Pacific Northwest Marine ECOREGIONAL ASSESSMENT

Total Page:16

File Type:pdf, Size:1020Kb

Pacific Northwest Marine ECOREGIONAL ASSESSMENT Pacific Northwest Marine ECOREGIONAL ASSESSMENT PREPARED BY: The Nature Conservancy in Oregon DECEMBER 2013 Pacific Northwest Marine Ecoregional Assessment Prepared by The Nature Conservancy 2013 Recommended Citation: Vander Schaaf, D., K. Popper, D. Kelly and J. Smith. 2013. Pacific Northwest Marine Ecoregional Assessment. The Nature Conservancy, Portland, Oregon. Updates and Digital Version of Assessment: This Ecoregional Assessment is available on the Web at: https://www.conservationgateway.org/ConservationPlanning/SettingPriorities/EcoregionalReports Maps, text and Appendices can be printed from downloadable Web-based files. Any published updates to the Assessment will be made available at the same Website. For questions regarding the assessment: Contact the lead author at The Nature Conservancy, 821 SE 14th Avenue, Portland, OR 97214, (503) 802-8100. Cover photos, clockwise: Oregon’s Mack Arch Reef © David Pitkin; Rockfish survey in kelp © Richard Herrmann; Tufted puffin © Michael McBride; Yaquina Head lighthouse © Rick McEwan; California sea lion © Mark Godfrey/TNC; Copper rockfish © Daniel W. Gotshall. PNW Marine Ecoregional Assessment – page i Acknowledgements The authors acknowledge the participation and critical peer review provided by colleagues within The Nature Conservancy and from agencies and academic institutions in Oregon, Washington and California. More than 100 marine experts participated in our peer review workshops and we would especially like to thank the contributions made by the following individuals for privately held data, access to publicly available data, assisted with data analysis and interpretation, or assisted with development of the suitability index: Elizabeth Clarke, Chris Goldfinger, Barbara Hickey, Bob Emmett, and Waldo Wakefield. We would also like to acknowledge the Wild Salmon Center that provided unpublished salmon information for estuaries in the ecoregion. NOAA Fisheries was a major contributor of fisheries information from their trawl surveys and from trawl logbook data that they have collected for many years. NOAA helped us compile the data they provided and they helped us better understand the data so that it could be most useful in the analysis. Maps and figures for the final report were developed by Aaron Jones, TNC spatial analyst, and Justin Saydell, TNC Americorp volunteer, assisted with report editing. Finally we would like to thank Rondi Robison who conducted exhaustive inventories of potential marine conservation targets for both this assessment as well as the PNW Coast Ecoregional Assessment. Funding for this assessment was provided by The Nature Conservancy and a grant from National Fish & Wildlife Foundation # 2008-0100-000. The grant allowed for the development of the ecoregional assessment and its simultaneous application towards the identification of priority conservation areas in state waters off the Oregon coast. Data compiled for the Pacific Northwest Marine Ecoregional Assessment was also used for the evaluation of potential marine reserves in Oregon. Pacific Northwest Marine Ecoregion Core Team Dick Vander Schaaf Core Team Lead (TNC) Ken Popper Project Lead (TNC) Dan Kelly GIS and data management (TNC) Jo Smith Marine Ecologist (TNC) Advisors to Pacific Northwest Ecoregion Core Team (alphabetical) Allison Bailey GIS analyst, Sound GIS, Washington Zach Ferdana Marine Conservation Planner, TNC, Global Marine Team Mary Gleason Marine Scientist, TNC, California Matt Merrifield GIS manager, TNC, California Michael Schindel Information Management Director, TNC, Oregon Jacques White Executive Director, Save the Kings, Washington PNW Marine Ecoregional Assessment – page ii Table of Contents Acknowledgements ................................................................................................................ ii Table of Contents .................................................................................................................. iii Executive Summary ................................................................................................................ 1 Chapter 1 - Introduction ....................................................................................................... 4 1.1 Background ............................................................................................................................... 4 1.2 Purpose ....................................................................................................................................... 5 1.3 Ecoregion Overview ................................................................................................................. 6 1.3.1 Geographic Setting ..................................................................................................................... 6 1.3.2 Ecoregional Sections .................................................................................................................. 8 1.3.3 Oceanography ............................................................................................................................. 9 1.3.4 Marine habitats .......................................................................................................................... 10 1.3.5 Socioeconomic setting ............................................................................................................. 11 1.4 Planning Process ..................................................................................................................... 13 Chapter 2 – Ecoregional Conservation Targets and Goals ............................................. 15 *may include species represented both by presence and abundance data. See Section 2.2 for more information .................................................................................................................... 