Motor Actuators Basics

Total Page:16

File Type:pdf, Size:1020Kb

Motor Actuators Basics Motor Actuators Basics - 1 - Note: All specifications and other information are not guaranteed and are subject to change without notice. Prior to any new usage of JE motor actuators it is recommended to contact Johnson Electric. All information below and content of links are subject to the disclaimer of the Johnson Electric website - 2 - Contents Overview ....................................................................................................................................................................... 4 Classification ............................................................................................................................................................. 5 DC Motors ................................................................................................................................................................. 6 Universal Motors ....................................................................................................................................................... 7 BLDC Motors ............................................................................................................................................................. 8 Synchronous Motors ................................................................................................................................................. 9 Stepper Motors ........................................................................................................................................................ 10 Shaded Pole Motors ................................................................................................................................................ 11 Solenoids ................................................................................................................................................................. 12 Piezo Motors ........................................................................................................................................................... 13 DC Motors ................................................................................................................................................................... 14 Basics ...................................................................................................................................................................... 15 Encoders.............................................................................................................................................................. 24 BLDC Motors ............................................................................................................................................................. 25 Basics ...................................................................................................................................................................... 26 Closed Loop Speed Control ................................................................................................................................ 31 Stepper Motors ........................................................................................................................................................... 32 Basics ...................................................................................................................................................................... 33 Gearmotors ................................................................................................................................................................. 46 Basics ...................................................................................................................................................................... 47 Motor mounting .................................................................................................................................................... 53 Linear motors .............................................................................................................................................................. 54 Basics ...................................................................................................................................................................... 55 - 3 - Overview - 4 - Classification DC AC 1~ Voltage Supply Voltage supply Brushed DC Motors Universal Motors Solenoids Synchronous Motors Brushless Shaded Pole Motors Brushless BLDC Motors Driver electronics Stepper Motors required Claw Pole Motors Hybrid Motors Piezo Motors JE product range - 5 - DC Motors  Contents Power supply DC Battery supply possible Driver electronics need No Effected by load torque Speed accuracy Low Manufacture tol +-10% of no load speed Open loop or closed loop speed control Speed control ↕ Voltage Closed loop – high accuracy, but sensor need Closed loop position control and sensor need Position control High effort High start torque or peak load torque Overloadablity / load inertia High Able to accelerate high load inertia 300…2000 h (limited by wear of brushes) Lifetime Low Depend on speed, current and brush config. Speed range [rpm] 1000…25000 No load speed Efficiency 60…80% At operating point of max.efficiency Power vs. size High If overload (mechan.blocking) not excluded - Winding thermal protection Need Current limitation or thermal contacts Load sensing Easy Current rises with load Stalling permissible No No or only short time (winding overheat) Electromag.interference EMI Critical Suppression means (capacitors / varistors) Detent torque Braking/Holding torque Low Braking improveable by winding short circuit Max.output power from JE [W] Linear motors from JE No JE Brand - 