<<

Palaeontographica, Abt. A: Palaeozoology – Stratigraphy Article Vol. 302, Issues 1–6: 1–71 Stuttgart, May 2014

The rlea y Middle Miocene mollusc fauna of Lake Rein (Eastern Alps, )

by Mathias Harzhauser, Thomas A. Neubauer, Martin Gross & Herbert Binder

with 12 plates, 1 text-figure and 1 table

Abstract We present the first thorough revision of the continental mollusc fauna from the early Middle Miocene wetlands of the Rein Basin (Styria, Austria). Lake Rein was a shallow ephemeral lake with carbonate sedimentation. Its mollusc assemblage comprises 13 and is dominated by planorbid gastropods in species and individual numbers, accompanied by lymnaeids and rare hydrobiids. The terrestrial assemblage consists of 35 species with , and as most abundant taxa along with carychiids. The terrestrial gastropods suggest moist woodland and only limited areas of open habitats; the freshwater species point to stagnant and shallow water bodies with dense vegetation and only very limited fluvial input. Many taxa are illustrated for the first time and historical mis-identifications are corrected. About one third of the species is known so far from the Rein Basin only, but the majority of the species is also known from other Middle Miocene lakes and wetlands of Central Europe. The strongest faunistic relations are indicated with the Badenian wetlands of the Paratethys Sea and the so-called Silvana-beds of Southern . Hauffenia mandici Neubauer & Harzhauser n. sp., Radix enzenbachensis Neubauer & Harzhauser n. sp., krohi Neubauer & Harzhauser n. sp., pantherae Harzhauser & Neubauer n. sp., styriacus Harzhauser, Neubauer & Binder n. sp., “” schneideri Harzhauser & Neubauer n. sp. and Musculium miocaenicum Neubauer & Harzhauser n. sp. are introduced as new species. (Miophaedusa) reinensis Harzhauser & Neubauer n. nom. is introduced as replacement name for gobanzi Penecke, 1891 non Pfeiffer, 1868.

Key words: Freshwater, Te rrestrial, , Bivalvia, Miocene, Alpine lakes.

Zusammenfassung Wir präsentieren die erste Revision der kontinentalen Molluskenfauna der frühen mittelmiozänen Feuchtgebiete des Reiner Beckens (Steiermark, Österreich). Der Reiner See war ein seichter ephemerer See mit Karbonatsedimentation. Seine Mollusken- Vergesellschaftung umfasst 13 Arten und war in Arten- und Individuenzahlen durch planorbide Gastropoden dominiert, gefolgt von Lymnaeidae und seltenen . Die terrestrische Fauna besteht aus 35 Arten unter denen Discidae, Elonidae und Helicidae neben selteneren Carychien vorherrschen. Die Landschnecken deuten auf feuchte Wälder und nur wenige offene Habitate. Die Süßwasserarten zeigen stehende Gewässer mit dichter Vegetation und nur äußerst geringen fluviatilen Eintrag an. Viele der Arten werden erstmals abgebildet und historische Falschbestimmungen berichtigt. Rund ein Drittel der Ta xa ist bisher nur aus dem Reiner Becken bekannt, während die Mehrheit der Arten auch aus anderen mittelmiozänen Seen und Feuchtgebieten Zentraleuropas nachgewiesen sind. Die stärksten faunistischen Beziehungen bestehen zu den Wetlands der Paratethys im Badenium und zu den sogenannten Silvana-Schichten Süddeutschlands.

Addresses of the authors: Mathias Harzhauser, Thomas A. Neubauer (corresponding author)& Herbert Binder, Natural History Museum Vienna, Geological- Palaeontological Department, Burgring 7, 1010 Vienna, Austria; e-mail: [email protected]; phone: +43-1-52177- 576, fax: +43-1-52177-459 Martin Gross, Universalmuseum Joanneum Geologie & Paläontologie, Weinzöttlstraße 16, 8045 Graz, Austria.

© 2014 E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de 0375-0442/14/0302-0041 $32.40 2 Mathias Harzhauser et al.

Hauffenia mandici Neubauer & Harzhauser n. sp., Radix enzenbachensis Neubauer & Harzhausern. sp., Gyraulus krohi Neubauer & Harzhauser n. sp., Truncatellina pantherae Harzhauser & Neubauer n. sp., Euconulus styriacus Harzhauser, Neubauer & Binder n. sp., “Discus” schneideri Harzhauser & Neubauer n. sp. und Musculium miocaenicum Neubauer & Harzhauser n. sp. werden als neue Arten beschrieben. Cochlodina (Miophaedusa) reinensis Harzhauser & Neubauer n. nom. wird als neuer Name für Clausilia gobanzi Penecke, 1891 non Pfeiffer, 1868 eingeführt.

Schlüsselwörter: Süßwasser, Te rrestrisch, Gastropoda, Bivalvia, Miozän, Alpine Seen.

Contents Abstract ...... 1 4. Plaeoecology ...... 5 Zusammenfassung ...... 1 5. Systematic Palaeontology ...... 6 1. Introduction ...... 2 Acknowledgements ...... 38 2. Geological Setting ...... 3 References ...... 38 3. Composition and Biogeography ...... 5 Explanation of plates ...... 48

1. Introduction The knowledge on Miocene continental mollusc fau- inventory was repeatedly and uncritically listed and nas of the circum-Mediterranean area is still poor discussed in later papers concerned with regional geo- compared to the much better described marine assem- logy (Hilber 1893, Benesch 1913, Flügel 1975, blages. Moreover, data on Miocene freshwater mol- Ebner & Gräf 1979, Hiden & Rottenmanner luscs are biased towards lake systems with spectacular 2007). Single taxa were revised or renamed by Frau- endemic radiations such as the Dinaride Lake System, enfeld (1864), Andreae (1892) and Schlosser Lake Pannon, Lake Steinheim and several others (see (1907). Wenz (1923, 1926) was the first to list all the Harzhauser & Mandic 2008 for a review). Lakes described taxa critically in his Fossilium Catalogus. with a “normal” fauna, being comparable to modern More recently, Nordsieck (1981), Binder (2002) Central European lake assemblages in generic compo- and Schnabel (2006) discussed selected taxa of the sition and species numbers, have been somewhat ne- Rein Basin assemblage. Despite this considerable glected so far. One of these lakes formed during the number of systematic papers, in which several new early Middle Miocene (Early Langhian, Badenian) in species were established, only for a single taxon a type the Rein Basin along the south-eastern margin of the specimen was designated and deposited in a public Eastern Alps at the junction to the Styrian Basin. At collection (Triptychia kleini reinensis Schnabel that time, this less than 4km long and c. 2km broad 2006). All other types are lost or were in fact never basin was covered by wetlands and a shallow ephem- designated as such. Moreover, no illustrations have eral lake that is termed Lake Rein herein. been available so far for many other species and several Notes on the fossil content of the Rein Beds date erroneous identifications by Gobanz (1854) and back to the middle of the 19th century. Whereas plant Penecke (1891) were uncritically adopted by later remains (Unger 1843, 1850, 1852, 1858, Kubart authors. A problematic issue was the comparison of 1924), ostracods (Gobanz1854, Flügel 1975) and Middle Miocene Lake Rein taxa with those from the vertebrates (Hilber 1915, Mottl 1958, 1970, Early Miocene Lakes of Tuchořice in Hiden & Rottenmanner 2007) are rarely men- and the Mainz Basin by Gobanz (1854) and Stand- tioned, the rich gastropod fauna attracted special at- fest (1882), whilst coeval faunas were not particular- tention (e.g., Peters 1853, Gobanz 1854, Stand- ly well known to Gobanz (1854) at that time. This fest 1882, Penecke 1891, Benesch 1913, Hiden resulted in a vague biogeographic and biostratigraphic & Rottenmanner 2007). The first serious descrip- position of the Lake Rein fauna. The lack of illustrati- tion of the mollusc fauna of the Rein Basin dates back ons supported the perpetuation of erroneous identi- to Gobanz (1854). Standfest (1882) extended fications. Herein, we illustrate all available taxa and try this list based on new outcrops and Penecke (1891) to clarify the faunistic relation with other Miocene performed a first revision of the fauna. The taxonomic lake faunas. The rlea y Middle Miocene mollusc fauna of Lake Rein 3

2. Geological Setting interfinger with freshwater carbonates, silicified lime- stones, limestone breccias, as well as with reddish car- (byMartin Gross) bonate breccias and red residual soils (Hauser 1951, Winkler-Hermaden 1957, Ebner & Gräf 1979, The Rein Basin (Styria, SE Austria; Te xt-Fig.1A–C) Postlet al. 2008). Breccias and residual soils are sub- belongs to a series of small intramontane basins and/ sumed as Eggenberg Formation (Hoernes 1880, or embayments along the northern margin of the Clar 1935, Flügel 1997, Flügel et al. 2011). The Styrian Basin (Kollmann 1965, Kröll et Eckwirt Member encompasses pelitic sands and grav- al. 1987, Ebner & Sachsenhofer 1991, Gross et els, which characteristically carry heavily altered crys- al. 2007; Te xt-Fig.1C). Palaeozoic rocks of talline pebbles (Flügel 1959). Bentonitic intercala- to age (“Graz Palaeozoic”) encircle the tions were found in different stratigraphic levels with- more than 180 m deep basin (Petraschek 1924). in the Rein Beds (Ebner & Gräf 1979, Ebner 1981, Considerable parts of the Neogene filling are covered Ebner & Gräf 1982). by Quaternary deposits (e.g., terraces, soil While the Rein Beds are interpreted as limnic de- developments, alluvium; Ebner & Gräf 1979; Te xt- velopment, the Eckwirt Mb. is supposed to be of flu- Fig. 1D). vial origin and the Eggenberg Fm. as a terrestrial talus Neogene sediments comprise a lower, mainly deposit (Flügel 1975, Ebner & Gräf 1979). Dur- pelitic unit – the Rein Beds (Ebner & Gräf 1979) ing formation of the Rein Beds the basin was probably – and an upper, gravely unit – the Eckwirt Member completely enclosed by the Palaeozoic basement.A (Stallhofen Formation; Flügel 1959, 1975, Ebner Palaeozoic swell, today totally covered by Neogene & Gräf 1979, Ebner & Stingl 1998). The welo r- sediments, is suspected S of the Anna Pond (Text- most part of the Rein Beds contains up to metre thick Fig. 1D). Later, the basement swells became inactive brown coal seams, which were mined from 1844 to and caused pronounced clastic sediment input (Eck- 1923 (Petraschek 1924, Weber & Weiss 1983). wirt Mb.) from the W (Ebner & Gräf 1979). The The upper part of the Rein Beds lacks lignites and Rein Beds at the hospital Enzenbach are in a higher consists of pelites and marls with sandy to gravely in- stratigraphical position (about 80 m) than the south- tercalations. To wards the basin margins these layers ern proportions. Ebner & Gräf (1979) refer this to

Te xt-Fig.1. A. Geography of Austria. B. Province of Styria. C. Distribution of freshwater deposits in marginal Styrian Basin and nearby intramontane basins (modified eraft Flügel & Neubauer 1984, Sachsenhofer et al. 2003, Harzhauseret al. 2012). D. Geology of the Rein Basin with indication of localities mentioned in the text (main coal-mining area at the Tallak hill shaded; modi- fied eraft Ebner & Gräf 1979, Ebner 1983, Weber & Weiss 1983). 4 Mathias Harzhauser et al.

