Pathways of Synthesis for Proline and Arginine of the Glutamic Family, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CCA One Care Options Formulary
Commonwealth Care Alliance One Care Plan (Medicare-Medicaid Plan) 2021 List of Covered Drugs (Formulary) 30 Winter Street • Boston, MA 02108 PLEASE READ: THIS DOCUMENT CONTAINS INFORMATION ABOUT THE DRUGS WE COVER IN THIS PLAN For more recent information or other questions, contact Commonwealth Care Alliance Member Services at 1-866-610-2273 (TTY: call MassRelay at 711), 8 a.m. – 8 p.m., 7 days a week, or visit www.commonwealthonecare.org H0137_CF2021 Approved Formulary: ID 00021588 • Version 13 • Updated on 08/01/2021 One Care Plan | 2021 List of Covered Drugs (Formulary) Introduction This document is called the List of Covered Drugs (also known as the Drug List). It tells you which prescription drugs, over-the-counter drugs and items are covered by Commonwealth Care Alliance. The Drug List also tells you if there are any special rules or restrictions on any drugs covered by One Care. Key terms and their definitions appear in the last chapter of the Member Handbook. Table of Contents A. Disclaimers ........................................................................................................................ 4 B. Frequently Asked Questions (FAQ) .................................................................................. 5 What prescription drugs are on the List of Covered Drugs? (We call the List of Covered Drugs the “Drug List” for short.) ................................................................... 5 B2. Does the Drug List ever change? ............................................................................... 5 B3. What happens when there is a change to the Drug List? ........................................... 6 B4. Are there any restrictions or limits on drug coverage or any required actions to take to get certain drugs? .................................................................................................. 7 B5. How will you know if the drug you want has limitations or if there are required actions to take to get the drug? ................................................................................. -
Metabolic Engineering of Escherichia Coli for Poly(3-Hydroxybutyrate)
Lin et al. Microb Cell Fact (2015) 14:185 DOI 10.1186/s12934-015-0369-3 RESEARCH Open Access Metabolic engineering of Escherichia coli for poly(3‑hydroxybutyrate) production via threonine bypass Zhenquan Lin1,2,3†, Yan Zhang1,2,3†, Qianqian Yuan1,2,3,4, Qiaojie Liu1,2,3, Yifan Li1,2,3, Zhiwen Wang1,2,3, Hongwu Ma4*, Tao Chen1,2,3,5* and Xueming Zhao1,2,3 Abstract Background: Poly(3-hydroxybutyrate) (PHB), have been considered to be good candidates for completely biode- gradable polymers due to their similar mechanical properties to petroleum-derived polymers and complete biodeg- radability. Escherichia coli has been used to simulate the distribution of metabolic fluxes in recombinant E. coli pro- ducing poly(3-hydroxybutyrate) (PHB). Genome-scale metabolic network analysis can reveal unexpected metabolic engineering strategies to improve the production of biochemicals and biofuels. Results: In this study, we reported the discovery of a new pathway called threonine bypass by flux balance analysis of the genome-scale metabolic model of E. coli. This pathway, mainly containing the reactions for threonine synthesis and degradation, can potentially increase the yield of PHB and other acetyl-CoA derived products by reutilizing the CO2 released at the pyruvate dehydrogenase step. To implement the threonine bypass for PHB production in E. coli, we deregulated the threonine and serine degradation pathway and enhanced the threonine synthesis, resulting in 2.23-fold improvement of PHB titer. Then, we overexpressed glyA to enhance the conversion of glycine to serine and activated transhydrogenase to generate NADPH required in the threonine bypass. -
Dietary Supplements Compendium 2019 Edition
