Movement of Transposable Elements Contributes to Cichlid Diversity
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.26.961987; this version posted February 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Draft manuscript BIORXIV/2020/961987 Movement of transposable elements contributes to cichlid diversity Karen L. Carleton1, Matt Conte1, Milan Malinsky2,3, Sri Pratima Nandamuri1*, Ben Sandkam1&, Joana I Meier4,5,6,%, Salome Mwaiko4,5, Ole Seehausen4,5, Thomas D Kocher1 1Department of Biology, University of Maryland, College Park MD 20742 USA 2 Wellcome Sanger Institute, Cambridge, UK. 3Zoological Institute, University of Basel, Basel, Switzerland 4Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland 5Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland 6Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland *Current address: John A Moran Center, University of Utah, Salt Lake City UT USA &Current address: Department of Zoology, University of British Columbia, Vancouver, BC, Canada %Current address: Department of Biology, University of Cambridge, Cambridge UK bioRxiv preprint doi: https://doi.org/10.1101/2020.02.26.961987; this version posted February 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
[Show full text]