Table 1. List of the taxa described from the Rein and Graz basins and comparison with other Miocene localities and areas and their supposed ecological requirements (see chapters 3 and 4 for references). any) s habitats rm any) ow ky rm any) nnon area) rm ořice any) ter Pa any) ch nsburg (Ge wa rm rm oundwater fen ge Tu d gr ter Re odland nning wa lian - t ru wo ga atian (Paratethys area) rs rp in Basin (Austria) nnonian (Lake ve dry meadows and/or roc M ö rsingen (Ge Zwiefaltendorf (Ge Steinheim (Ge Sansan () Burdi springs and slowly stagnan shoreline an moist open shrubland and mead Re Graz Basin (Austria) Undorf at Hohenmemmingen (Ge Ottnangian (Paratethys area) Ka Badenian (Paratetys area) Sarmatian (Paratethys area) Pa ri n. sp.11 Hauffenia mandici Neubauer & HarzHauser n. sp.1 1 Bania gobanzi (FraueNFeld 1864) 11 11 Radix enzenbachensis Neubauer & HarzHauser n. sp.1 11 Stagnicola armaniacensis (Noulet 1857) 11 11111 1 Gyraulus kleini (GottscHick & WeNz 1916)1111111 11 11 Gyraulus krohi Neubauer & HarzHauser n. sp.1 11 Gyraulus sp.1 11 Planorbarius mantelli (duNker 1848) 1111111 111 111 Segmentina lartetii (Noulet 1854) 11111111 11 1 Ferrissia deperdita (desmarest 1814) 11111 111 Ferrissia wittmanni (scHlickum 1964) 11111 Musculiummiocaenicum Neubauer & HarzHauser n. sp.1 111 consobrinum (saNdberGer 1875) 1111111 Carychium eumicrum bourGuiGNat, 185711111 Carychium cf. eumicrum bourGuiGNat, 18571 1 Carychium gibbum saNdberGer, 187511111 1111 peneckei aNdreae, 1892 11 planus (clessiN 1885) 11111 lepida (reuss 1852) 11111111 11 1 Granaria cf. subfusiformis (saNdberGer 1875) 1111 1 angulifera boettGer, 1884 111 11 11 Vertigo callosa (reuss 1852) 111111 111 1 acuminata (kleiN 1846) 1111 111 11 Gastrocopta suevica (boettGer 1889) 11 11 11 Truncatellina pantherae HarzHauser & Neubauer n. sp.1 1 Triptychia reinensis scHNabel, 2006 1? Triptychia peneckei scHlosser, 1907 11 ? Cochlodina (Miophaedusa) reinensis HarzHauser & Neubauer n. nom. 1 Pseudidyla standfesti (PeNecke 1891) 1 minima (kleiN 1853) 1111111 1 aciculella (saNdberGer 1875) 1111 111 11 minutum (kleiN 1853) 111111 11 Palaeoglandina porrecta (GobaNz 1854) 11 11 Discus pleuradrus (bourGuiGNat 1881) 11 111 11 1 Euconulus styriacus HarzHauser, Neubauer & biNder n. sp.1 1 Oxychilus procellarius (Jooss 1918) 1111 111 Aegopinella cf. subnitens (kleiN 1853) 111111 11 Miozonites costatus (saNdberGer 1875) 1111 11 Klikia giengensis (kleiN 1846) 111111 11 1 coarctata (kleiN 1853) 11 111 11 Leucochroopsis kleini (kleiN 1846) 111111 11 1 Leucochroopsis sp.1 1 “Discus” HarzHauser & Neubauer n. sp.1 1 Megalotachea reinensis (GobaNz 1854) 11 11 Megalotachea turonensis (desHayes 1831) 1111 1 Pseudochloritis incrassata (kleiN 1853) 11111 11 Deroceras sp.1????????????? 11 total 48 15 17 16 21 18 18 745516 12 721911 6197 6 The rlea y Middle Miocene mollusc fauna of Lake Rein 5

a local recurrence of limnic conditions. Te ctonical dis- deposits of as described by Gál et al. (2000) placement, however, is an alternative explanation. and Kókay (2006). The slightly younger assemblages An early Middle Miocene (Early Badenian) age is of the late Middle Miocene Silvana-beds (e.g. Hohen- based on the correlation of bentonite layers with tuf- memmingen, Zwiefaltendorf, Mörsingen) and Lake fitic intercalations in biostratigraphically (Kopetzky Steinheim in southern Germany have been summa- 1957) and radiometrically dated deposits (15.75 ± rized in detail by Wenz (1923), Schlickum (1976) 0.17 Ma; Handler et al. 2006) of the adjacent West- and Finger (1998). These assemblages have ~31– ern Styrian Basin (Flügel 1961, 1975, Kollmann 38 % of the taxa in common with Lake Rein. The rela- 1965, Ebner & Gräf 1979). Absolute age calcula- tion with the Middle Miocene faunas of Sansan in tions derived from pyroclastic intercalations within France (Fischer 2000) is much lower (~ 15 %), sug- the Stallhofen Formation, 12 km SW of Rein, fit well gesting a biogeographic separation. Comparable val- with this assessment (16.0 ± 0.7 Ma, Ebner et al. ues are documented for the terrestrial assemblages, 1998, 2002). which have ~37–45 % of species in common with Initially, the fossils were collected at the dumps of those the Silvana-beds and Lake Steinheim and only the coal mines on the northern and southern slopes of ~14%with those from Sansan. the Tallak hill (Text-Fig.1D; specimens of Gobanz Most species are restricted to the Middle Mio- 1854 and Penecke 1891 and most probably of cene. Nevertheless, ~31% lacustrine species have Standfest 1882). The molluscs originated from their roots in the Early Miocene but only 17 % of the freshwater limestones and marls in the hanging wall of terrestrial ones. In contrast, only ~8% of the freshwa- coal-bearing pelites. Later, fossil material was gathered ter dwelling taxa are also known from Late Miocene due to the construction of the hospital Enzenbach assemblages, whilst around 17 % of the terrestrial spe- (“Hörgas II” in Benesch 1913). To day, fossil bearing cies persist into the Late Miocene. This might suggest layers are accessible only by temporary building pits that the turnover at the Middle/Late Miocene bound- (Hiden & Rottenmanner 2007). ary affected the lacustrine assemblages more intensive- ly than the terrestrial ones. 3. Composition and Biogeography Thus, the Lake Rein faunas comprise two thirds of species, which are also known from other Middle The total mollusc assemblage of the Rein Basin and Miocene faunas of Central Europe. The composition the adjacent Graz Basin consists of 48 taxa comprising of the aquatic assemblage, which is dominated in spe- 47 gastropod and 1 bivalve species. Only 13 of these cies and individual numbers by planorbids, differs species are aquatic, whilst the terrestrial fauna is repre- completely from the hydrobiid-dominated one of the sented by 35 species. About one third of the species is coeval Lake Groisenbach, which is situated only only known from the Rein and Graz basins so far (16 45 km northwards (Harzhauser et al. 2012). Simi- species). Interestingly, the percentageof species known larly, the coeval Dinaride Lake System, with numerous only from Lake Rein and its wetlands attains about melanopsids, has nothing in common with Lake Rein ~53%for the lake fauna (7 species) but only ~25% (Neubauer et al. 2011, 2013a, b). Obviously, the (9 species) for the terrestrial taxa. This pattern may be species of these deep and long-lived lakes were not explained by two different scenarios: either the Mid- able to settle the comparatively small, shallow and dle Miocene faunas are already bet- ephemeral Middle Miocene lakes of Central Europe ter documented than the aquatic ones, or the ende- such as Lake Rein. micity and provinciality is higher in lake faunas than in terrestrial faunas. In fact, this is the first modern, SEM-based analysis of the largely small sized lacus- 4. Palaeoecology trine species, which explains the higher numbers of No detailed palaeoecologic reconstruction for Lake newly described and potentially endemic lacustrine Rein can be given due to the very limited information species. on lithofacies distribution and the poor knowledge of The lacustrine assemblage of Lake Rein has strong the exact position of the various samples and collec- affinities with those from the coeval wetlands fringing tions. The existing sedimentary data suggest a wetland the Badenian Paratethys Sea (Table 1). About 46 % of with ephemeral ponds that covered the Rein Basin the species from Lake Rein are known from Badenian and the adjacent Graz Basin. Based on the assumed 6 Mathias Harzhauser et al.

preferred ecological requirements outlined by Ložek lives on twigs and leaves of submersed plants in calm (1964), Kerney et al. (1983), Lueger (1981), Fech- to standing water bodies (Fechter & Falkner ter & Falkner (1990) and the AnimalBase Proj- 1990, Glöer 2002). Segmentina nitida (Müller ect Group (2005–2010), moist woodland habitats 1774) inhabits large standing water bodies rich in are indicated by most of the terrestrial taxa. The very plants and humic matter or permanent small water frequent Discus pleuradrus and Azeca peneckei point to bodies (Fechter & Falkner 1990, Glöer 2002). forests and humid shady places, which are favoured Stagnicola palustris (Müller 1774) and S. corvus habitats of the extant (Müller (Müller 1774) are both found in densely vegetated, 1774) and (Férussac 1821). Wood- stagnant waters of all kinds. Stagnicola turricula land habitats are also suggested for representatives of (Held 1836) is adapted to temporal waters of flood- Klikia, Gastrocopta, Aegopinella, Euconulus, Pseudo- plains (Fechter & Falkner 1990). chloritis and Miozonites (Taylor 1960, Lueger In contrast, the hydrobiids Hauffenia mandici 1981, Kerney et al. 1983, Fechter & Falkner and Bania gobanzi and the lymnaeid Radix enzen- 1990, Binder 2002, 2004). Opeaspumilum (Pfei- bachensis are represented by very few individuals each. ffer 1840), as a modern relative of Opeas minutum, Theodoxus sp. and the bivalve Musculium sp. are each lives in tropical forests at high humidity and tempera- recorded with one specimen only. Extant Hauffenia ture. Permanently wet habitats of the Rein Basin and species live in subterranean, running or interstitial wa- lake shore settings were settled by carychiids and Oxy- ter bodies and cave and karst springs (Glöer 2002, loma minima (Kerney et al. 1983, Fechter & Erőss & Petró 2008). Bania is a fossil , whose Falkner 1990). ecology is not known. It is recorded from several Mio- Megalotachea turonensis was interpreted by Bind- cene Dinaride lakes, e.g. Lake Gacko (Bosnia and Her- er (2002) to be characteristic for open and dry habi- zegovina; Neubauer et al. 2013b), where it always tats. The of the keeled “Discus” schneideri is coexists with Gyraulus. Thus, it is interpreted to have reminiscent of adaptations to dry habitats as discussed similar ecological requirements. The taex nt European by Binder (2002, 2008). Granaria is another ele- Radix species all inhabit rather calm water bodies ment of dry and open habitats preferring carbonate with rich vegetation, including lakes, old river arms, rocks. Similarly, the recent Truncatellina species indi- silent stream bays and calm zones of rivers (Fechter cate dry meadows and carbonatic soils. Nevertheless, & Falkner 1990, Glöer 2002). Musculium lacustre these supposed representatives of open shrub land (Müller 1774) is a very undemanding species, oc- habitats are rare in species numbers and individuals curring in a great variety of stagnant to running water and might have been transported from the very close bodies (Zettler & Glöer 2002). Although smaller Alpine foothills. water bodies are preferred, it also appears in low abun- The mosteq fr uent freshwater species in the as- dance in larger lakes. semblage comprise the planorbids Gyraulus kleini, G. Concluding, the freshwater molluscs of Lake krohi, Planorbarius mantelli and Ferrissia deperdita, Rein, with the very high number of pulmonate gastro- and the less abundant Segmentina lartetii and Stagni- pods, suggest a shallow and stagnant water body with cola armaniacensis. Most Gyraulus species live in stag- densely vegetated watersides. The arsc ceness of fluvial nant or slowly running, often highly vegetated waters, taxa, such as Theodoxus sp., indicates a verylimited riv- feeding on detritus and/or algae (Glöer 2002). Gy- erine influx. raulus albus (Müller 1774) dwells in standing and slowly running waters, at margins of lakes (Fechter & Falkner 1990), in shallow depths on mud and wa- 5. Systematic Palaeontology ter plants. Gyraulus crista (Linnaeus 1758) occurs in (byMathias Harzhauser, Thomas A. Neubauer plant-rich standing water bodies, G. laevis (Alder & Herbert Binder) 1838) in clean, light-flooded, standing water bodies with moderate vegetation (Fechter & Falkner Abbreviations: NHMW = Natural History Museum 1990). Extant Planorbarius corneus (Linnaeus 1758) Vienna, Austria; UMJ = Universal Museum Joanne- prefers vegetated, stagnant to slowly running waters, um Graz, Austria; IPUW = Institute of Palaeontolo- feeding on detritus (Fechter & Falkner 1990, gy, University of Vienna, Austria; GBA = Geological Glöer 2002). Ferrissia wautieri (Mirolli 1960) Survey Vienna, Austria. The rlea y Middle Miocene mollusc fauna of Lake Rein 7