Products and Services New Dietary Supplements Reference Standards Below is a list of newly released Reference Standards. Herbal Medicines/ Botanical Dietary Supplements Baicalein Baicalein 7-O-Glucuronide Chebulagic Acid Dietary Supplements Compendium 2019 Edition Coptis chinensis Rhizome Dry Extract In response to the customer feedback, coupled with evolving information needs, USP moved the Psoralen Dietary Supplements Compendium (DSC) to an online platform for the 2019 edition. DSC continues Scutellaria baicalensis Root Dry to provide in-depth, comprehensive information for all phases of development and manufacturing of Extract quality dietary supplements including quality control, quality assurance, and regulatory/compendial Terminalia chebula Fruit Dry affairs. Extract Guarana Seed Dry Extract Some of the advantages that come with the new online DSC edition include: Cullen Corylifolium Fruit Dry Extract More frequent updates to ensure access to the most current information Procyanidin B2 Customizable alerts to notify of changes to selected documents An intuitive interface to facilitate quick and easy navigation Non-Botanicals A customizable workspace with bookmarks, alerts and a viewing history beta-Glycerylphosphorylcholine Convenient, anytime, anywhere access with common browsers Conjugated Linoleic Acids – In addition to selected new and revised monographs and General Chapters from the USP-NF and Triglycerides Food Chemicals Codex issued since the previous 2015 edition, the DSC 2019 features: Creatine Docosahexaenoic Acid 24 new General Chapters Eicosapentaenoic Acid 72 new dietary ingredient and dietary supplement monographs L-alpha- 27 sets of supplementary information for botanical and nonbotanical dietary supplements Glycerophosphorylethanolamine 59 updated botanical HPTLC plates L-alpha- Revised and updated dietary intake comparison tables Glycerylphosphorylcholine Updated Dietary Supplement Verification Program manual Omega-3 Free Fatty Acids Pyrroloquinoline Quinone View this page for more information or to subscribe to the 2019 online DSC. -
Al Exposure Increases Proline Levels by Different Pathways in An
www.nature.com/scientificreports OPEN Al exposure increases proline levels by diferent pathways in an Al‑sensitive and an Al‑tolerant rye genotype Alexandra de Sousa1,2, Hamada AbdElgawad2,4, Fernanda Fidalgo1, Jorge Teixeira1, Manuela Matos3, Badreldin A. Hamed4, Samy Selim5, Wael N. Hozzein6, Gerrit T. S. Beemster2 & Han Asard2* Aluminium (Al) toxicity limits crop productivity, particularly at low soil pH. Proline (Pro) plays a role in protecting plants against various abiotic stresses. Using the relatively Al‑tolerant cereal rye (Secale cereale L.), we evaluated Pro metabolism in roots and shoots of two genotypes difering in Al tolerance, var. RioDeva (sensitive) and var. Beira (tolerant). Most enzyme activities and metabolites of Pro biosynthesis were analysed. Al induced increases in Pro levels in each genotype, but the mechanisms were diferent and were also diferent between roots and shoots. The Al‑tolerant genotype accumulated highest Pro levels and this stronger increase was ascribed to simultaneous activation of the ornithine (Orn)‑biosynthetic pathway and decrease in Pro oxidation. The Orn pathway was particularly enhanced in roots. Nitrate reductase (NR) activity, N levels, and N/C ratios demonstrate that N‑metabolism is less inhibited in the Al‑tolerant line. The correlation between Pro changes and diferences in Al‑sensitivity between these two genotypes, supports a role for Pro in Al tolerance. Our results suggest that diferential responses in Pro biosynthesis may be linked to N‑availability. Understanding the role of Pro in diferences between genotypes in stress responses, could be valuable in plant selection and breeding for Al resistance. Proline (Pro) is involved in a wide range of plant physiological and developmental processes1. -
Effects of Single Amino Acid Deficiency on Mrna Translation Are Markedly
www.nature.com/scientificreports OPEN Efects of single amino acid defciency on mRNA translation are markedly diferent for methionine Received: 12 December 2016 Accepted: 4 May 2018 versus leucine Published: xx xx xxxx Kevin M. Mazor, Leiming Dong, Yuanhui Mao, Robert V. Swanda, Shu-Bing Qian & Martha H. Stipanuk Although amino acids are known regulators of translation, the unique contributions of specifc amino acids are not well understood. We compared efects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no signifcant efect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a signifcant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but efects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full -