17 2.1 Coarse Filter Targets ............................................................................................................... 17 2.1.1 Benthic habitats ......................................................................................................................... 17 2.1.2 Shoreline habitats ...................................................................................................................... 18 2.1.3 Estuarine habitats ..................................................................................................................... 18 2.1.4 Kelp communities ..................................................................................................................... 18 2.1.5 Nearshore rocky reefs .............................................................................................................. 19 2.1.6 Submarine canyon walls ........................................................................................................... 19 2.1.7 Upwelling ................................................................................................................................... 19 2.1.8 Chlorophyll-a (primary productivity) ..................................................................................... 20 2.2 Fine Filter Targets ................................................................................................................... 20 2.2.1 Seabirds and Shorebirds ........................................................................................................... 20 2.2.2 Marine Mammals ...................................................................................................................... 20 2.2.3 Groundfish ................................................................................................................................ 21 2.2.4 Snowy plover ............................................................................................................................. 21 2.2.5 Orca critical habitat .................................................................................................................. 21 PNW Marine Ecoregional Assessment – page iii 2.2.6 Steller sea lion critical habitat .................................................................................................. 22 2.2.7 Deepwater coral and sponges ................................................................................................. 22 2.2.8 Native Oyster ............................................................................................................................ 22 2.2.9 Islands ......................................................................................................................................... 22 2.3 Assemble and compile spatial data ....................................................................................... 22 2.4 Set Goals for Conservation Targets...................................................................................... 24 2.5 Targets not included in the analysis ...................................................................................... 24 2.5.1 Data gaps and Limitations ....................................................................................................... 25 Chapter 3 – Protected Areas ............................................................................................... 27 3.1 Existing Protected Areas ........................................................................................................ 27 3.2 Gap Analysis ............................................................................................................................ 29
Recommended publications
  • Select Terrestrial, Freshwater and Marine Conservation Targets/Biodiversity Elements/Features Across Multiple Biological and Spatial Scales
    Standard 7: Select terrestrial, freshwater and marine conservation targets/biodiversity elements/features across multiple biological and spatial scales. [plan] Rationale It is necessary to define a subset of targets that best represent the biodiversity of an ecoregion to focus the assessment. Conservation targets should cover the suite of biological scales (species to communities, ecological systems and other targets), taxa, and ecological characteristics to adequately inform comprehensive biodiversity conservation. Targets should include coarse and fine filter targets. This includes using rare and endangered, wide ranging, migratory and keystone species, rare communities, and all ecological systems and/or ecosystem types, as well as additional targets that are useful in capturing the variety of biodiversity characteristics, scales and ecological processes. Recommended Products ,,,List, and attributes of fine-filter targets such as distribution (local, widespread), conservation status (threatened and endangered), endemic, wide-ranging, rare communities and coarse-filter targets (ecological systems and ecosystems) as well as other types of targets as appropriate. See the Ecoregional Assessment Data Standards 1.0 for required fields. Maps of occurrences of targets throughout the ecoregion. Description of data gaps for specific target groups and geographic areas. GUIDANCE A systematic approach to conservation planning demands that we be explicit about what features of biodiversity we are trying to conserve (Groves 2003). With the goal of conserving the biodiversity of an ecoregion, we need to define a subset of features to work with that will adequately capture that representation and variety. We refer to these features as conservation targets (Redford et al. 2003). Conservation targets are the species, communities, ecological systems 1 and surrogates that we focus our assessments on in order to capture the broad range of biodiversity as best we can.