6 - Universal Motors  Contents Power supply AC or DC Mainly AC , direct connection to mains Driver electronics need No Effected by load torque Speed accuracy Low Manufacture tol +-10% of no load speed Open loop speed control Speed control ↕ Voltage Closed loop position control and sensor need Position control High effort Very high start torque or peak load torque Overloadablity / load inertia High Able to accelerate high load inertia 300…2000 h (limited by wear of brushes) Lifetime Low Depends on speed, current and brush config. Speed range [rpm] 10000…50000 No load speed Efficiency 60…80% Operating point of max.efficiency Power / motor size High If overload (mechan.blocking) not excluded - Winding thermal protection Need Current limitation or thermal contacts Load sensing Easy Current rises with load Stalling permissible No No or only short time (winding overheat) Electromag.interference EMI Critical Suppression means (capacitors / varistors) No permanent magnets (field winding instead) Braking (Holding) torque Low Braking improvable by winding short circuit Max.output power from JE [W] Linear motors from JE No JE Brand - 7 - BLDC Motors  Contents Power supply DC Battery supply possible Driver electronics need Yes External or inside motor Effected by load torque Speed accuracy Low Manufacture tol +-10% of no load speed Driver output voltage controlled by PWM Speed control ↕ Voltage Closed loop – using integrated Hall sensors Closed loop position control and sensor need Position control High effort Possibly Hall sensors applicable High start torque or peak load torque Overloadablity / load inertia High Able to accelerate high load inertia Only limited by bearings Lifetime High Depends on lateral force and speed Speed range [rpm] 1000…25000 For no load speed Efficiency 60…80% At operating point of max.efficiency Power vs. size High If overload (mechan.blocking) not excluded - Winding thermal protection Need Current limitation in Driver circuitry Load sensing Easy Current rises with load Stalling permissible No No or only short time (winding overheat) Electromag.interference EMI Not critical No brushes ; PWM voltage may cause EMI Detent torque Braking/Holding torque Low Braking improvable by winding short circuit Max.output power from JE [W] 80 Approximately, for continuous duty cycle Linear motors from JE No JE Brand - 8 - Synchronous Motors  Contents Power supply AC Driver electronics need No Not effected by load torque Speed accuracy High No closed loop speed control need Not possible Speed control No Speed fixed by mains supply frequency Not possible Position control No Only by limit switches Only little reserve for peak load torque Overloadablity / load inertia Low Can’t accelerate high inertia Limited by bearings Lifetime High Depends on lateral force Speed range [rpm] 250…3600 Depend on pole number and mains frequency Efficiency 15…45% Power vs. size Low Higher for 2pole motor Inductance protected Winding thermal protection No need (if winding designed for 100% duty cycle) Load sensing Difficult Load has little impact on current Stalling permissible Yes If winding designed for continuous duty cycle Electromagn.interference EMI Not critical No brushes Braking/Holding torque Low Detent torque (when power switched off) Max.output power from JE [W] 14 Approximately, for short time duty cycle S2 Linear motors from JE Yes JE brand - 9 - Stepper Motors  Contents Power supply DC Battery supply possible Driver electronics need Yes Constant voltage or Chopper driver circuitry Not effected by load torque Speed accuracy High No closed loop speed control need No additional electronics need Speed control Step frequency ↕ No sensor need Commanded by number of steps Position control Low effort No sensor need Only little reserve for peak load torque Overloadablity / load inertia
Recommended publications
  • Actuator Product Guide
    About Moog Multi-purpose Actuators and Servoactuators Moog’s multi-purpose actuators and servoactuators can be used for a variety of high performance applications and are standard building blocks used in ruggedized systems. We utilize our expertise in DC electromagnetics, gearing, rate and position loop servo electronics and mechanical design in these assemblies. Moog rotary and linear electromechancial actuators are used in: • Fixed and Rotary Wing Aircrafts • Unmanned Vehicles / Remotely Operated Vehicles • Ground Vehicles • Radar Systems • Remote Weapon Stations • SATCOM Pedestals • EO / IR Sensor Pods • Cockpit Door Locks • Valve / Damper Actuators Capability Moog has been developing specialized high technology and utility electromechanical actuators for over 25 years. Our capability includes in-house design, manufacturing expertise, engineering support and qualification for these products. Product Range Products range from 25 to 2,500 in-lbt for rotary and 100 to 2,000 lbf for linear configurations. We can offer our assemblies with integral servo control electronics. Moog offers a variety of communication interfaces including analog, (+/- 10 VDC for example), RS232 / 422 / 485, R/C PWM and CAN Bus. We design for redundancy as required by the customer. Moog is a FAA certified repair station and can offer hardware in support of AOG services. FAA / EASA Approved Repair Station Location, Springfield, PA FAA Repair Station: L17R251Y 750 West Sproul Road EASA (JAA): 145.5497 Springfield, PA 19064-4084 USA Cage Code: 1K426 Tel: +1-610-328-4000 Fax: +1-610-605-6216 FAA / EASA Approved Repair Station Location, Blacksburg, VA FAA Repair Station: 21MR057C 1213 North Main Street Cage Code: 99932 Blacksburg VA 24060-3127 USA Tel: +1-540-552-3011 Fax: +1-540-557-6719 2 Moog • www.moog.com Rotary Actuators Rotary Actuators Rotary servoactuators utilize brush and brushless type DC motors using both neodymium and rare earth magnets.