Amino Acid Recognition by Aminoacyl-Trna Synthetases
www.nature.com/scientificreports OPEN The structural basis of the genetic code: amino acid recognition by aminoacyl‑tRNA synthetases Florian Kaiser1,2,4*, Sarah Krautwurst3,4, Sebastian Salentin1, V. Joachim Haupt1,2, Christoph Leberecht3, Sebastian Bittrich3, Dirk Labudde3 & Michael Schroeder1 Storage and directed transfer of information is the key requirement for the development of life. Yet any information stored on our genes is useless without its correct interpretation. The genetic code defnes the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this process. We extensively characterize how these enzymes distinguish all natural amino acids based on the computational analysis of crystallographic structure data. The results of this meta-analysis show that the correct read-out of genetic information is a delicate interplay between the composition of the binding site, non-covalent interactions, error correction mechanisms, and steric efects. One of the most profound open questions in biology is how the genetic code was established. While proteins are encoded by nucleic acid blueprints, decoding this information in turn requires proteins. Te emergence of this self-referencing system poses a chicken-or-egg dilemma and its origin is still heavily debated 1,2. Aminoacyl-tRNA synthetases (aaRSs) implement the correct assignment of amino acids to their codons and are thus inherently connected to the emergence of genetic coding. Tese enzymes link tRNA molecules with their amino acid cargo and are consequently vital for protein biosynthesis. Beside the correct recognition of tRNA features3, highly specifc non-covalent interactions in the binding sites of aaRSs are required to correctly detect the designated amino acid4–7 and to prevent errors in biosynthesis5,8. -
Relative Reaction Rates of the Amino Acids Cysteine, Methionine, and Histidine with Analogs of the Anti-Cancer Drug Cisplatin Cynthia A
Western Kentucky University TopSCHOLAR® Honors College Capstone Experience/Thesis Honors College at WKU Projects 5-11-2015 Relative Reaction Rates of the Amino Acids Cysteine, Methionine, and Histidine with Analogs of the Anti-Cancer Drug Cisplatin Cynthia A. Tope Western Kentucky University, [email protected] Follow this and additional works at: http://digitalcommons.wku.edu/stu_hon_theses Part of the Medicinal-Pharmaceutical Chemistry Commons Recommended Citation Tope, Cynthia A., "Relative Reaction Rates of the Amino Acids Cysteine, Methionine, and Histidine with Analogs of the Anti-Cancer Drug Cisplatin" (2015). Honors College Capstone Experience/Thesis Projects. Paper 571. http://digitalcommons.wku.edu/stu_hon_theses/571 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Honors College Capstone Experience/ Thesis Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. RELATIVE REACTION RATES OF THE AMINO ACIDS CYSTEINE, METHIONINE, AND HISTIDINE WITH ANALOGS OF THE ANTI-CANCER DRUG CISPLATIN A Capstone Experience/Thesis Project Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Science with Honors College Graduate Distinction at Western Kentucky University By: Cynthia A. Tope ***** Western Kentucky University 2015 CE/T Committee: Approved by: Professor Kevin Williams, Advisor _________________________ Professor Darwin Dahl Advisor Professor Lee Ann Smith Department of Chemistry Copyright: Cynthia A. Tope 2015 ABSTRACT We are studying the reaction of analogs of the anticancer drug cisplatin with amino acids that differ in size and shape. The reaction of cisplatin with proteins likely precedes reaction with DNA in the body, forming a variety of products that may be toxic to the human body. -
The Diagnosis and Management of Ornithine Transcarbamylase Deficiency in Pregnancy: a Case Report