Class GastropodaCuvier, 1795 but have crenulated columellar pads (Neubauer et al. 2011, cf. Subclass OrthogastropodaPonder & Brusina 1897). Lindberg, 1995 No neritids were described so far from Lake Rein. Although huge amounts of sediment were screened Superorder Neritaemorphi Koken, 1896 for molluscs only a single specimen was detected. Order Neritopsina Cox & Knight, 1960 Therefore, it might rather represent a very rare fluvial Superfamily Rafinesque, 1815 element in the otherwise largely lacustrine assemblage. Family Rafinesque, 1815 Distribution: Only known from Enzenbach in the Rein Basin. Genus Theodoxus Montfort, 1810 Type species: Theodoxus lutetianus Montfort, 1810 (= Nerita Subclass Cox, 1960 fluviatilis Linnaeus, 1758). Recent, Europe. Order Golikov & Theodoxus sp. Starobogatov, 1975 Superfamily Children, 1834 (Plate 1, figs. 1–2) Material: 1 specimen from Enzenbach, NHMW Family Newton, 1891 2012/0154/0001. Subfamily Pomatiinae Newton, 1891 Dimensions: Height x width: 4.2 x 4.7 mm. Genus Pomatias Studer, 1789 Description: Moderately sized, globular shell with Type species: Nerita elegans Müller, 1774. Recent, Europe. rapidly expanding whorls. The spire is very low with Pomatias consobrinum (Sandberger, 1875) strongly convex whorls. The last is strongly con- vex aside from a less convex subsutural band. Shell sur- (Plate 1, figs. 3–4) face smooth; colour pattern consisting of broad, dark 1875 Cyclostomus consobrinus C. Mayer – Sandberger, brown, prosocyrt bands on the first spire whorl pass- p. 606, pl. 29, fig.33a (non 33b–c = ing into broad, low-frequency and high-amplitude, bisulcatum von Zieten 1832). zigzag bands on the last whorl. Aperture wide with 1891 Cyclostoma (Cyclostoma) bisulcatum v. Ziet.– Penecke, p. 353 (non Cyclostoma bisculactum von convex and thin outer lip; the columellar plate is flat, Zieten 1832). well demarcated from the base, lacking any sculpture. 1893 Cyclostoma (Cyclostoma) bisulcatum Zieten – Its edge is nearly smooth aside from a very weak den- Hilber, p. 307 (non Cyclostoma bisculactum von ticle in the adapical quarter and a second, very indis- Zieten 1832). tinct denticle at its adapical end. Between these struc- 1911 Cyclostoma bisulcatum Ziet. – Gaál,p. 45, pl. 2, tures, the columellar edge is slightly concave. fig.1(nonCyclostoma bisulcatum von Zieten 1832). 1919 Erica gaali n. nom. – Wenz, p. 72. Remarks: The species from Enzenbach could be easily mistaken 1923 Pomatias consobrinum (Sandberger)– Wenz, p. for the extant European Theodoxus danubialis (Pfeiffer 1828), 1805 (cum syn.). which agrees in shape and color pattern. The only clear difference 1923 Pomatias gaali (Wenz) –Wenz, p. 1807 (cum is the smooth edge of the columellar plate of the recent species. A syn.). second counterpart is Theodoxus semiplicatus (Neumayr 1875) 1953 Pomatias consobrinum (Sandberger)– Papp, p. from the Pliocene Lake Transylvania in the Romanian Braov Ba- 225. sin (Harzhauser & Mandic 2008). Jekelius (1932) illus- 1953 P. gaali (Wenz) – Papp, p. 225. trates numerous shells of this characteristic species, which devel- 1976 Pomatias consobrinum (Sandberger)– ops exactly the same pattern as the herein described species. Dif- Schlickum, p. 2, pl. 1, fig.1. ferences are the sunken spire and the weak but present crenula- 2006 Pomatias consorbinum [sic] (Sandberger)– tions of the columellar plate, which is also slightly broader com- Kókay, p. 33, pl. 4, fig.3. pared to that of the Rein Basin. The widespread Theodoxus crenu- latus (Klein 1853), which occurs in the close by coeval deposits Material: 14 shells from Rein in the UMJ collec- of Lake Groisenbach and in several other Middle Miocene intra- tion (Inv. 1891/VII/4). montane basins of the early Alps (Harzhauser et al. 2012), Dimensions: Largest specimen (height x width): 15.1 x 12.4 mm. differs also in its crenulated columellar plate, the broader shell and the speckled colour pattern. Theodoxus sinjanus Remarks: The only available specimens of this genus (Brusina 1876), from the early Middle Miocene Lake Sinj in from the Rein Basin are stored in the UMJ collections. , and Theodoxus sagittiferus (Brusina 1874), from the Of these, 14 well preserved shells are labeled as Poma- Pliocene of Lake Slavonia, develop a comparable colour pattern tias bisulcatum as proposed by Penecke (1891). This 8 Mathias Harzhauser et al.

identification was based on a letter by O. Boettger, Superfamily Rissooidea Gray, 1847 who considered the shells from Rein, sent to him by Family Hydrobiidae Stimpson, 1865 Penecke before 1890, as conspecific with “Cyclosto- Subfamily Hydrobiinae Stimpson, 1865 ma bisulcatum v. Zieten” (Penecke 1891: p. 353). Genus Hauffenia Pollonera, 1898 A second lot of internal casts from Rein in the UMJ Type species: Horatia tellinii Pollonera, 1898. collection (Inv. 75.952) are labeled as Pomatias gaali Recent, Europe; by subsequent designation (Walker (Wenz 1919). This identification goes back to Gaál 1918). (1911). He writes that his specimens from the Sarma- tian of Hungary have been compared by O. Boett- Hauffenia mandici Neubauer & Harzhauser n. sp. ger with shells from Rein and reports that Boett- (Plate 1, figs. 9–13) ger had stated that both occurrences are conspecific. Etymology: In honour of our colleague Oleg Mandic (Geologi- Accordingly,Gaál (1911) identified the shells with cal-Palaeontological Department, Natural History Museum Vi- enna). some doubt as Cyclostoma bisulcatum. Based on the Holotype: NHMW 2012/0154/0002; height: 0.8 mm, width: differences discussed by Gaál (1911), Wenz (1919) 1.0 mm (Plate 1, fig.9). introduced Erica gaali as new name for the Hungarian Paratype 1: NHMW 2012/0154/0003; height: 0.9 mm, width: species without referring to the shells from Rein. All 1.2 mm (Plate 1, fig.10). Paratype 2: NHMW 2012/0154/0004; height: 0.8 mm, width: these authors have discussed only the separation of the 1.2 mm (Plate 1, figs. 11, 13). Hungarian and/or Austrian shells from the Early Type locality: Enzenbach, Rein Basin, Styria, Austria. Miocene Pomatias bisulcatum but did not consider its Type stratum: Lower Badenian lacustrine marls of the Rein relation to the Middle Miocene Pomatias consobri- beds. Material: 8 specimens from Enzenbach, NHMW num. Wenz (1923) was the first to list the reference 2012/0154/0002–0004, NHMW 2012/0119/0001. of Penecke (1891) as P. consobrinum and neglected Dimensions: Largest specimens (height x width): 1.3 the somewhat hidden information that the specimens x 1.7 mm. are identical with P. gaali. Later, Papp (1953) was Diagnosis: Valvatiform shell with rapidly expanding aware of all these papers but erroneously concluded last whorl; protoconch surface initially reticulate, fad- that two Pomatias species occur in the Rein Basin: Po- ing out towards irregularly striate pattern on last quar- matias gaali and P. consobrinum. Later, Flügel (1975) ter; aperture wide ovoid, sharply edged, touching pre- repeated this listing.A comparison of the shells from ceding whorl anteriorly. Rein with shells of P. consobrinum from Mörsingen in Description: Shell valvatiform, low trochiform, com- southern Germany (NHM collection) proofed that prising c. 2.5 whorls. Protoconch consists of 1.0 low they are fully conspecific. Obviously, Gaál (1911) trochiform whorl measuring 325 µm in diameter; sur- was not aware of Pomatias consobrinum; consequently, face densely covered with fine-meshed reticulum that Erica gaali Wenz is a and all available speci- passes into irregular striae on the last quarter; transi- mens of the Rein Basin belong to a single species. tion to teleoconch indicated by an indistinct growth rim and onset of prosocline growth lines. Spire gradate Distribution: This species is widespread in the middle with maximum convexity in the adapical half of the Miocene Silvana-beds from Switzerland to southern whorl. Sutures deeply incised. Last whorl loosely coiled, rapidly expanding, attaining c. 2.5 times the Germany and occurs at classical localities such as width of the penultimate whorl and about 75 % of to- Mörsingen and Zwiefaltendorf (Wenz 1923, tal shell height. Aperture broad ovoid, almost circular, Schlickum 1976). In the coeval Paratethys area, it is touching base of preceding whorl only anteriorly (no documented from the Badenian of Pirka in the Styri- notch developed), resulting in a wide umbilicus. Peri- an Basin (Papp 1953) and Herend in Hungary stome sharply terminated, not everted. (Kókay 2006). In Sarmatian strata it appears in Hol- Remarks: The combination of valvatiform shell and labrunn in Austria (Schütt 1967) and Rákosd, Déva reticulate protoconch is found in a several hydrobiid and Herend in Hungary (Gaál 1911, Kókay 2006). taxa. As separation of all these is based on soft-part In the Rein Basin, it is only known from Rein. anatomy and molecular data, our generic classification The rlea y Middle Miocene mollusc fauna of Lake Rein 9

remains tentative. Nevertheless, the typical striation in Subfamily unknown the final quarter of the protoconch is typically found Bania Brusina, 1896 in Hauffenia species (see e.g. Bodon et al. 2001, Type species: Bania prototypica Brusina, 1872. Middle Mio- Szarwoska 2006, Eröss & Petró 2008, Šteffek cene, Dalmatia/SE Croatia; by monotypy (ICZN 2001). et al. 2011). Macro-morphologically similar species are found among the genera Daphniola Radoman, Bania gobanzi (Frauenfeld 1864) n. comb. 1973 and Islamia Radoman, 1973. Daphniola is an (Plate 1, figs. 5–8, 14) extant genus endemic to Greece, which typically 1854 Paludina exigua m. – Gobanz, p. 23, figs. 12a–b shows an inflated initial part of the protoconch. Isla- (non Rissoa exigua Eichwald 1830). mia has a pitted protoconch with a very distinct de- 1858 Paludina exigua Gbz. – Unger, p. 3 (non Rissoa marcation of the teleoconch. In contrast, the proto- exigua Eichwald 1830). conch of valvatids are characterized by densely ar- 1864 Amnicola Gobanzi v. Frfld.– Frauenfeld, p. 604. ranged and equally spaced spiral striae, crossed by very 1891 Hydrobia (Amnicola) exigua Gob. sp.– Penecke, thin and closely spaced axial undulate crests (“woolen p. 353 (non Rissoa exigua Eichwald 1830). stocking” pattern, Anistratenko et al. 2010), 1893 Hydrobia (Amnicola) exigua Gob. – Hilber, p. 307 which are not developed in the Austrian species. Many (non Rissoa exigua Eichwald 1830). valvatiform species assigned to Va lvata in the palaeon- 1926 Amnicola (Amnicola) gobanzi Frauenfeld – Wenz, p. 2061. tological record might actually turn out to belong to 1979b Pseudamnicola gobanzi (Frauenfeld).– Schli- one of these hydrobiid taxa after detailed examination ckum, p. 72, fig.5. of the protoconch. Material: Several specimens from Enzenbach, NHMW 2012/0154/0006–0009, NHMW Va lvata? abdita Brusina, 1902, from the Middle 2012/0119/0002. Miocene of Croatia closely resembles Hauffenia man- Dimensions: Measurements of typical specimens (height x dici, but is slightly higher coiled and has a round aper- width): 1.7 x 1.3 mm (Plate 1, fig.5); 1.5 x 1.1 mm (Plate 1, ture. Va lvata? homalogyra Brusina, 1874, from the fig.6); 1.7 x 1.2 mm (Plate 1, fig.7); 1.8 x 1.4 mm. Middle Miocene Drniš Basin (Dinaride Lake System) Description: Broad ovoid shell with 3.0–3.5 whorls. has an immersed spire and is larger despite developing Shape varies slightly in terms of height-width ratio. only two whorls. Va lvata? moesiensis Jekelius, 1944, Protoconch comprising 0.9–1.0 whorls; initial part from the late Middle Miocene of and Va lva- immersed; surface consistently covered with fine- ta? pseudoadeorbis Sinzov, 1880 (sensu Harzhaus- meshed reticulum; border to teleoconch marked by er & Kowalke 2002) from the late Middle Miocene growth rim and onset of distinct prosocline growth of the Pannonian Basin both closely resemble this spe- lines. Whorls highly convex; point of maximum con- cies, but are slightly higher coiled and have a less broad vexity somewhat below center of whorls, producing last whorl. The teLa Miocene Va lvata? simplex Fuchs, strongly incised sutures. Last whorl attaining c. 75 % 1870 of Hungary has a conspicuously immersed spire of total shell height, passing into a straight base. Aper- ture egg-shaped, inclined, only anteriorly touching with a larger last whorl. A very similar species is re- base of preceding whorl, leaving a wide umbilicus. corded as “?Hauffenia sp.” by Anistratenko & An- Peristome slightly everted, not particularly thickened. istratenko (2009) from the Late Miocene of the Remarks: This gastropod was described by Gobanz marginal Eastern Paratethys (Crimea, ). Two (1854) as Paludina exigua. This name was already pre- of the illustrated specimens resemble H. mandici quite occupied by Rissoa exigua Eichwald, 1830, which well in terms of shell habitus and size; they have only was later re-described as Paludina exigua in Eich- slightly less expanded last whorls. It is unlikely that wald (1853). Therefore, Frauenfeld (1864) pro- both species are conspecific with respect to the huge posed Amnicola gobanzi as replacement name. The stratigraphic gap of at least 7 Ma and the considerable shell described by Gobanz (1854) has a height of geographic separation. only 1.8 mm and a width of 1.2 mm (height/width ratio of 1.5). His illustration, however, has a height/ Distribution: Endemic species to the Rein Basin, so width ratio of 1.2 and is obviously too globular. This far recorded from Enzenbach only. impression is supported by the available material from 10 Mathias Harzhauser et al.