    [Show full text]
  • Modern Design and Control of Automatic Transmission and The
    Review Paper doi:10.5937/jaes13-7727 Paper number: 13(2015)1, 313, 51 - 59 MODERN DESIGN AND CONTROL OF AUTOMATIC TRANSMISSION AND THE PROSPECTS OF DEVELOPMENT Dejan Matijević The School of Electrical and Computer Engineering of Applied Studies, Belgrade, Serbia Ivan Ivanković* University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia Dr Vladimir Popović University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia The paper provides an overview of modern technical solutions of automatic transmissions in auto- motive industry with their influence on sustainable development. The objective of the first section is a structural view of specific constructions and control systems of presently used automatic transmis- sions, with emphasis on mechatronics implementation. The second section is based on perspectives of development, by integrating some branches of soft computing, such as fuzzy logic and artificial neural networks in order to create an optimal control algorithm for obtaining a contribution to fuel economy, exhaust emission, comfort and vehicle performance. Key words: Automatic transmission, Mechatronics, Automotive industry, Soft Computing INTRODUCTION which is depended by coefficient of friction and normal load on the drive axle. Lower limitation Almost all automobiles in use today are driven by is defined by maximal speed that vehicle can internal combustion engines, which are charac- reach. Shaded areas between traction forces terized by many advantages, such as relatively through gears are power losses. To decrease good efficiency, relatively compact energy stor- power losses and to be as closely as possible age and high power – to – weight ratio [07]. to the ideal traction hyperbola, the gearbox with But, fundamental disadvantages are: enough gear ratios is needed.
    [Show full text]
  • An Overview of Novel Actuators for Soft Robotics
    actuators Review An Overview of Novel Actuators for Soft Robotics Pinar Boyraz 1,2,* ID , Gundula Runge 3 and Annika Raatz 3 1 Mechanics and Maritime Sciences Department, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 Mechanical Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey 3 Institut fur Montagetechnik (match), Leibniz Universität Hannover, 30823 Garbsen, Hannover, Germany; [email protected] (G.R.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +46-730-49-8780 Received: 10 June 2018; Accepted: 9 August 2018; Published: 16 August 2018 Abstract: In this systematic survey, an overview of non-conventional actuators particularly used in soft-robotics is presented. The review is performed by using well-defined performance criteria with a direction to identify the exemplary and potential applications. In addition to this, initial guidelines to compare the performance and applicability of these novel actuators are provided. The meta-analysis is restricted to five main types of actuators: shape memory alloys (SMAs), fluidic elastomer actuators (FEAs), shape morphing polymers (SMPs), dielectric electro-activated polymers (DEAPs), and magnetic/electro-magnetic actuators (E/MAs). In exploring and comparing the capabilities of these actuators, the focus was on eight different aspects: compliance, topology-geometry, scalability-complexity, energy efficiency, operation range, modality, controllability, and technological readiness level (TRL). The overview presented here provides a state-of-the-art summary of the advancements and can help researchers to select the most convenient soft actuators using the comprehensive comparison of the suggested quantitative and qualitative criteria. Keywords: soft-robotics; actuator performance; SMA; SMP; FEA; DEAP; E/MA 1.