Perinatal Journal 2011;19(1):23-27 e-Adress: http://www.perinataljournal.com/20110191006 doi:10.2399/prn.11.0191006 The Diagnosis and Management of Ornithine Transcarbamylase Deficiency in Pregnancy: A Case Report Orkun Çetin1, Cihat fien1, Begüm Aydo¤an1, Seyfettin Uluda¤1, ‹pek Dokurel Çetin2, Hakan Erenel1 1Cerrahpafla T›p Fakültesi Kad›n Hastal›klar› ve Do¤um Anabilim Dal›, ‹stanbul, Türkiye 2Cerrahpafla T›p FakültesiÇocuk Sa¤l›¤› ve Hastal›klar› Anabilim Dal›, ‹stanbul Türkiye Abstract Objective: Ornithine transcarbamylase (OTC) deficiency is the most common urea cycle disorder. In our case, we discussed the fol- low up and the management of the OTC deficiency patient, diagnosed during pregnancy. Case: 32-year-old patient, OTC deficiency was diagnosed during pregnancy which was resulted with missed abortion. In the next pregnancy, the patient treated with phenyl butyrate, arginin ornitin lisin and carbamazepine. Coryon villus sampling (CVS) was done in the first trimester. There was not any mutation in the fetal gene locus. In the 39. gestational week, healthy female baby was deliv- ered by caesarean section. Conclusion: OTC deficiency is a rare disease. To make the followup and the management of these patients during pregnancy, may require knowledge and experience about complications. The treatment must be carried out with multidisciplinary approach. The genetic counseling should be given to the family about the prenatal diagnosis of OTC deficiency (CVS, amniosentesis). Keywords: Ornithine transcarbamylase deficiency, pregnancy, prenatal diagnosis, multidisciplinary approach. Gebelikte ornitin transkarbamilaz eksikli¤i tan›s› ve yönetimi: Olgu sunumu Amaç: Ornitin transkarbamilaz (OTC) eksikli¤i, en s›k rastlanan üre döngüsü bozuklu¤udur. -
A Review of Dietary (Phyto)Nutrients for Glutathione Support
nutrients Review A Review of Dietary (Phyto)Nutrients for Glutathione Support Deanna M. Minich 1,* and Benjamin I. Brown 2 1 Human Nutrition and Functional Medicine Graduate Program, University of Western States, 2900 NE 132nd Ave, Portland, OR 97230, USA 2 BCNH College of Nutrition and Health, 116–118 Finchley Road, London NW3 5HT, UK * Correspondence: [email protected] Received: 8 July 2019; Accepted: 23 August 2019; Published: 3 September 2019 Abstract: Glutathione is a tripeptide that plays a pivotal role in critical physiological processes resulting in effects relevant to diverse disease pathophysiology such as maintenance of redox balance, reduction of oxidative stress, enhancement of metabolic detoxification, and regulation of immune system function. The diverse roles of glutathione in physiology are relevant to a considerable body of evidence suggesting that glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Yet, proper personalized balance in the individual is key as well as a better understanding of antioxidants and redox balance. Optimizing glutathione levels has been proposed as a strategy for health promotion and disease prevention, although clear, causal relationships between glutathione status and disease risk or treatment remain to be clarified. Nonetheless, human clinical research suggests that nutritional interventions, including amino acids, vitamins, minerals, phytochemicals, and foods can have important effects on circulating glutathione which may translate to clinical benefit. Importantly, genetic variation is a modifier of glutathione status and influences response to nutritional factors that impact glutathione levels. This narrative review explores clinical evidence for nutritional strategies that could be used to improve glutathione status. -
Low Proline Diet in Type I Hyperprolinaemia
Arch Dis Child: first published as 10.1136/adc.46.245.72 on 1 February 1971. Downloaded from Archives of Disease in Childhood, 1971, 46, 72. Low Proline Diet in Type I Hyperprolinaemia J. T. HARRIES, A. T. PIESOWICZ,* J. W. T. SEAKINS, D. E. M. FRANCIS, and 0. H. WOLFF From The Hospital for Sick Children, and the Institute of Child Health, University of London Harries, J. T., Piesowicz, A. T., Seakins, J. W. T., Francis, D. E. M., and Wolff, 0. H. (1971). Archives of Disease in Childhood, 46, 72. Low proline diet in type I hyperprolinaemia. A diagnosis of Type I hyperprolinaemia was made in a 7-month-old infant who presented with hypocalcaemic convulsions and malabsorp- tion. The plasma levels of proline were grossly raised and the urinary excretion of proline, hydroxyproline, and glycine