Rein and Enzenbach, in which no such broad shells Order Férussac, 1822 are found. Suborder Branchiopulmonata Morton, 1955 Recently, Neubauer et al. (2013a) have shown Infraorder Lymnaeoinei Minichev & Starobo- that many Miocene and Pliocene species, formerly as- gatov, 1975 signed to Amnicola Gould & Haldeman in Hal- Superfamily Lymnaeoidea Rafinesque, 1815 deman, 1840 or Pseudamnicola Paulucci, 1878, Family Lymnaeidae Rafinesque, 1815 belong to Bania Brusina, 1896. This genus compris- Genus Radix Montfort, 1810 es small and rather sturdy species with reticulate pro- toconch. Type species: Helix Auricularia Linnaeus, 1758. Recent, Europe. The coeval Bania pseudoglobula (d’Orbigny 1852) from Lake Steinheim has a comparable proto- Radix enzenbachensis Neubauer & Harzhauser n. sp. conch (see Finger 1998) but generally differs in its larger last whorl, the less convex whorl profile and its (Plate 2, figs. 1–3) larger size (Wenz 1922, Finger 1998, pers. obs. Etymology: Named after the type locality. T.A.N.). The trex emely high morphologic plasticity Holotype: NHMW 2012/0154/0010; height: 4.5 mm, width: 4.2 mm (Plate 2, fig.1). of the Steinheim species resulted in descriptions of Paratype 1: NHMW 2012/0154/0011; height: 4.3 mm, width: three separate species, which were revised by Wenz 3.8 mm (Plate 2, fig.2). (1922, 1926). “Pseudamnicola” steinheimensis (Mill- Paratype 2: NHMW 2012/0154/0012; height: 4.9 mm, width: er 1900), which is treated as subspecies of “Amnicola” 5.0 mm (Plate 2, fig.3). pseudoglobulus (d’Orbigny 1852) by Wenz (1922), Type locality: Enzenbach, Rein Basin, Styria, Austria. differs omfr both B. gobanzi and B. pseudoglobula in Type stratum: Lower Badenian lacustrine marls of the Rein its higher turreted spire and strongly convex spire beds. whorls (cf. Miller 1900, Wenz 1922, Kókay 2006). Material: Type specimens only (all from Enzenbach). Gillia utriculosa Sandberger, 1875, was introduced Diagnosis: Broad globose shell with short spire and for forms with a particularly bulbous last whorl and a inflated and highly convex last whorl; aperture ex- drop-shaped, large and thickened aperture. After ex- panded laterally, with strong angulation between amination of material from the region, we agree with straight and inner lip. Wenz (1926) who regarded Gillia utriculosa as syno- Description: Protoconch low trochiform, smooth; nym of Baniapseudoglobula. transition to teleoconch invisible. Shell comprising Bania gobanzi is distinguished from Bania? con- 2.5–3.0 whorls; first teleoconch whorl low convex; vexa (Sandberger 1875) sensu Schlickum (1976) last whorl bulbous, highly convex, attaining 90–95 % by the higher spire and the everted, almost round ap- of total shell height; base straight. Aperture wide, of- erture of the latter species. Bania? suevica ten conspicuously expanded. Outer lip widely convex, (Gottschick 1928), which was classified as slightly everted, not thickened. Columella straight, Pseudamnicola convexa suevica by Schlickum thickened, weakly everted, almost covering narrow, (1976), is about equally sized but has a higher, more slit-like umbilicus; no columellar fold developed; sur- slender and stepped spire, a concave base and a more face slightly granulated. Angle between outer lip and inclined aperture. The Middle Miocene Bania torbari- columella rounded, attaining c. 90°. Inner lip forming ana (Brusina 1874) from the Dinaride Lake System slightly thickened callus on base of penultimate whorl, is similar in terms of general shape and apertural char- with distinct obtuse angles to columella (c. 135°) and acteristics but differs markedly in the gradate spire and outer lip (c. 90–100°, depending on expansion of ap- its larger size. erture). Growth lines faint orthocline with short prosocline bend near upper suture. Distribution: Recorded from localities Enzenbach Remarks: This species has some similarity to the mor- and Rein in the Rein Basin and from Straßgang in the phologically highly variable Radix socialis (von Zie- Graz Basin. ten 1832) from the Steinheim Basin (for the complex list of synonyms and subspecies see Wenz 1923). Clade Jörger et al., 2010 Shell shapes in this taxon range from slender elongate Superorder Basommatophora Keferstein in to globose (Gottschick 1911). But even the more Bronn, 1864 bulky forms (bullatus-morph) develop a gradate spire The rlea y Middle Miocene mollusc fauna of Lake Rein 11

and have a less pronounced angle between columella 1891 ? Limnaeus minor Thom.– Penecke, p. 355 (non and inner lip. Moreover, the aperture expands anteri- Limnaeus minor Thomä 1845). orly rather than laterally as it is the case for R. enzen- 1891 Limnaea armaniacensis Noulet – Maillard, p. bachensis. Radix subbullatus (Sandberger 1875) 115, pl. 7, fig.20. 1893 Limnaeus (Limnus) Girondicus Noul. – Hilber, p. from the Early Miocene of the Mainz Basin also dif- 307 (non Lymnaea Girondica Noulet 1854). fers in its distinct shoulder. The Middle Miocene R. 1893 Limnaeus (Limnus) pachygaster Thom.–Hilber, zelli (Hörnes 1856) from the Vienna Basin is more p. 307 (non Limnaeus pachygaster Thomä 1845). slender with an elongate aperture. Radix kobelti (Bru- 1893 Limnaeus (Limnus) subpalustris Thom.–Hilber, sina 1884) from the Late Miocene of Croatia closely p. 308 (non Limnaeus subpalustris Thomä 1845). resemble this species in general shell shape, but lacks 1893 Limnaeus? (Limnus)? minor Thom.–Hilber, p. the distinct angle between columella and inner lip. 308 (non Limnaeus minor Thomä 1845). Distribution: Endemic to Lake Rein, so far recorded 1913 Limnaeus girondicus Noul. – Benesch, p. 349 (non Lymnaea Girondica Noulet 1854). from Enzenbach only. 1913 Limnaeus pachygaster Thom.– Benesch, p. 349 (non Limnaeus pachygaster Thomä 1845). Genus Stagnicola Jeffreys, 1830 1913 Limnaeus subpalustris Thom.– Benesch, p. 349 Type species: Lymnaea communis Jeffreys, (non Limnaeus subpalustris Thomä 1845). 1830 [= Stagnicola palustris (Müller 1774)]. Re- 1923 Galba (Galba) armaniacensis armaniacensis cent, Europe. (Noulet)– Wenz, p. 1351. 2005 S. armaniacensis (Noulet 1857) –Kowalke & Reichenbacher, p. 631, figs. 9(6–7). Stagnicola armaniacensis (Noulet 1857) 2006 Stagnicolaarmaniacensis (Noulet), 1857 – Kókay, (Plate 2, figs. 4–11) p. 50, pl. 17, fig.1. 2007 Radix dilata (Noulet)– Hiden & 1854 Limnaeus parvulus Al. Braun – Gobanz, p. 22, Rottenmanner, p. 6, pl. 1, figs. 4a–b. figs. 11a–b (non Lymneus parvulus Braun in non1976 Stagnicola (Stagnicola) armaniacensis Wa lchner, 1851 = Limnaeus minor Thomä (Noulet)– Schlickum, p. 5, pl. 1, fig.12. 1845). Material: Numerous fragmentary shells in the collection of the 1854 Limnaeus subpalustris Thom.– Gobanz, p. 22 UMJ (Inv. 5815, Inv. 1882/XVIII/19, Inv. 1891/VII/7) and (non Limnaeus subpalustris Thomä 1845). NHMW 2012/0154/0013–0014, NHMW 2012/0119/0003. 1857 Limnea armaniacensis nov. sp.– Noulet, p. 22. Dimensions: Largest complete specimens (height x width): 38 x 1858 Limneus parvulus A. Braun – Unger, p. 3 (non 17 mm (Rein, Glöckelanderl); 34 x 18 mm (Plate 2, figs. 9–10). Lymneus parvulus Braun in Wa lchner 1851 = Limnaeus minor Thomä 1845). Description: Protoconch smooth, low trochiform, 1858 Limneus subpalustris Thom.– Unger, p. 3 (non bulbous; transition to teleoconch invisible. Te leo- Limnaeus subpalustris Thomä 1845). conch slender, comprising about 6 whorls (only a sin- 1858 Limneus turritus Klein – Unger, p. 3 (non gle adult specimen is complete). Early whorls highly Limnaeus turritus Klein 1853). convex; degree of convexity in later ontogeny variable, 1875 Limneus? armaniacensis Noulet – Sandberger, ranging from almost straight to moderately convex. p. 581, pl. 28, fig.25. Last whorl occasionally slightly inflated, with strong 1881 Limnaeaarmaniacensis – Bourguignat, p. 116, pl. 6, fig.195. convexity at mid-height of whorl. Aperture narrow, 1882 Limneus parvulus A. Br.(minor Thom.) – slightly inclined, about semilunar with strongly con- Standfest, p. 178 (non Lymneus parvulus Braun vex anterior margin; columella with distinct fold; in- in Wa lchner 1851 = Limnaeus minor Thomä, ner lip forming thin sheet on base of penultimate 1845). whorl. 1882 Limneus subpalustris Thom.–Standfest, p. 178 Remarks: Different ontogenetic stages and the slight- (non Limnaeus subpalustris Thomä 1845). ly varying degree of whorl convexity lead to a splitting 1891 Limnaeus (Limnus) girondicus Noul. –Penecke, of this species into two to four different taxa by p. 354 (non Lymnaea Girondica Noulet 1854). Gobanz (1854), Unger (1858), Standfest 1891 Limnaeus (Limnus) pachygaster Thom.– Penecke, p. 355, pl. 21, figs. 1a–b (non Limnaeus pachygaster (1882), Penecke (1891), Hilber (1893) and Ben- Thomä 1845). esch (1913). Wenz (1923) considered that all refer- 1891 Limnaeus (Limnus) subpalustris Thom. – Penecke, ences concerning lymnaeids of the Rein Basin refer to p. 355 (non Limnaeus subpalustris Thomä 1845). Radixdilatata (Noulet1854). This species, sensu 12 Mathias Harzhauser et al.