    [Show full text]
  • Exlar Electric Test and Simulation Actuator Systems
    Delivering more accurate and trouble-free test actuators. Exlar Electric Test and Simulation Actuator Systems Courtesy of Steven Engineering, Inc. - 230 Ryan Way, South San Francisco, CA 94080-5370 - Main Office: (650) 588-9200 - Outside Local Area: (800) 258-9200 - www.stevenengineering.com entertainment simulators, Exlar actutors are Paradigm Shift ergonomic endurance directly controlled in Mechanical test equipment, geo- by the system’s logical test equipment, electric servo Testing System wear testing, and even amplifi er. No Technology aircraft structural testing intermediary such and dynamic simulation. as oil or air is required to create Historically, manufacturers and motion. System users of mechanical test ap- The Benefi ts compliance result- paratus and motion simulators ing from use of have accepted the inaccuracies, of All-Electric fl uid power is a inconvenience and high mainte- Test Actuator major contributor nance costs of hydraulic actua- to inaccuracy of tion. However, today’s simula- Systems tors and test stands are often hydraulic actua- Exlar’s patented roller used in environments where tor systems. The screw linear actuator contamination from oil leaks is higher stiffness of technology allows users to not permissable and greater ac- a planetary perform the analysis and testing curacy is required. Exlar offers roller screw-based actuator pro- needed to verify products’ de- a full range of all-electric test vides greater system response actuators and position controls signs without the high cost of in- and stability assuring precise which provide the dynamic per- stallation, constant maintenance, and crisp control, and stiffness formance and long life required environmental issues, and en- is not stroke-sensitive.
    [Show full text]
  • Actuator Components • Actuators – Hydraulics – Pneumatics – Electric Motors • Gearing • Bearings • Seals
    Actuator Components • Actuators – Hydraulics – Pneumatics – Electric Motors • Gearing • Bearings • Seals U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 1 Fundamental Elements of Robotics Environment Planning Sensing and Actuation Reasoning U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 2 Prime Mover Taxonomy • Electrical – Direct Current – Alternating Current • Non-Electrical – Hydraulics – Pneumatics – Chemical – Thermal – Stored Energy U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 3 Hydraulics and Pneumatics U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 4 Pneumatic Actuator Cutaway U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 5 Hydraulic System Schematic U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 6 Hydraulic Spool Valve Schematic U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 7 Brushed DC Motor Schematic U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 8 DC Brushed Motor Schematic U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 9 Brushed DC Motor Commutator U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary Surface Robotics MARYLAND 10 Brushless DC Motor U N I V E R S I T Y O F Actuator Components ENAE 788X - Planetary
    [Show full text]
  • Stepping Motors Fundamentals
    AN907 Stepping Motors Fundamentals Author: Reston Condit TYPES OF STEPPING MOTORS Microchip Technology Inc. There are three basic types of stepping motors: Dr. Douglas W. Jones permanent magnet, variable reluctance and hybrid. University of Iowa This application note covers all three types. Permanent magnet motors have a magnetized rotor, while variable reluctance motors have toothed soft-iron rotors. Hybrid INTRODUCTION stepping motors combine aspects of both permanent Stepping motors fill a unique niche in the motor control magnet and variable reluctance technology. world. These motors are commonly used in measure- The stator, or stationary part of the stepping motor ment and control applications. Sample applications holds multiple windings. The arrangement of these include ink jet printers, CNC machines and volumetric windings is the primary factor that distinguishes pumps. Several features common to all stepper motors different types of stepping motors from an electrical make them ideally suited for these types of point of view. From the electrical and control system applications. These features are as follows: perspective, variable reluctance motors are distant 1. Brushless – Stepper motors are brushless. The from the other types. Both permanent magnet and commutator and brushes of conventional hybrid motors may be wound using either unipolar motors are some of the most failure-prone windings, bipolar windings or bifilar windings. Each of components, and they create electrical arcs that these is described in the sections below. are undesirable or dangerous in some environments. Variable Reluctance Motors 2. Load Independent – Stepper motors will turn at Variable Reluctance Motors (also called variable a set speed regardless of load as long as the switched reluctance motors) have three to five load does not exceed the torque rating for the windings connected to a common terminal.