was increased; neurological development was delayed and there were associated abnormalities of the electroencephalogram, renal tract, and bones. Restriction of dietary proline at the age of 9 months resulted in a prompt fall of plasma levels of proline to normal, and a low proline diet was continued until the age of 27 months when persistence of the biochemical defect was shown. During the period of dietary treatment, growth was satisfactory, mental development improved, and the electroencephalogram, and the renal, skeletal, and intestinal abnormalities disappeared. Proline should be regarded as a 'semi-essential' amino acid in the growing infant. Hyperprolinaemia, appearing in several members balance can be maintained on a proline-free diet copyright. of a family was first described by Scriver, Schafer, (Rose et al., 1955), and therefore the amino acid is and Efron in 1961. -
The Role of Some of the Krebs Cycle Reactions in the Biosynthetic Functions of Thiobacillus Thioparus
AN ABSTRACT OF THE THESIS OF Gerald G. Still for the PhD in Chemistry (Name) (Degree) (Major) Date thesis is presented May 14, 1965 Title THE ROLE OF SOME OF THE KREBS CYCLE REACTIONS IN THE BIOSYNTHETIC FUNCTIONS OF THIOBACILLUS THIOPARUS Abstract approved Redacted for Privacy (Major professor) Aseptic radiorespirometry has been used to examine the utilization of external carbon sources by proliferat- ing Thiobacillus thioparus cells. These studies reveal that glucose, galactose, mannose, fructose, ribose, DL- glutamate, and L- aspartate were not utilized by this chemoautotrophic organism. However, it has been shown that trace amounts of acetate, glycine, DL- serine, DL- alanine, succinate and fumarate can be utilized by T. thioparus cells. To elucidate the nature of the biosynthetic pathways operative in this bacteria, proliferating cell cultures were allowed to metabolize specifically 14C labeled substrates. The resulting 14C labeled cells were sub- sequently hydrolyzed, their amino acids isolated and subjected to degradation experiments. Examination of the respective fates of the label in DL- alanine- 2 -14C, acetate- 1 -14C, or acetate -2 -14C in the cellular metabolism revealed that the Krebs Cycle path- way is not functioning as a respiratory mechanism in T. thioparus. However, most of the reactions of the Krebs Cycle pathway are involved in the biosynthesis of carbon skeletons for various amino acids. A CO2 fixa- tion pathway of the C3 +C1 type is instrumental in provid- ing C4 dicarboxylic acids and those amino acids derived therefrom. Acetate can be incorporated into a -keto- glutarate and those amino acids derived therefrom, but cannot be incorporated into the C4 dicarboxylic acids. -
L -Glutamic Acid (G1251)
L-Glutamic acid Product Number G 1251 Store at Room Temperature Product Description Precautions and Disclaimer Molecular Formula: C5H9NO4 For Laboratory Use Only. Not for drug, household or Molecular Weight: 147.1 other uses. CAS Number: 56-86-0 pI: 3.081 Preparation Instructions 1 pKa: 2.10 (α-COOH), 9.47 (α-NH2), 4.07 (ϕ-COOH) This product is soluble in 1 M HCl (100 mg/ml), with 2 Specific Rotation: D +31.4 ° (6 N HCl, 22.4 °C) heat as needed, yielding a clear, colorless solution. Synonyms: (S)-2-aminoglutaric acid, (S)-2- The solubility in water at 25 °C has been reported to aminopentanedioic acid, 1-aminopropane-1,3- be 8.6 mg/ml.2 dicarboxylic acid, Glu2 Storage/Stability L-Glutamic acid is one of the two amino acids that Aqueous glutamic acid solutions will form contains a carboxylic acid group in its side chains. pyrrolidonecarboxylic acid slowly at room temperature Glutamic acid is commonly referred to as "glutamate", and more rapidly at 100 °C.9 because its carboxylic acid side chain will be deprotonated and thus negatively charged in its References anionic form at physiological pH. In amino acid 1. Molecular Biology LabFax, Brown, T. A., ed., BIOS metabolism, glutamate is formed from the transfer of Scientific Publishers Ltd. (Oxford, UK: 1991), p. amino groups from amino acids to α-ketoglutarate. It 29. thus acts as an intermediary between ammonia and 2. The Merck Index, 12th ed., Entry# 4477. the amino acids in vivo. Glutamate is converted to 3. Biochemistry, 3rd ed., Stryer, L., W.