Sandberger (1875), Maillard (1891), Schlic- juvenile shells from Enzenbach in terms of whorl con- kum (1976) and Fischer (2000) is rather globose vexity and size of last whorl, but are several times larg- with highly convex whorls, short spire and a broad er and maintain this habitus in adult stages. The teLa and inflated last whorl. None of the shells available Miocene Lymnaea forbesi Gaudry & Fischer in from Enzenbach, Rein and Tallak agrees in shape with Gaudry, 1867, from Greece is a more slender species this morphology. Even, the rather stout shell illustrat- with an often slightly inflated penultimate whorl. ed by Penecke (1891) has a higher spire and a nar- The shellom fr the middle Miocene Zwiefalten- rower last whorl. dorf described and illustrated as S. armaniacensis by Stagnicola armaniacensis differs omfr Lymnaea Schlickum (1976) has a globose last whorl and a subpalustris (Thomä 1845) from the Early Miocene short spire and represents another species. of the Mainz Basin, which has more convex whorls Distribution: This species is frequently described and an inflated last whorl. Limnaeus pachygaster from the Silvana-beds of S Germany and Switzerland Thomä, 1845, from the same region is conspicuously (Sandberger 1875, Maillard 1891, Kowalke & broader. Wenz (1923) considered Limnaeus minor Reichenbacher 2005), and from the Middle Mio- Thomä, 1845, as subspecies of Galba (?) subpalustris cene of Sansan, France (Noulet 1857, Bourgui- (Thomä 1845), both of which again comprise broad- gnat 1881). In the Rein Basin it is recorded from er forms. We agree with Wenz (1923), who also in- Enzenbach, Rein, and Tallak and occurs at Straßgang cluded Lymneus parvulus Braun in Wa lchner, in the Graz Basin. 1851, as synonym of this subspecies. There is still doubt on the taxonomic affiliation of Infraorder Planorboinei Nordsieck, 1993 Lymnaea girondica Noulet, 1854, from the Early Superfamily Rafinesque, 1815 Miocene of Switzerland. Following the illustration in Family Rafinesque, 1815 Sandberger (1875) and Maillard (1891) this Subfamily Planorbinae Rafinesque, 1815 species is highly similar to S. armaniacensis in terms of shell shape and apertural characteristics. We follow The inclusion of several synonyms regarding the pla- Wenz (1923), who regarded L. girondica as a syno- norbids from the Rein Basin from works by Gobanz nym of Lymnaea pseudopalustris d’Orbigny, 1852, (1854), Unger (1858), Standfest (1882), Pe- which he classified as subspecies of L. urceolata necke (1891), Hilber (1893) and Benesch (1913) (Braun in Wa lchner 1851). The specimens from are to some extent tentative and are marked accord- Rein Basin identified as this species by Penecke ingly. Many of these synonyms refer to non-illustrated (1891), Hilber (1893) and Benesch (1913), how- and often poorly described material. This hampers a ever, cannot be distinguished from S. armaniacensis. reliable attribution to a certain species. Lymnaea urceolata from the Early Miocene of the To avoid influence of apertural deflection, whorl Mainz Basin has a short spire and a large, narrow and ratio is given as diameter of last whorl minus aperture elongated aperture. Stagnicola reinholdkunzi Harz- divided by height of the last whorl in its middle (Mei- hauser & Neubauer in Harzhauser et al., 2012, er-Brook 1983). Orientation of growth lines is giv- from the early middle Miocene of the Aflenz Basin, en on the lowermost whorl portion, when viewed has more convex whorls, a broader last whorl and a from apical/umbilical side. stronger columellar fold. The Middle Miocene Galba turrita (Klein 1853) from southern Germany is more Genus Gyraulus Charpentier, 1837 slender with a small, narrow aperture. Galba? dupuy- Type species: albus Müller, 1774. Recent, Europe. anus (Noulet 1854) sensu Sandberger (1875), Boettger (1878) and Bourguignat (1881) from Gyraulus kleini (Gottschick & Wenz 1916) the Middle Miocene of France has a more rounded ap- (Plate 3, figs. 1–4, 6, 14) erture and more convex whorls. Lymnaea zlatarskii (Toula 1892) from the Middle Miocene of 1875 Planorbis (Gyraulus) laevis Klein – Sandberger, p. 578, pl. 28, fig.21 (non Planorbis laevis Alder is much broader with stepped spire and lacks the colu- 1838). mellar fold. The Middle Miocene Dinaride Lake Sys- 1913 Planorbis cfr. dealbatus A. Braun – Benesch, p. tem species Radix hyaloleuca (Brusina 1902) and 349 (non Planorbis dealbatus Braun in Wa lchner Radix? korlevici (Brusina 1884) closely resemble the 1851). The rlea y Middle Miocene mollusc fauna of Lake Rein 13

1916 Gyraulus multiformis kleini n. (= laevis Klein.) – synonymy lists and discussion about validity and taxo- Gottschick & Wenz, p. 101. nomic state of these taxa see Gottschick & Wenz 1923 Gyraulus (Gyraulus) trochiformis kleini (1916), Wenz (1923) and Nützel & Bandel (Gottschick & Wenz)– Wenz, p. 1595. (1993). 1976 Gyraulus applanatus kleini Gottschick & Wenz – Schlickum, p. 5, pl. 1, fig.16. The Early Miocene Gyraulus declivis Braun in 1993 Gyraulus kleini (Gottschick & Wenz, 1916) – Wa lchner, 1851 from the Mainz Basin is regarded Nützel & Bandel, p. 332. as synonym of G. trochiformis applanatus (Thomä 1998 Gyraulus kleini – Finger, p. 9, pl. 1, figs.. A–F, pl. 2, 1845) by Wenz (1923). It differs omfr G. kleini in the figs. A–F, pl. 3, figs. A–F, pl. 4, figs. A–F. higher number and stronger angulation of the whorls 2002 Gyraulus vermicularis (Stoliczka 1862) – (Gottschick 1920, Nützel & Bandel 1993). Harzhauser & Kowalke, p. 75, pl. 10, fig.14 The coeval Gyraulus pulici Brusina, 1897, and G. (non Planorbis vermicularis Stoliczka 1862). geminus Brusina, 1897, from the Dinaride Lake Sys- Material: Several thousand specimens; most abundant gastro- pod in Enzenbach, forming almost monospecific accumulations tem both have less immersed apices and umbilici and in certain layers (NHMW 2012/0154/0015–0019, NHMW show a more rapid increase in whorl diameter. Harz- 2012/0119/0004). hauser & Kowalke (2002) erroneously affiliated a Dimensions: Largest specimen found with max. diameter of Gyraulus species from the Sarmatian of the Paratethys 5.0 mm. Measurements of several specimens (diameter x height, region with G. vermicularis (Stoliczka 1862), whorl ratio): 5.0 x 1.6 mm, 2.92; 4.2 x 1.3 mm, 2.42; 4.6 x which clearly differs in its evolute coiling. Their speci- 1.5 mm, 2.67. mens are virtually not distinguishable from Gyraulus Description: Small glossy shell with up to 4.0 whorls. kleini. Protoconch comprising 0.8 whorls, exhibiting typical Distribution: Recorded from several Middle Mio- striae; transition to teleoconch marked by onset of cene localities in S Germany, Switzerland, Czech Re- growth lines. Initial whorls strongly immersed, slight- public and Ukraine (see Wenz 1923). Gál et al. ly more on apical side. Whorls rapidly increasing in (2000) mention this species also from the Late Bade- diameter, overlapping up to 20 % of preceding whorl. nian of Hungary. In the Rein Basin it is found in lo- Whorls strongly convex in lateral view with maximum calities Enzenbach and Rein. convexity centrally, occasionally slightly adapical; in flatter specimens more distinct angulation might oc- Gyraulus krohi Neubauer & Harzhauser n. sp. cur, but never forming keel. Last whorl attaining c. 40 % of total diameter; might deflect in adult speci- (Plate 4, figs. 1–4, 7) mens. Aperture about as wide as high, usually symmet- 1854 Planorbis applanatus Thom.– Gobanz, p. 22, figs. ric with equally convex adapical and abapical margins 10a–c (non Planorbis applanatus Thomä 1845). of outer lip; inner lip covering sheet-like base of pre- 1858 Planorbis applanatus Thom.– Unger, p. 3 (non ceding whorl. Growth lines distinct; prosocline in Planorbis applanatus Thomä 1845). umbilical view, prosocyrt in apical view and sigmoidal ? 1882 Planorbis applanatus Thom.– Standfest, p. 178 in lateral view. (non Planorbis applanatus Thomä 1845). ? 1891 Planorbis (Gyrorbis) declivis A. Braun – Penecke, Remarks: This species from the about coeval Lake p. 357 (non Planorbis declivis Braun in Wa lch- Steinheim forms the starting point for one of the most ner, 1851 = Planorbis applanatus Thomä 1845). spectacular and famous endemic radiations of fresh- ? 1893 Planorbis (Gyrorbis) declivis A. Braun–Hilber, p. water gastropods (e.g. Hilgendorf 1867, Gott- 308 (non Planorbis declivis BrauninWalchner schick 1911, Gottschick & Wenz 1916, Nüt- 1851 = Planorbis applanatus Thomä 1845). zel & Bandel 1993). Examination of material from ? 1913 Planorbis declivis A. Braun – Benesch, p. 349 Lake Steinheim verified the identification of the En- (non Planorbis declivis Braun in Wa lchner.1851 zenbach specimens. Gyraulus dealbatus (Braun in = Planorbis applanatus Thomä 1845). Wa lchner 1851) from the Mainz Basin is broader Etymology: In honour of our colleague Andreas Kroh (Geologi- cal-Palaeontological Department, Natural History Museum Vi- with wider umbilical and apical concavities and devel- enna). ops a distinct adapical angulation (see Gottschick Holotype: NHMW 2012/0154/0020; diameter: 4.0 mm, 1920, Nützel & Bandel 1993). Gyraulus steinhei- height: 1.0 mm, whorl ratio: 3.63 (Plate 3, figs. 3–4, 7). mensis (Hilgendorf 1867) is more flattened on the Paratype 1: NHMW 2012/0154/0021; diameter: 2.9 mm, abapical side and larger than G. kleini. For detailed height: 0.75 mm, whorl ratio: 3.67 (Plate 3, figs. 1–2). 14 Mathias Harzhauser et al.

Paratype 2: NHMW 2012/0154/0022; diameter: 4.3 mm, in present material no specimen is found with more height: 1.2 mm, whorl ratio: 3.10. than 4.8 whorls. Type locality: Enzenbach, Rein Basin, Styria, Austria. The Early Miocene Gyraulus applanatus (Thomä Type stratum: Lower Badenian lacustrine marls of the Rein 1845) from the Mainz Basin is flatter with a more dis- beds. tinct adapical angulation. Gyraulus dealbatus Braun Material: Several hundred specimens from Enzenbach and Rein in Wa lchner, 1851, from the same region is similar (Glöckelanderl) in the NHM collection (NHMW in lateral view but has about equally concave apical 2012/0154/0020–0022, NHMW 2012/0119/0005). and umbilical sides (see Gottschick 1920, Nüt- Dimensions: Measurements of further specimens (diameter x height, whorl ratio): 5.1 x 1.3 mm, 3.64; 5.2 x 1.2 mm, 3.30. zel & Bandel 1993). Gyraulus ludovici (Noulet Generally, specimens with a diameter > 5mm are rare. 1854) from the Middle Miocene of Sansan, which is treated as subspecies of G. applanatus by Wenz Diagnosis: Wide and rather deep apical concavity (1923), is larger, more involute, and has a distinct cen- and small shallow umbilical concavity; whorls with tral keel (see Sandberger 1875). Anisus rousianus adapical angulation in lateral view; whorls flattened (Noulet 1854) from the same region corresponds in adapically, well-rounded abapically; aperture inclined. the mode of concavity on both sides but has more Description: Shell small and shiny, comprising up to whorls, is slightly larger and regularly convex in lateral 4.8 whorls. Protoconch consisting of 0.8 whorls; tran- view. Anisus omalus (Bourguignat 1881), also from sition to teleoconch marked by onset of growth lines. Sansan, is about three times larger and has a stronger Initial 0.5–0.6 whorls covered with distinct but some- adapical angulation. Anisus hilgendorfi (Fraas 1868) what irregularly formed spiral striae, fading out to- from the Steinheim Basin is larger and develops an wards transition to adult shell; about from whorl adapical keel (Gottschick 1911, Sandberger point 0.4 up to transition faint irregular axial threads 1875, Finger 1998). Anisus angulata (Clessin crossing striae, producing reticulate pattern of numer- 1877) from coeval assemblages of Undorf, S Germany, ous weak and small axial ridges between them; spiral has a distinct adapical angulation forming a flat plane. striae may continue on earliest portion of juvenile The coeval Gyraulus geminus (Brusina1897) from shell. Whorls covering c. 15–30 % of preceding the Drniš Basin (Croatia, Dinaride Lake System) [= whorls. Sutures moderately incised. Umbilical side Gyraulus applanatus sensu Neumayr 1869] is flatter low convex with about first 2 whorls immersed form- with less concave apical and umbilical sides and shows ing shallow and narrow, sometimes wider, concavity; a more prominent angulation. apical side usually with deep and broad concavity re- Distribution: Recorded in the Rein Basin from the sulting from inclined growth direction in later stages. localities Rein and Enzenbach and from Straßgang in Occasionally forms with narrower and/or shallower the Graz Basin. apical region occur. In lateral view, point of maximum whorl convexity central in early stages, but adapical in Gyraulus sp. later growth stages, usually forming strong angulation but never offset keel. Whorls low convex to flattened (Plate 4, figs. 5–6, 8–14) adapically and well-rounded abapically. Width of last Material: Several shells from Enzenbach, always co-occurring with Gyraulus krohi n. sp. (NHMW 2012/0154/0023–0027, whorl at peristome highly variable, ranging from 20– NHMW 2012/0119/0006). 40 %. Last whorl might deflect in late ontogeny. Aper- Dimensions: Measurements of several specimens (diameter x ture inclined, elliptical to asymmetrically heart- height, whorl ratio): 4.0 x 1.0 mm, 4.00 (Plate 4, figs. 5–6); 5.0 x shaped, wider than high; inner lip thin, sheet-like; 1.1 mm, 4.88 (Plate 4, fig.9); 3.5 x 1.0, 3.50 (Plate 4, figs. 8, 10– peristome sharply terminated. Growth lines weak to 11). Rarely, specimens are found with a diameter > 5mm. distinct; prosocline in umbilical view, prosocyrt in Description: Small glossy shell, comprising up to 4.8 apical view and sigmoidal in lateral view. whorls. Protoconch consisting of 0.8 whorls covered Remarks: Though Benesch (1913) did not provide with spiral striae; in latest protoconch portion only illustrations, he noted the differences in whorl convex- striae on whorl margins persist; transition to teleo- ity, point of angulation and rate of whorl expansion conch marked by onset of growth lines; spiral striae between “Planorbis declivis” (= G. krohi n. sp.) and may continue on earliest portion of juvenile shell. “Planorbis cfr. dealbatus” (= G. kleini). Standfest Whorls slowly increasing in diameter; overgrowing c. (1882) and Benesch (1913) mention 6 whorls, while 10–25 % of preceding whorls. Apical side forming The rlea y Middle Miocene mollusc fauna of Lake Rein 15