    [Show full text]
  • Classification of Wetlands and Deepwater Habitats of the United States
    Pfego-/6^7fV SDMS DocID 463450 ^7'7/ Biological Services Program \ ^ FWS/OBS-79/31 DECEMBER 1979 Superfund Records Center ClassificaHioFF^^^ V\Aetlands and Deepwater Habitats of the United States KPHODtKtD BY NATIONAL TECHNICAL INFOR/V^ATION SERVICE U.S. IKPARTMEN TOF COMMERCt SPRINGMflO, VA. 22161 Fish and Wildlife Service U.S. Department of the Interior (USDI) C # The Biological Services Program was established within the U.S. Fish . and Wildlife Service to supply scientific information and methodologies on key environmental issues which have an impact on fish and wildlife resources and their supporting ecosystems. The mission of the Program is as follows: 1. To strengthen the Fish and Wildlife Service in its role as a primary source of Information on natural fish and wildlife resources, par­ ticularly with respect to environmental impact assessment. 2. To gather, analyze, and present information that will aid decision­ makers in the identification and resolution of problems asso­ ciated with major land and water use changes. 3. To provide better ecological information and evaluation for Department of the Interior development programs, such as those relating to energy development. Information developed by the Biological Services Program is intended for use in the planning and decisionmaking process, to prevent or minimize the impact of development on fish and wildlife. Biological Services research activities and technical assistance services are based on an analysis of the issues, the decisionmakers involved and their information neeids, and an evaluation of the state^f-the-art to Identify information gaps and determine priorities. This Is a strategy to assure that the products produced and disseminated will be timely and useful.
    [Show full text]
  • Benthic Macrofaunal Structure and Secondary Production in Tropical Estuaries on the Eastern Marine Ecoregion of Brazil
    Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil Lorena B. Bissoli and Angelo F. Bernardino Grupo de Ecologia Bêntica, Department of Oceanography, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil ABSTRACT Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine
    [Show full text]
  • Overall Assessment of the State of the Coast in the Western Indian Ocean
    36 Overall Assessment of the State of the Coast in the Western Indian Ocean José Paula Opposite page: Will the marine resources these girls collect in the tidal flats near Ulo village, north Mozambique, be available in the future for food security or will they benefit from economic development and depend on modern amenities instead? © José Paula. INTRODUCTION Pacific biogeographic realm, but its southwest limit enters the Temperate Southern Africa biogeographic realm This chapter offers an overall view of the state of the coast (Spalding and others, 2007). The WIO region presents such in the western Indian Ocean (WIO), by integrating the four uniqueness of features that render it a structural and func- sectorial assessments and following the Drivers – Pressures tional unity within the world global ocean (Obura and oth- – State – Impact – Response (DPSIR) methodology. It ers, 2012). The main portion of WIO region is also referred analyses the current condition of ecosystems, resources, to as the Eastern African Marine Ecoregion (WWF 2001). services and human activities and their expected evolution Geomorphological and oceanographic features define (state and trends) in response to root causes that drive change the character of the WIO (see detailed description in Chap- (drivers), further highlighting the ways these factors act on ter 1). The bathymetric structure influences water flows the environment and human related dependencies (pres- (Parson and Evans 2005), modulating the ecosystems’ sures) and their expected outcome on the environment and large-scale mosaics and associated biodiversity (Obura and livelihoods (impacts). Human societies adapt by acting on others, 2012). The main oceanographic features are the the drivers and pressures (responses) to mitigate impacts, monsoonal regime in the northern WIO and the equatorial aiming to maintain state of the environment or reverse current that diverges close to the mainland and produces negative trends.
    [Show full text]
  • Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
    G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats.
    [Show full text]
  • Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area APPENDICES
    FMP for Groundfish of the BSAI Management Area Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area APPENDICES Appendix A History of the Fishery Management Plan ...................................................................... A-1 A.1 Amendments to the FMP ......................................................................................................... A-1 Appendix B Geographical Coordinates of Areas Described in the Fishery Management Plan ..... B-1 B.1 Management Area, Subareas, and Districts ............................................................................. B-1 B.2 Closed Areas ............................................................................................................................ B-2 B.3 PSC Limitation Zones ........................................................................................................... B-18 Appendix C Summary of the American Fisheries Act and Subtitle II ............................................. C-1 C.1 Summary of the American Fisheries Act (AFA) Management Measures ............................... C-1 C.2 Summary of Amendments to AFA in the Coast Guard Authorization Act of 2010 ................ C-2 C.3 American Fisheries Act: Subtitle II Bering Sea Pollock Fishery ............................................ C-4 Appendix D Life History Features and Habitat Requirements of Fishery Management Plan SpeciesD-1 D.1 Walleye pollock (Theragra calcogramma) ............................................................................