    [Show full text]
  • Brushes for Aircraft Applications
    Brushes for Aircraft Applications Bob Nuckolls AeroElectric Connection April 1993 Updated August 2003 Several times a year I receive a call or letter asking where one be 1000 hours or more of continuous motor operation! We obtains "aircraft" grade brushes for an alternator or generator. were hard pressed to demonstrate more than 600 hours from One of my readers called recently to say he had been verbally any grade of brush. This little motor runs at 22,000 rpm! There keel-hauled by an engineer with an alternator manufacturing were simply no brush products available that would last 1000 company. The reader had confessed to considering a plain hours at those commutator surface speeds. vanilla brush for use in the alternator on his RV-4. The program was nearly scuttled when project managers There's a lot of "hangar mythology" about what constitutes became fixated upon reaching the 1000-hour goal. We aircraft ratings in components. We all know that much of what researched our service records for the same motor supplied in is deemed "aircraft" today are the same products certified onto other forms for over 10 years. airplanes 30-50 years ago. Many developers and suppliers consider aviation a "dying" market; few are interested in Clutches and brakes turned out to be the #1 service problem. researching and qualifying new products. However, Brake problems occurred at 300 to 500 flight hours, not motor automotive markets continue to advance in every technology. operating hours. Given that trim operations might run a pitch It is sad to note that many products found on cars today far trim actuator perhaps 3 minutes total per flight cycle, 1000 exceed the capabilities and quality of similar hardware found hours of flight on a Lear might put less than 50 hours on certified airplanes.
    [Show full text]
  • Difference Between Bipolar Drives and Unipolar Drives for Stepper Motors
    WHITE PAPER DIFFERENCE BETWEEN BIPOLAR DRIVES AND UNIPOLAR DRIVES FOR STEPPER MOTORS orking on a motorized development requires some knowledge about motors and controllers. This article Wis focused on the stepper motors which is a type of brushless DC motor with a high number of poles. This technology is generally driven in open loop without any feedback sensor, meaning the current is typically applied on the phases without knowing the rotor position. The rotor moves to be aligned with the stator magnetic flux, then the current can be supplied to the next phase. We will consider two ways to supply current in the coil: bipolar way and unipolar way. In this article, we will explain the differences of bipolar and unipolar motors and driving methods. We will show the advantages and limits of both technologies. Let’s take an example of a four step, permanent magnet stepper motor (see figure 1). The rotor is made with a one pole pair magnet, and the stator is composed of two phases, Phase A and Phase B. • In unipolar: the current always flows in the same direction. Each coil is dedicated to one current direction, meaning either the coil A+ or the coil A- is powered. The coils A+ and A- are never powered together. • In bipolar: the current can flow in both directions in all coils. The phases A+ and A- are powered together. A bipolar motor requires one coil minimum per phase and unipolar motor Figure 1. 4-Step Stepper Motor requires two coils minimum per phase. Let’s review both options in more detail.
    [Show full text]
  • Motor Actuators Basics
    Motor Actuators Basics - 1 - Note: All specifications and other information are not guaranteed and are subject to change without notice. Prior to any new usage of JE motor actuators it is recommended to contact Johnson Electric. All information below and content of links are subject to the disclaimer of the Johnson Electric website - 2 - Contents Overview ....................................................................................................................................................................... 4 Classification ............................................................................................................................................................. 5 DC Motors ................................................................................................................................................................. 6 Universal Motors ....................................................................................................................................................... 7 BLDC Motors ............................................................................................................................................................. 8 Synchronous Motors ................................................................................................................................................. 9 Stepper Motors ........................................................................................................................................................ 10 Shaded
    [Show full text]