small and shallow concavity with central part often Distribution: Recorded from the localities Enzen- immersed; umbilical side flattened or weakly and bach and Rein. broad concave. Sutures moderately incised. In lateral view, point of maximum whorl convexity always sub- Genus Planorbarius Duméril, 1806 centrally, weakly expressed; adapical and abapical por- Type species: Helix cornea Linnaeus, 1758. Recent, Europe; by tion weakly convex. Aperture asymmetrically heart- subsequent designation (Froriep 1806). shaped, about as wide as high; inner lip thin, sheet- like; peristome sharply terminated. Width of last Planorbarius mantelli (Dunker 1848) whorl at peristome 20–30 %. Growth lines distinct; (Plate 3, figs. 5, 7–13, 15–16) prosocline in umbilical view, prosocyrt in apical view 1848 Planorbis Mantelli Dunker, p. 159, pl. 21, figs. 27– and sigmoidal in lateral view. 29. Remarks: Currently, we cannot ascertain the taxo- 1854 Planorbis pseudoammonius Voltz – Gobanz, p. nomic status of this species. Many of the features over- 19, figs. 8a–b (non Helicites pseudoammonius von Schlotheim 1820). lap with those described for the co-occurring Gyraulus 1854 Planorbis corniculum Thomä – Gobanz, p. 20 krohi n. sp., including size, number of whorls, degree (non Planorbis corniculum Thomä1845 = Planorbis of overgrowth of preceding whorls, degree of immer- cornu Brongniart 1810). sion of the umbilical side, protoconch features and 1854 Planorbis platystoma Klein – Gobanz, p. 21, outline in lateral view. The mostara ch cteristic attri- fig.9a–b (non Planorbis platystoma Edwards butes are the low rate of whorl expansion and the flat- 1852). tened apical side, which may argue for a taxonomic 1858 Planorbis pseudamonius [sic] Voltz – Unger, p. 3 separation. However, there is a series of intermediate (non Helicites pseudoammonius von Schlotheim 1820). forms, making a reliable separation difficult. Perhaps, 1858 Planorbis platystoma Klein – Unger, p. 3 (non the varied morphologies reflect a pattern of morpho- Planorbis platystoma Edwards 1852). logical evolution in course of geological time (e.g. like 1875 Planorbis cornu Brongniart var. Mantelli in Lake Steinheim). This, however, cannot be proven Dunker – Sandberger, p. 577, pl. 28, fig.18. from the present data (non-stratified collections). A 1882 Pl. cornu Brong.–Standfest, p. 178 (non more detailed, section-based analysis might shed light Planorbis cornu Brongniart 1810). on this issue. 1892 Planorbarius Mantelli Dunker – Locard, p. 142, pl. 8, figs. 9–11. The Early Miocene Gyraulus applanatus (Thomä 1891 Planorbis (Spirodiscus) cornu Brong. – Penecke, 1845) from the Mainz Basin has more whorls and a p. 355 (non Planorbis cornu Brongniart 1810). stronger abapical angulation. The Early Miocene An- 1893 Planorbis (Spirodiscus) cornu Brongn. – Hilber, p. 308 (non Planorbis cornu Brongniart 1810). isus? guerichi (Andreae 1902) from Opole, Poland, 1913 Planorbis cornu Brong. – Benesch, p. 350 (non corresponds in the subcentral angulation, the flat um- Planorbis cornu Brongniart 1810). bilical side and slightly immersed apical side, but clear- 1923 Coretus cornu mantelli (Dunker) – Wenz, p. 1452. ly differs in its entirely evolute coiling (cf. Andreae 1976 Planorbarius cornu mantelli (Dunker) – 1902). Anisus dupuyianus (Noulet 1854) [not du- Schlickum, p. 7, pl. 1, fig.19. puyanus as given in Wenz 1923] from the Middle 2002 Planorbarius mantelli (Dunker 1851 [sic]) – Miocene of Sansan corresponds in the almost flat um- Binder, p. 164, pl. 1, figs. 6a–c. 2004 Planorbarius mantelli (Dunker 1848) – bilical side, but is larger and has a distinctly wider con- Harzhauser & Binder, p. 12, pl. 5, figs. 1–4. cavity on the apical side (see Bourguignat 1881). 2006 Planorbarius cornu mantelli (Dunker), 1848 – Anisus rousianus (Noulet 1854) from the same lo- Kókay, p. 59, pl. 20, fig.7. cality in turn has a wide umbilical concavity (see 2007 Planorbarius mantelli (Dunker) – Hiden & Bourguignat 1881). This species was considered as Rottenmanner, p. 6, pl. 1, figs. 5–6. synonym of A. dupuyianus by Wenz (1923). Due to Material: Hundreds of adult and subadult shells in the UMJ the inverse mode of concavity of umbilical/apical sides collection from Enzenbach, Rein and Tallak, and numerous juve- nile und subadult specimens from Enzenbach in the NHM coll- and the varied lateral view these two species cannot be ection (NHMW 2012/0154/0028–0030, NHMW conspecific. Anisus angulata (Clessin 1877) from 2012/0119/0007). coeval Undorf, S Germany, has a similarly flat umbili- Dimensions: The largest specimen attains a diameter of 38 mm cal side but develops a strong basal angulation. (UMJ Inv. 75.865, Enzenbach). Measurements of several speci- 16 Mathias Harzhauser et al.

mens (diameter x height, whorl ratio): 25.7 x 7.1 mm, 3.60 (Plate mantelli. This is followed herein as both the specimens 3, figs. 7–8, 10); 13.0 x 5.5 mm, 1.88; 15.5 x 5.5 mm, 2.20; 30.5 from Klein (1853) and Gobanz (1854) show the x 7.5 mm, 3.50. characteristic shape and striation of P. mantelli. Description: Large planorbid shell comprising up to Distribution: Planorbarius mantelli appears during 5 whorls. Protoconch consisting of c. 0.8 whorls; ini- the late Early Miocene in the Alpine Foreland Basin tial part smooth, remaining part covered with several and the Korneuburg Basin (Wenz 1923, Jost et al. parallel, spiral rows of numerous small, circular pits; 2007, Binder 2002). It becomes ubiquitous during rows crossed by faint irregular axial threads; transition the Middle Miocene (Schlickum 1976, Gál et al. to teleoconch marked by termination of rows of pits. 2000, Kókay 2006, Hír & Kókay 2010) and disap- Te leoconch whorls highly convex, sometimes produc- pears during the Late Miocene (Harzhauser & ing strongly incised sutures. Early whorls high in rela- Binder 2004). In the Rein Basin it is a frequent spe- tion to diameter, forming sub-rectangular profile. cies at Rein, Enzenbach, and Tallak and occurs in the Whorls increasing more rapidly in diameter than in Graz Basin at Straßgang. height, covering 0–10 % of preceding whorl. The whorls are trapezoid in lateral view with weak angula- Genus Segmentina Fleming, 1818 tion slightly below mid-height of whorl in adult speci- Type species: Nautilus lacustris Lightfoot, 1786. Recent, mens; no keel developed. Apical side broadly shallow Great Britain. concave; umbilical side flattened or similarly concave. Whorls flattened abapically and well-rounded adapi- Segmentina lartetii (Noulet 1854) cally. Aperture roughly elliptical with about equally convex margins above and below angulation; inner lip (Plate 2, figs. 12–16) slightly concave, forming thin sheet on base of preced- 1854 Planorbis Lartetii Noulet, p. 104. ing whorl. Width of aperture attaining 25–35 % of 1854 Planorbis nitidiformis m. – Gobanz, p. 21, fig.7. total diameter. Umbilicus slightly more immersed 1858 Planorbis nitidiformis Gbz. – Unger, p. 3. than . Te leoconch sculpture variable: distinct spi- 1875 Planorbis (Segmentina) Lartetii Noulet – ral striation might be present on entire shell, only on Sandberger, p. 542, 579, pl. 28, fig.23. parts of it (Plate 3, fig.8), or might be even absent 1881 Segmentina Larteti [sic] – Bourguignat, p. 123, (Plate 3, figs. 11–12); number of striae variable; striae pl. 8(33), figs. 281–284. usually more prominent on umbilical side. Growth 1882 Planorbis nitidiformis Gob. – Standfest, p. 178. 1892 Segmentina Larteti [sic], Noulet – Locard, p. lines more or less distinct, prosocline in umbilical 133, pl. 8, fig.1 view, prosocyrt in apical view. Crossing growth lines 1891 Planorbis (Segmentina) nitidiformis Gobanz – and striae forming irregular pattern, sometimes result- Penecke, p. 357. ing in local disintegration of striae. 1893 Planorbis (Segmentina) nitidiformis Gob. – Hilber, Remarks: This is the largest planorbid and also largest p. 308. gastropod in the assemblages of Lake Rein. Sand- 1923 Segmentina lartetilarteti [sic] (Noulet)– Wenz, berger (1875, 1886) was the first to refer to shells p. 1663. from Rein as Planorbis cornu var. Mantelli Dunker, 1923 Segmentina larteti [sic] nitidiformis (Gobanz) – stating that they are conspecific with those from Zwie- Wenz, p. 1666 faltendorf. Earlier identifications with Planorbarius 1976 Segmentina lartetilarteti [sic] (Noulet)– Schlickum, p. 6, pl. 1, fig.18. cornu (Brongniart, 1810) and P. pseudoammonius 1978 Segmentina lartetii Noulet – Gožik & (von Schlotheim 1820) refer to -Early Prysjazhnjuk, p. 81, pl. 10, figs. 6–10. Miocene or even Eocene species (cf. Wenz 1923). 1998 Segmentina larteti [sic] – Finger, pl. 7, figs. A–C. Gobanz (1854) and Unger (1858) refer several ju- 2006 Segmentina larteti [sic] (Noulet), 1854 – Kókay, venile specimens from Rein to Planorbis platystoma p. 58, pl. 20, fig.5. Klein, 1853. This is a primary homonym as this name 2007 Segmentaria [sic] nitidiformis (Gobanz) – Hiden was preoccupied for the Eocene species Planorbis plat- & Rottenmanner, p. 6, pl. 1, figs. 2a–b. ystoma Edwards, 1852, from Great Britain. Wenz Material: Several adult and subadult shells from (1923) considered the British species as synonym of Enzenbach (NHMW 2012/0154/0031–0034, Planorbina similis (Férussac 1814) and the species NHMW 2012/0119/0008); common element in the from Klein (1853) as synonym of Planorbis cornu NHM collection from Rein (Glöckelanderl) The rlea y Middle Miocene mollusc fauna of Lake Rein 17