    [Show full text]
  • Climate Change Impacts
    CLIMATE CHANGE IMPACTS Josh Pederson / SIMoN NOAA Matt Wilson/Jay Clark, NOAA NMFS AFSC NMFS Southwest Fisheries Science Center GULF OF THE FARALLONES AND CORDELL BANK NATIONAL MARINE SANCTUARIES Report of a Joint Working Group of the Gulf of the Farallones and Cordell Bank National Marine Sanctuaries Advisory Councils Editors John Largier, Brian Cheng, and Kelley Higgason EXECUTIVE SUMMARY June 2010 Executive Summary On global and regional scales, the ocean is changing due to increasing atmospheric carbon dioxide (CO2) and associated global climate change. Regional physical changes include sea level rise, coastal erosion and flooding, and changes in precipitation and land runoff, ocean- atmosphere circulation, and ocean water properties. These changes in turn lead to biotic responses within ocean ecosystems, including changes in physiology, phenology, and population connectivity, as well as species range shifts. Regional habitats and ecosystems are thus affected by a combination of physical processes and biological responses. While climate change will also significantly impact human populations along the coast, this is discussed only briefly. Climate Change Impacts, developed by a joint working group of the Gulf of the Farallones (GFNMS) and Cordell Bank (CBNMS) National Marine Sanctuary Advisory Councils, identifies and synthesizes potential climate change impacts to habitats and biological communities along the north-central California coast. This report does not assess current conditions, or predict future changes. It presents scientific observations and expectations to identify potential issues related to changing climate – with an emphasis on the most likely ecological impacts and the impacts that would be most severe if they occur. Climate Change Impacts provides a foundation of information and scientific insight for each sanctuary to develop strategies for addressing climate change.
    [Show full text]
  • Ecosystem Modelling in the Eastern Mediterranean Sea: the Cumulative Impact of Alien Species, Fishing and Climate Change on the Israeli Marine Ecosystem
    Ecosystem modelling in the Eastern Mediterranean Sea: the cumulative impact of alien species, fishing and climate change on the Israeli marine ecosystem PhD Thesis 2019 Xavier Corrales Ribas Ecosystem modelling in the Eastern Mediterranean Sea: the cumulative impact of alien species, fishing and climate change on the Israeli marine ecosystem Modelización ecológica en el Mediterráneo oriental: el impacto acumulado de las especies invasoras, la pesca y el cambio climáti co en el ecosistema marino de Israel Memoria presentada por Xavier Corrales Ribas para optar al título de Doctor por la Universidad Politécnica de Cataluña (UPC) dentro del Programa de Doctorado de Ciencias del Mar Supervisores de tesis: Dr. Marta Coll Montón. Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, España Dr. Gideon Gal. Centro de Investigación Oceanográfica y Limnológica de Israel (IOLR), Migdal, Israel Tutor: Dr. Manuel Espino Infantes. Universidad Politécnica de Cataluña (UPC), Barcelona, España Enero 2019 This PhD thesis has been framed within the project DESSIM ( A Decision Support system for the management of Israel’s Mediterranean Exclusive Economic Zone ) through a grant from the Israel Oceanographic and Limnological Research Institute (IORL). The PhD has been carried out at the Kinneret Limnological Laboratory (IOLR) (Migdal, Israel) and the Institute of Marine Science (ICM-CSIC) (Barcelona, Spain). The project team included Gideon Gal (Kinneret Limnological Laboratory, IORL, Israel) who was the project coordinator and co-director of this thesis, Marta Coll (ICM- CSIC, Spain), who was co-director of this thesis, Sheila Heymans (Scottish Association for Marine Science, UK), Jeroen Steenbeek (Ecopath International Initiative research association, Spain), Eyal Ofir (Kinneret Limnological Laboratory, IORL, Israel) and Menachem Goren and Daphna DiSegni (Tel Aviv University, Israel).
    [Show full text]
  • 2020-2021 Statewide Commercial Groundfish Fishing Regulations
    Alaska Department of Fish and Game 2020–2021 Statewide Commercial Groundfish Fishing Regulations This booklet contains regulations regarding COMMERCIAL GROUNDFISH FISHERIES in the State of Alaska. This booklet covers the period May 2020 through March 2021 or until a new book is available following the Board of Fisheries meetings. Note to Readers: These statutes and administrative regulations were excerpted from the Alaska Statutes (AS), and the Alaska Administrative Code (AAC) based on the official regulations on file with the Lieutenant Governor. There may be errors or omissions that have not been identified and changes that occurred after this printing. This booklet is intended as an informational guide only. To be certain of the current laws, refer to the official statutes and the AAC. Changes to Regulations in this booklet: The regulations appearing in this booklet may be changed by subsequent board action, emergency regulation, or emergency order at any time. Supplementary changes to the regulations in this booklet will be available on the department′s website and at offices of the Department of Fish and Game. For information or questions regarding regulations, requirements to participate in commercial fishing activities, allowable activities, other regulatory clarifications, or questions on this publication please contact the Regulations Program Coordinator at (907) 465-6124 or email [email protected] The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.