  • PI Linear Actuator Catalog
    Linear Actuators for Precision Motion Control,/--5 Solutions featuring Novel Piezoelectric Motors and Classical Motors Latest PI Catalogs: www.pi.ws Latest PI Catalogs: www.pi.ws Precision Linear Actuators Overview Motion Control with Piezoelectric / Servo / Stepper Motors PI is the leading manufacturer of ultra-high-precision actua- tors for nanopositioning and micropositioning applications in industries such as Semi- conductors; Biotechnology and Medicine; Lasers, Optics, Micros- copy; Aerospace Engineering; Precision Machining; Astronomy and Microsystems Technology. Section a Section b Section c Motorized Screw Type Actuators PILine® Ceramic Ultrasonic Piezo NEXACT® Compact Piezo ࡯ DC & Stepper Motors Motor Actuators Stepping Motor Actuators ࡯ Forces to 400 N ࡯ High-Speed Piezomotors and ࡯ PiezoWalk® Drive ࡯ Travel to 50 mm Drives ࡯ Compact Dimensions ࡯ Resolution to 50 nm ࡯ Velocity to 800 mm/s ࡯ Forces to 10 N ࡯ Compact Dimensions ࡯ <0.1 nm Resolution ࡯ Travel to 150 mm (Basically ࡯ Self-Locking at Rest Unlimited) ࡯ Travel to 25 mm (Basically ࡯ Forces to 7 N Unlimited) ࡯ Self-Locking at Rest ࡯ Velocity to 10 mm/s ࡯ Resolution to 20 nm ࡯ Non-Magnetic, Vacuum ࡯ Non-Magnetic, Vacuum Compatible Compatible Section c Section d Section e Section f NEXLINE® High-Force Piezo Flexure-Guided Piezo Piezo Stack Actuators Motion Controllers (Examples) Stepping Motor Actuators Actuators ࡯ PICMA® Multilayer and ࡯ Controllers for Servo Motors ࡯ PiezoWalk® Drive ࡯ PICMA® Piezoceramic PICA™ Stack Actuators and Stepper Motors ࡯ Non-Magnetic, Vacuum Multilayer
    [Show full text]
  • Electric Linear Actuators
    LINEAR ACTUATORS Rolaram www.powerjacks.com LINEAR ACTUATORS | Rolaram www.powerjacks.com 2 LINEAR ACTUATORS | Rolaram Contents Linear Actuators (Electro-Mechanical) 1 Overview of Rolaram® Linear Actuator Range ................................................................4 2 Working Applications for Rolaram® Actuators ................................................................6 3 Product Code for Rolaram® Actuators ............................................................................7 4 Rolaram® Linear Actuator Range ....................................................................................8 5 How to Select a Rolaram® Actuator ..............................................................................10 6 Rolaram® Performance Data .........................................................................................11 7 Rolaram® Linear Actuator Dimensions .........................................................................17 8 Rolaram® Accessories and Options ...............................................................................21 9 Special Rolaram® Designs and Applications .................................................................22 3 www.powerjacks.com LINEAR ACTUATORS | Rolaram 1. Overview of Rolaram® Linear Actuator Range What is a Rolaram® Linear Actuator? Rolaram® is an electro-mechanical linear actuator, which consists of either a Spiracon™ planetary roller screw or a ball screw, driven by an electric motor, through a reduction gearbox. The lead screw converts rotary motion to
    [Show full text]
  • 2150062 Actuator Operating Manual Revision 4.7 Revision Date 4/27/2016
    2752 Capitol Drive Suite 103 Sun Prairie, WI 53590 2150062 Actuator Operating Manual Revision 4.7 Revision Date 4/27/2016 ACTUATOR OPERATING MANUAL This manual provides installation, operation, and maintenance instructions for linear and rotary actuators. DO NOT OPEN YOUR ACTUATOR OPENING THE ACTUATOR WILL VOID WARRANTY AND UNITS NEED TO BE SEALED WITH A VACUUM CHAMBER 2752 Capitol Drive Suite 103 Sun Prairie, WI 53590 2150062 Actuator Operating Manual Revision 4.7 Revision Date 4/27/2016 Warranty 2G Engineering warrants that its product(s) shall be made in accordance with buyer’s specifications which have been accepted in writing by 2G Engineering and shall be free from defects in material and workmanship for 1 Year after purchase. This warranty is provided to the original purchaser and in the case of original equipment manufacturers, to their original customer, and may not be transferred to any other person or entity. In no event shall 2G Engineering be liable or have any responsibility under such warranty if the products have been improperly stored, installed, used, or maintained, or if Buyer has permitted any modifications, adjustments, and/or repairs to such product(s) without 2G Engineering’s prior written consent. The warranty is only valid if purchaser has paid all amounts due to 2G Engineering for the product and 2G Engineering has received written notice of the claim within 1 Year after purchase of the product. The above warranty is the sole warranty provided by 2G Engineering. No other warranties, expressed or implied, are included in the purchase of the product(s) and 2G Engineering expressly disclaims all such other warranties, including without limitation, implied warranties of merchantability and fitness for a particular purpose.
    [Show full text]