributed direct driving pattern have higher drive efficiency and more stable handling. Given this background, a kind of direct-drive outer rotor motor with 40 poles and 42 slots applied for middle or low speed electric cars was designed. The core of this study included the electromagnetic analysis and structural design of the motor. Firstly, the material and dimension parameters of the stator and rotor were selected and calculated by the traditional method. The air-gap length and pole-arc coefficient were optimized using an RMxprt module, which was developed using the equivalent magnetic circuit method. Then, a two-dimensional finite- element model was established using ANSYS Maxwell. The magnetic field and torque characteristics of the model were then analyzed. Results show that the design of the motor is reasonable. In addition, a method for reducing the torque ripple was proposed and verified by simulation.
    [Show full text]
  • Stepper Motors Stepper Motor
    Motor Types TI Precision Labs – Motor Drivers Presented and prepared by Dalton Ortega 1 Brushed-DC Motors Brushed – DC motor commutation Bidirectional brushed motor driver Permanent magnets VM Motor windings OFFON OFFON Commutator OUT1 OUT2 OUT1 OFFON OFFON OUT2 Brushes ForwardReverse Drive Brushed-DC motor tradeoffs, common applications • Basic function: move a load in one direction only or both directions. • Advantages: – Low cost solution – Current control not required – Easy to control • Disadvantages – Brushes wear out – Loud, sparking, may have EMI concerns – Requires external sensors for speed/position control 4 Brushless-DC Motors Brushless-DC motor construction (Cont.) Inner Rotor (Conventional) Outer Rotor (Outrunner) Permanent magnet Coil windings Smaller construction (compact) Larger construction Better heat dissipation Worse heat dissipation Lower rotor inertia Higher rotor inertia Quick speed change applications Constant speed applications High torque and speed Higher torque at low rpm High cogging torque Low cogging torque Harder to wind the coils Easier to wind the coils High performance magnets Lower performance magnets Servos, actuators, pumps Fans, hard disk, printers Brushless-DC motor winding connections Wye (Y) Winding Delta (∆) Winding Star connection Normally more efficient Normally less efficient Less resistive losses More resistive losses Immune to parasitic currents Parasitic currents can circulate Higher torque at low speed Lower torque at low speed Lower top speed Higher top speed Most common Both are driven
    [Show full text]
  • Electric Motor Handbook
    Motor Handbook Authors: Institute for Power Electronics and Electrical Drives, RWTH Aachen University Fang Qi Daniel Scharfenstein Claude Weiss Infineon Technologies AG Dr. Clemens Müller Dr. Ulrich Schwarzer Version: 2.1 Release Date: 12.03.2019 Motor Handbook 2 Preface This motor handbook was created by Infineon Technologies AG together with Institute for Power Electronics and Electrical Drives, RWTH Aachen University/ Germany. It was originally released in its first version in 2016. Based on the feedback, which has been received in the meantime, a new version with further improved motor images and updated diagrams has been developed. Dr. Clemens Müller Infineon Technologies AG IFAG IPC ISD Munich/Germany, March 2019 Motor Handbook 3 Contents Preface ..................................................................................................... 2 Contents ................................................................................................... 3 Introduction............................................................................................... 5 Induction machine (IM) ............................................................................... 7 Structure and functional description ........................................................... 9 Motor characteristics and motor control ...................................................... 9 Notable features and ratings ................................................................... 22 Strengths and weaknesses ....................................................................
    [Show full text]
  • A UNIPOLAR INVERTER DRIVE for a CAGE INDUCTION MOTOR By
    A UNIPOLAR INVERTER DRIVE FOR A CAGE INDUCTION MOTOR by PATRICK REGINALD PALMER B.Sc.(Eng.), A.C.G.I., A.M.I.E.E. Thesis submitted to the University of London for the degree of Doctor of Philosophy and for the Diploma of Imperial College Department of Electrical Engineering Imperial College of Science and Technology September 1985 1 ABSTRACT # This thesis describes a novel pulse-width-modulated, voltage fed, unipolar inverter drive scheme for a squirrel-cage induction motor, which enables effective shoot through protection. Standard PWM techniques were employed. The proposed scheme was tested using standard ♦ two pole, totally enclosed, fan cooled, three phase induction motors, rated at 4 kW and 415 Vac. Simple alterations are required to the motor windings, and these were made by the manufacturer. * A review of inverter technology covers the principal categories of inverters, switching devices and detail circuitry. The modes of operation of unipolar schemes are discussed and their advantages and disadvantages # identified. A description of the experimental drive and its operating details follows, reference being made to measured current waveforms. Measured torque-speed and efficiency-speed * graphs are presented and discussed. For a more detailed examination of the performance a theoretical model of the entire inverter-induction motor scheme is developed. The model for the motor is based on a # mutually coupled coils approach. The predictions confirm the explanation of the operation given previously. Theoretical comparisons are made between the proposed 2 unipolar drive and equivalent conventional inverter ^ drives. There is then an extensive study of the inverter under fault conditions, where it is shown that the behaviour of the inverter under fault conditions is predictable and ^ controllable.
    [Show full text]