    [Show full text]
  • Intertidal Sand and Mudflats & Subtidal Mobile
    INTERTIDAL SAND AND MUDFLATS & SUBTIDAL MOBILE SANDBANKS An overview of dynamic and sensitivity characteristics for conservation management of marine SACs M. Elliott. S.Nedwell, N.V.Jones, S.J.Read, N.D.Cutts & K.L.Hemingway Institute of Estuarine and Coastal Studies University of Hull August 1998 Prepared by Scottish Association for Marine Science (SAMS) for the UK Marine SACs Project, Task Manager, A.M.W. Wilson, SAMS Vol II Intertidal sand and mudflats & subtidal mobile sandbanks 1 Citation. M.Elliott, S.Nedwell, N.V.Jones, S.J.Read, N.D.Cutts, K.L.Hemingway. 1998. Intertidal Sand and Mudflats & Subtidal Mobile Sandbanks (volume II). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project). 151 Pages. Vol II Intertidal sand and mudflats & subtidal mobile sandbanks 2 CONTENTS PREFACE 7 EXECUTIVE SUMMARY 9 I. INTRODUCTION 17 A. STUDY AIMS 17 B. NATURE AND IMPORTANCE OF THE BIOTOPE COMPLEXES 17 C. STATUS WITHIN OTHER BIOTOPE CLASSIFICATIONS 25 D. KEY POINTS FROM CHAPTER I. 27 II. ENVIRONMENTAL REQUIREMENTS AND PHYSICAL ATTRIBUTES 29 A. SPATIAL EXTENT 29 B. HYDROPHYSICAL REGIME 29 C. VERTICAL ELEVATION 33 D. SUBSTRATUM 36 E. KEY POINTS FROM CHAPTER II 43 III. BIOLOGY AND ECOLOGICAL FUNCTIONING 45 A. CHARACTERISTIC AND ASSOCIATED SPECIES 45 B. ECOLOGICAL FUNCTIONING AND PREDATOR-PREY RELATIONSHIPS 53 C. BIOLOGICAL AND ENVIRONMENTAL INTERACTIONS 58 D. KEY POINTS FROM CHAPTER III 65 IV. SENSITIVITY TO NATURAL EVENTS 67 A. POTENTIAL AGENTS OF CHANGE 67 B. KEY POINTS FROM CHAPTER IV 74 V. SENSITIVITY TO ANTHROPOGENIC ACTIVITIES 75 A.
    [Show full text]
  • Marine Protected Areas Center a Collaboration Between National Oceanic and Atmospheric Administration and Department of the Interior
    National Marine Protected Areas Center A collaboration between National Oceanic and Atmospheric Administration and Department of the Interior Representativeness of Marine Protected Areas of the United States January 2015 marineprotectedareas.noaa.gov ABOUT THIS DOCUMENT This report is a product of the National Marine Protected Areas Center, part of NOAA’s Office of National Marine Sanctuaries. It was written by Dr. Robert Brock, with contributions from: Jordan Gass; Hugo Selbie; Thomas Urban; and Dr. Charles Wahle of the MPA Center. Lauren Wenzel (MPA Center) edited the document and Matt McIntosh (NOAA/ONMS) designed the cover. SUGGESTED CITATION: Brock, R. 2015. Representativeness of Marine Protected Areas of the United States. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Protected Areas Center, Silver Spring, MD. REPORT AVAILABILITY Electronic copies of this report and detailed analyses for each ecoregion may be downloaded from the National Marine Protected Areas Center web site at http://marineprotectedareas.noaa.gov/dataanalysis/mpainventory/ CONTACT: Dr. Robert J. Brock Marine Biologist National Marine Protected Areas Center 1305 East-West Highway (N/NMS) Silver Spring, MD 20910-3278 (301) 713-7285 [email protected] PHOTO CREDITS: Photos (left to right, top row): Greg McFall, NOAA; Tom Puchner, Flickr; Greg McFall, NOAA (middle row): USGS; Greg McFall, NOAA (bottom row): NOAA; NOAA Table of Contents Executive Summary ...................................................................................................................................................................
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]