(NHMW 2012/0154/0035, NHMW 1881), Steinheim, Germany (Finger 1998), Várpalo- 2012/0119/0009). ta, Hungary (Kókay 2006), cantons Thurgau and Zu- Dimensions: Largest specimen attains a maximum diameter of rich, Switzerland (Locard 1892), Czeikowitz (= 8mm (Rein, Glöckelanderl). Measurements of several specimens Čejkovice),Moravia,CzechRepublic(coll.NHMW), from Enzenbach (diameter x height, incl. aperture): 5.9 x 2.1 mm, and several localities in the Ukraine (Gožik & Prys- 2.44; 5.8 x 2.9 mm, 2.81; 5.8 x 2.5 mm, 2.26. jazhnjuk 1978). It is also reported from the Lower Description: Glossy shell comprising up to 6 whorls. Miocene Kirchberg beds, , Germany (Schlic- Protoconch slightly granular, sometimes with irregu- kum 1976). In the Rein Basin, it is recorded from En- lar spiral threads; transition to teleoconch not dis- zenbach and Rein and from Straßgang in the Graz cernible. Last whorl nearly fully overgrowing preced- Basin. More detailed SEM-based studies are needed to ing ones. Umbilical region flat with initial whorls verify the attribution of several of these records, espe- weakly immersed. Sutures poorly incised, often form- cially of those from Lower Miocene deposits. ing irregular pattern abapically. Flanks low convex. Transition from flanks to base marked by distinct, Subfamily Ancylinae Rafinesque, 1815 acute, slightly rounded angulation, never forming off- Genus Ferrissia Wa lker, 1903 set keel. Apical region slightly concave. “Umbilicus” small and deep. Aperture inclined, narrow, heart- Type species: Ancylus rivularis Say, 1817. Recent, eastern North America. shaped; distance between angulations of preceding and last whorl about half of maximum width of aper- Ferrissia deperdita (Desmarest 1814) ture; adapical and abapical margin about equally low convex. Peristome sharply terminated. Growth lines (Plate 5, figs. 1–2, 5, 12) faint, sigmoidal. 1814 Ancylus deperditus Desmarest, p. 19, pl. 1, fig.14. Remarks: Already Sandberger (1875) and Lo- 1875 Ancylus deperditus Desmarest – Sandberger, p. card (1892) synonymized Planorbis nitidiformis 582, pl. 28, fig.28. Gobanz, 1854 with S. lartetii (Noulet 1854), while 1877a Ancylus senckenbergianus Boettger, p. 200, pl. 29, Wenz (1923) classified it as subspecies of S. lartetii. fig.7. Following descriptions and/or illustrations of Bour- 1891 Ancylus deperditus, Desmarest – Maillard, p. guignat (1881) and Finger (1998) of material 96, pl. 6, fig.19. 1891 Ancylus (Ancylatrum) subtilis sp. nov. – Penecke, p. from the Middle Miocene of Sansan (France) and 357, pl. 21, figs. 2a–b. from Steinheim (Germany), both taxa cannot be dis- 1893 Ancylus (Ancylatrum) subtilis Pen. – Hilber, p. tinguished. Priority is given to the work of Noulet, 308. which is, following the preface, published in May 1913 Ancylus subtilis Pen. – Benesch, p. 350. 1854, whereas the work of Gobanz was published in 1923 Pseudancylus deperditus (Desmarest)– Wenz, p. June 1854. 1692. The teLa Miocene Segmentina loczyi (Lören- 1923 Pseudancylus deperditus senckenbergianus they 1911) [not 1906 as given in Wenz 1923] is (Boettger)– Wenz, p. 1696. similar in lateral and umbilical view, but has a less 1923 Pseudancylus subtilis (Penecke)– Wenz, p. 1701. 1975 Ferrissia senckenbergiana (Boettger)– Wautier, overgrown apical region; its protoconch is character- p. 425, pl. 42, figs. 1–9. ized by strong spiral striae (Harzhauser & Binder 1976 Ferrissia deperdita (Desmarest)– Schlickum, p. 2004). Moreover, its aperture is wider with a more 7, pl. 1, fig.20. convex adapical margin. Similarly, Segmentina filocinc- 2004 Ferrissia deperdita (Desmarest)– Hír & Kókay, ta Sandberger 1875, from the Late Miocene to Pli- p. 87, fig.8:3. ocene from France and the Vienna Basin has a less 2004 Ferrissia wittmanni Schlickum – Hír & Kókay, overgrown apical region. Segmentina stenomphalus p. 87, fig.8:2 (non Ancylus wittmanni Schlickum (Brusina 1902), from the Late Miocene of Hungary, 1964). has a closed umbilicus but a somewhat less overgrown 2006 Ferrissia deperdita (Desmarest), 1814 – Kókay, p. 60, pl. 20, fig.15 (non pl. 21, fig.1 = Ancylus apical region. moravicus Rzehak 1893). Distribution: Widespread species in the Miocene of 2006 Ferrissia wittmanni (Schlikum [sic]), 1964 – Europe. Recorded from the Middle Miocene of Kókay, p. 59, pl. 20, fig.14 (non Ancylus wittmanni Sansan, France (Noulet 1854, Bourguignat Schlickum 1964). 18 Mathias Harzhauser et al.

Material: The species is very abundant at Enzenbach where it fully corresponds to F. deperdita. Shells from the Early may form nearly monospecific assemblages in some layers, Miocene of Hungary, referred to as F. deperdita by NHMW 2012/0154/0036–0038, NHMW 2012/0119/0010. Kókay (2006), range within Ferrissia? moravica Dimensions: Largest specimens attaining c. 10 mm. Measure- (Rzehak 1893). This species, described from the On- ments of several specimens (length x width x height): 6.3 x 4.2 x cophora beds of Moravia, Czech Republic, has a 1.7 mm; 4.9 x 3.3 x 1.1 mm (Plate 5, fig.1); 4.8 x 3.4 x 1.4 mm (Plate 5, fig.2). pointed apex but resembles F. deperdita in terms of shell shape and the fine radial threads (see Čtyroký Description: Relatively large-sized and thin-shelled 1972). More detailed SEM-based studies on proto- limpet with broad elliptical basal outline. Anterior conch morphology are necessary to fix its generic sta- shell portion slightly broader, strongly convex, passing tus reliably. Ferrissia palustris (Clessin 1877) from via nearly straight to slightly convex flanks into nar- the Early to Middle Miocene of Bavaria is flatter and rower, convex posterior part; flanks subparallel, form- more slender. The Middle Miocene Ferrissia illyrica ing an angle of c. 10–15°. In lateral view cap-shaped (Neumayr 1880) from the Dinaride Lake System with apex not distinctly offset; posterior portion (Croatia, ) is a very slender slightly concave in profile, making up about one third species with no radial sculpture on the outer tele- of shell length; anterior portion weakly convex. Apex oconch surface (see Neubauer et al. 2011, 2013b). distinctly deflected to the right. Protoconch measur- In contrast, Ferrissia serbica (Brusina 1893) from ing 550–600 µm; initial part (c. 325 µm) smooth with the Middle Miocene of has a broad oval shell shallow central pit; remaining part of juvenile shell with distinct radial ribs covering the entire outer sur- characterized by collar-like array of numerous faint ra- face (Brusina 1902). The teLa Miocene F. truci dial striae; transition into teleoconch gradual, marked Wautier, 1975, from France differs in its elongate by fading of striae and beginning concentrical growth shell and the pointed apex that curves back to the pos- lines, which become very distinct on adult shell. In terior margin. some specimens striae may re-appear on later shell Distribution: In the Rein Basin recorded from Rein portions of the teleoconch. Inner surface smooth with and Enzenbach. Reported from numerous localities intentions of broad, irregular bulges resulting from from the Middle Miocene of S Germany, Switzerland, stronger growth lines. Hungary and the Rhodanian Basin (France) (for de- Remarks: Penecke (1891) introduced Anyclus subti- tails see Wenz 1923). lis as new species from Rein, which has a relatively small and flat shell but fully corresponds in shape to F. Ferrissia wittmanni (Schlickum 1964) deperdita. Material from Enzenbach showed the vari- ability of the occurring forms, ranging from rather flat (Plate 5, figs. 3–4, 13) to high specimens; also, the extent and expression of 1877a Grundlachia francofurtana Boettger, p. 189, pl. radial threads on the teleoconch vary. We thus regard 29, figs. 1–3. “Anyclus” subtilis as synonym of Ferrissia deperdita. 1964 Ancylus wittmanni n. sp.– Schlickum, p. 15, pl. 2, Likewise, we agree with Schlickum (1976), who figs. 36–38. considered Ancylus senckenbergiana Boettger, 2005 Ferrissia wittmanni (Schlickum 1964) – Kowalke & Reichenbacher, p. 631, fig.9(10– 1877, as synonym of Ferrissia deperdita due to lack of 12) (cum syn.). separating features. Material: 9 specimens from vicinity of Rein, NHMW F. crenellata Harzhauser & Neubauer in 2012/0154/0039–0040, NHMW 2012/0119/0011. Harzhauser et al., 2012, differs omfr F. deperdita in Dimensions: Measurements of several specimens (length x its typical crenellate sculpture, where growth lines width without septum x height): 1.5 x 0.8 x 0.5 mm (Plate 5, figs. cross with radial riblets on the outer surface. Ferrissia 3, 13); 1.7 x 0.8 x 0.4 mm; 1.7 x 1.0 x 0.6 (Plate 5, fig.4). wittmanni (Schlickum 1964) is distinguished by Description: Elliptical shell with semicircular anteri- the distinctive cup-shaped apex, the flatter shell, the or and posterior shell margins and straight to concave narrow elliptical base and the distinct radial striae on flanks; anterior part slightly broader. Apex low and the distal anterior shell portion. The specimen de- slightly deflected to the right. Protoconch measuring scribed and illustrated as F. wittmanni by Hír & Kó- c. 570 µm in maximum diameter; initial part (c. 225 kay (2004) and Kókay (2006) from the Middle µm) smooth with shallow central pit; remaining part Miocene of Hungary lacks these characteristics but of juvenile shell characterized by collar-like array of The rlea y Middle Miocene mollusc fauna of Lake Rein 19

numerous distinct radial striae; onset of teleoconch 2006 Carychium (Carychiella) eumicron eumicron [sic] marked by termination of striae and beginning strong, Bourguignat, 1857 – Kókay, p. 48, pl. 16, fig.5. concentrical growth lines. In later ontogeny, distal an- Material: Several specimens from Enzenbach, NHMW terior shell portion covered with strong, broad, radial 2012/0154/0041–0043, NHMW 2012/0119/0012. pattern of grooves and ridges. Septum (if developed) Dimensions: Height: 0.95–1.1 mm, width: 0.45–0.5 mm. flat with semicircular growth lines originating from Description: A very small Carychium consisting of posterior margin. four strongly convex whorls. The protoconch attains a Remarks: The arach cteristic shape and the anterior diameter of 260–320 µm and consists of 1.5 bulbous ridges provide sufficient separation from most other and strongly convex whorls with a dense pattern of European Ferrissia species. Only Ferrissia palustris tiny pits. Its transition into the teleoconch is not very (Clessin 1877) from the Early to Middle Miocene of sharp and is marked by the occurrence of growth lines Undorf, S Germany, is similar in shell shape (Clessin and the onset of an indistinct spiral pattern. This is 1885). As protoconch features are unknown, a clear caused by an arrangement of the pits in vague, not differentiation is not possible do date. Wautier fully continuous grooves. This vague spiral pattern (1975) considered Grundlachia francofurtana Boett- disappears already in the initial phase of the first teleo- ger, 1877, as synonym of Ferrissia senckenbergiana conch whorl. The teleoconch whorls develop promi- (which is in turn a synonym of F. deperdita; see above). nent, strongly prosocline growth lines, which tend to However, we regard “Grundlachia” francofurtana as form sharp ribs along the adapical sutures. The trigo- synonym of F. wittmanni, based on the slender shape nal cross-section of these ribs causes a somewhat ser- with concave flanks and the typical radial threads on rated suture. A characteristic feature is the pitted shell the distal anterior shell portion (see Boettger surface resulting from a densely perforated uppermost 1877a). shell layer. The aperture is broad ovoid to sub-circular Distribution: Common element in Early Miocene with a distinct parietal fold and a moderately thick- freshwater systems of S Germany (Schlickum 1964, ened outer lip with very weak to absent, palatal knob. Kowalke & Reichenbacher 2005). Gál et al. Remarks: The huge and bulbous protoconch and the (2000) mention this species also from the Late Bade- conspicuous sculpture of adsutural axial ribs along nian of Hungary. This is the first record from the Rein with the reduced dentition of the aperture allow a Basin so far. separation from other carychiids. The measurements range well within the values given by Stworzewicz Superorder Haszprunar & Hu- (1999) for specimens from early Middle Miocene of ber, 1990 Bełchatów and the late Middle Miocene of Opole in Order Actophila Thiele, 1926 Poland. Superfamily Ellobioidea H. & A. Adams, 1855 Distribution: Carychium eumicrum appears during Family Carychiidae Jeffreys, 1830 the Late Oligocene (Hochheim, Germany) and is re- corded from the Early Miocene of Tuchořice (Czech Genus Carychium Müller, 1773 Republic) and Early/Middle Miocene of Undorf (S Type species: Carychium minimum Müller, 1774. Recent, Germany) and from the Middle Miocene of southern Europe. Germany, Poland (Bełchatów, Opole) and Hungary (Stworzewicz 1999, Kókay 2006). In the Rein Carychium eumicrum Bourguignat, 1857 Basin it is known so far from Enzenbach only. The spe- (Plate 6, figs. 6–7, 10) cies seems to have become extinct at the Middle/Late 1857 Carychium eumicrum – Bourguignat, p. 223. Miocene boundary. 1860 Carychium eumicrum Bourguignat – Bourguignat, p. 53, pl. 11, figs. 3–4. Carychium cf. eumicrum Bourguignat, 1857 1923 Carychium eumicron eumicron [sic] Bourguignat (Plate 6, fig.5) – Wenz, p. 1187. Material: 1 specimen from Enzenbach, NHMW 1977 Carychium (Carychiella) eumicron [sic] 2012/0154/0044. Bourguignat 1857 – Strauch, p. 159, pl. 14, Dimensions: Height: 0.95 mm, width: 0.5 mm. figs. 13–15, pl. 17, fig.53, pl. 19, fig.76. 1999 Carychium eumicrum Bourguignat – Remarks: This shell is reminiscent of the syntopic Stworzewicz, p. 264, figs. 5–6 (cum syn.). Carychium eumicrum Bourguignat, 1857, con- 20 Mathias Harzhauser et al.

cerning its reduced dentition and growth lines, which basal part is convex. The parietal fold is very promi- also grade into axial ribs close to the adapical suture. nent but narrow; a low but distinct columellar fold Its protoconch, however, differs considerably. It is and a comparable palatal denticle are further elements high and less bulbous and the punctate surface sculp- of the aperture. ture is weaker. The shell consists only of 3.5 whorls Remarks: Unger (1858) mentioned a Carychium and the last whorl is much higher; the teleoconch species from Straßgang, which he identified with the whorls are strongly convex and much wider, resulting extant C. minimum. This identification was doubted in a stout outline. Its aperture is wider compared to C. by later authors (Hilber 1893, Wenz 1923). In re- eumicrum and the knob on the outer lip is nearly ab- spect to the comparable aperture of the Recent species sent; the parietal lip is interrupted along the contact and C. gibbum, it seems reasonable that Unger with the base but continuous in C. eumicrum.A com- (1858) referred to this species (see also Wenz 1923). parable morphology, however, is presented by Sandberger (1875) based the separation of C.- gib Strauch (1977, pl. 14, fig.13) from Opole (Poland) bum from C. nouleti Bourguignat, 1857, on the as C. eumicrum. stout shape, the inflated last whorl and the more Distribution: Known so far only from Enzenbach. prominent axial sculpture. These features distinguish the specimens from the Rein Basin from typical C. Carychium gibbum Sandberger, 1875 nouleti as illustrated by Strauch (1977, pl. 15, figs. (Plate 6, figs. 1–4, 9, 12) 24, 26–27). Therefore, we propose to maintain the separation of both taxa. Shells from Bełchatów, treat- 1875 Carychium gibbum Sandberger, p. 583. ed as C. nouleti by Stworzewicz (1999), corre- 1858 Carychium minimum O.F. Müll.– Unger, p. 3 spond in shape also to the gibbum-type but differ (non Carychium minimum Müller 1774). 1885 Carychium gibbum Sdbgr. – Clessin, p. 87, pl. 7, slightly in its internal lamellar apparatus. The r-mo figs. 9a–b. phologically very similar Early Miocene Carychium 1923 Carychium nouleti gibbum Sandberger – Wenz, achimszulci Stworzewicz, 1999, from Bełchatów p. 1197. in Poland has a strongly reduced palatal denticle, a 1976 Carychium nouleti gibbum Sandberger – more folded internal lamellar apparatus, and promi- Schlickum, p. 4, pl. 1, figs. 10–11. nent axial ribs already on the first teleoconch. 2000 Carychium nouleti gibbum Sandberger – Gál et Distribution: Early/Middle Miocene of Undorf and al., p. 43. 2004 Carychium nouleti gibbum Sandberger – Hír & Middle Miocene of the Silvana-beds (S Germany) Kókay, p. 85, fig.6:7. (Wenz 1923); late Badenian of Mátraszőlős and the 2006 Carychium nouleti gibbum Sandberger, 1874 [sic] Balaton area in Hungary (Gál et al. 2000, Kókay – Kókay, p. 47, pl. 15, figs. 10–11. 2006) and Sarmatian of Wiesen (Austria) (Papp Material: Several specimens from Enzenbach, NHMW 1939). The species is known from the Rein Basin only 2012/0154/0045–0048, NHMW 2012/0119/0013. from Enzenbach and from Straßgang in the Graz Ba- Dimensions: Height: 1.40–1.45 mm, width: 0.75–0.85 mm. sin. Description: A stout shell consisting of 4–5 whorls. Order Schmidt, 1855 The moderately convex protoconch has a diameter of c. 300 µm and bears a dense pattern of tiny pits. These Suborder Orthuretha Pilsbry, 1900 start after the smooth initial cap and are arranged Superfamily Cochlicopoidea Pilsbry, 1900 more or less in spiral lines. The first teleoconch whorl Family Pilsbry, 1900 is weakly convex and develops weak spiral threads, Subfamily Azecinae Kennard & Woodward, 1926 which are crossed by indistinct prosocline growth Genus Azeca Fleming, 1828 lines. The spiral sculpture fades out on the next whorl Type species: tridens Pulteney, 1799 [= and the growth lines are replaced by densely and even- Azeca goodalli (Férussac, 1821)]. Recent, Europe. ly spaced prosocline axial ribs. The shell attains the maximum diameter and whorl convexity on the penu- Azeca peneckei Andreae, 1892 latimate whorl. The last whorl is high, rather barrel- shaped and its convexity is low. The aperture is thick- (Plate 6, figs. 8, 11, 13–14) ened, terminating in a thin peristome with nearly 1891 Azeca Boettgeri sp. nov. – Penecke, p. 364, pl. 21, straight columellar, parietal and palatal lip; only the figs. 8a–b (non Azeca Böttgeri Andreae 1884). The rlea y Middle Miocene mollusc fauna of Lake Rein 21

1892 Azeca Peneckei Andr. – Andreae, p. 435. 1893 Gasterodonta uniplicata A. Braun – Hilber, p. 1893 Azeca Peneckei Andreae – Hilber, p. 308. 308 (non Helix uniplicata Braun in Wa lchner 1902 Azeca peneckei m. – Andreae, p. 15. 1851). 1923 Azeca peneckei Andreae – Wenz, p. 1095. 1915 Strobilops (Str.) uniplicata (Sdbg.) var. depressa n. Material: Several shells from Enzenbach, NHMW var. – Wenz, p. 77, pl. 4, figs. 10a–c. 2012/0154/0049–0050, NHMW 2012/0119/0014. 1923 Strobilops (Strobilops) uniplicata plana (Clessin) – Dimensions: Height: 4.0–5.0 mm, width: 1.8–2.1 mm. Wenz, p. 1059 (cum syn.). Description: Small, pupoid, glossy shells consisting of 1976 Strobilops uniplicata plana (Clessin) – 6 whorls with cyrtoconoid spire and high, barrel- Schlickum, p. 11, pl. 2, fig.31. shaped last whorl. The w,lo dome-shaped protoconch 2006 Strobilops uniplicata plana (Clessin) 1885 – is smooth aside from its initial cap, which displays sev- Kókay, p. 71, pl. 26, figs. 7–8. eral rib-like, blunt growth lines; transition into the 2010 Strobilops uniplicata plana (Clessin 1885) – Hír teleoconch is indistinct. The convexity of the spire & Kókay, p. 310. whorls decreases constantly. The sutures are weakly in- Material: 7 specimens from Enzenbach, NHMW cised, accompanied by a narrow subsutural band. The 2012/0154/0051–0054, NHMW 2012/0119/0015. aperture is narrow, sub-triangular with thickened peri- Dimensions: Typical specimen (height x width): 1.2 x 2.2 mm. stome. Columellar and parietal margins meet at an Description: Depressed trochiform shell consisting angle of 90°. Outer lip regularly convex, with very of 1.5 protoconch whorls and 2.7 teleoconch whorls. prominent denticle, which is adapically adjoined by a The protoconch attains a diameter of 600 µm; its weak knob; two weaker denticles appear on the colu- whorls are weakly convex and covered by a dense pat- mella accompanied by a strong parietal denticle. Sur- tern of wrinkles in its early stage, passing into a reticu- face of peristome weakly granulated. late surface. The transition into the teleoconch is indi- Remarks: The arach cteristic aperture, with two colu- cated by the onset of densely spaced slightly prosocline mellar folds and a palatal denticle allows a clear separa- axial ribs. These are rather irregular in shape and weak- tion from the Middle Miocene Azeca lubricella er secondary ribs appear between the primaries in Boettger, 1870, and A. tridentiformis (Gottsch- various strength, often originating from bifurcation. ick 1911) and also from the Middle to Late Miocene On the periphery, the ribs are opisthocyrt. The teleo- A. austriaca Lueger, 1981. Similarly, Azeca moljavkoi conch whorls increase only slowly in diameter and are Prysjazhnjuk in Gožik & Prysjazhnjuk, 1978, separated by deep sutures. The last whorl bears its from the Sarmatian of Ukraine differs in its simpler maximum convexity in its adapical third, coinciding aperture. with the maximum diameter. Base only weakly con- This species was originally introduced as Azeca vex, with weak axial sculpture, crossed by very delicate boettgeri by Penecke (1891). This name was preoc- and slightly wavy spiral threads; very wide and deep cupied for an Eocene species and therefore Andreae umbilicus. The rcci ular aperture is strongly oblique to (1892) proposed Azeca peneckei as replacement name. the axis, develops a thin, collar-like peristome and Distribution: This species is only known from the lo- bears a prominent parietal fold. calities Rein and Enzenbach in the Rein Basin. Remarks: The specimens from the Rein Basin have been originally identified as Strobilops uniplicatus Superfamily Turton, 1831 (Sandberger 1875) by Penecke (1891) and Hil- Family Wenz, 1915 ber (1893). The welo r spire and the less regular and Genus Strobilops Pilsbry, 1893 less prominent axial ribs, however, separate the Mid- dle Miocene specimens from the Oligocene and Early Type species: Helix labyrinthica Say, 1817. Recent, USA. Miocene S. uniplicatus. This was recognized by Wenz (1915), who consequently proposed the variation Strobilops planus (Clessin 1885) name depressa for specimens from Hohenmemmin- (Plate 7, figs. 1–4, 7–8) gen (Germany) although this species was already de- 1885 Strobilus planus n. sp.– Clessin, p. 80, pl. 7, fig.8. scribed as Strobilus planus by Clessin (1885) from 1891 Gasterodonta uniplicata Braun sp.– Penecke, p. Undorf in Germany. The species is usually called plana 358 (non Helix uniplicata Braun in Wa lchner but according to ICZN (1999, Article 30.1.4.3.) a 1851). compound genus-group name ending in -ops is to be 22 Mathias Harzhauser et al.

treated as masculine. Therefore, the correct ending is this taxon should be treated as synonym of the Oligo- planus. cene to Early Miocene Va llonia lepida (Reuss 1849). Distribution: The species is restricted to the Middle This view leads to an extremely wide geographic and Miocene and eventually the earliest Late Miocene of stratigraphic range. Biologically it is rather unrealistic Central Europe. It appears in the Silvana-beds at Ho- to expect a terrestrial species to be unchanged for henmemmingen in Baden-Württemberg (Germany) more than 20 Ma from the Oligocene to the Pliocene. and at Undorf at Regensburg (Germany) (Wenz As the conchological features do not allow separating 1923). Kókay (2006) mentions it from the Late Bad- Va llonia subpulchella convincingly from Va llonia lepi- enian of the Hungarian Hegymaros drilling in the Ba- da we preliminarily accept the opinion of Gerber laton area and Hír & Kókay (2010) describe it from (1996). the late Sarmatian-early Pannonian (latest Serraval- Distribution: Va llonia lepida (Reuss 1849) sensu lian-earliest To rtonian) of Felsőtárkány in Northern Gerber (1996) appears during the Oligocene and Hungary. In the Rein Basin it is known only from persists up to the Pliocene. Geographically it was dis- Rein and Enzenbach. tributed from France to China. A record from the Oli- gocene of Mongolia (Stworzewicz 2007) was re- Family Pilsbry, 1900 cently revised by Neubauer et al. (2013c). In the Rein Subfamily Valloniinae Morse, 1864 Basin it is only known from Enzenbach. Genus Va llonia Risso, 1826 Type species: Va llonia rosalia Risso, 1826 [= Va llonia pulchella Family Steenberg, 1925 (Müller, 1774)]. Recent, France. Genus Granaria Held, 1838 Type species: Pupa frumentum Draparnaud, 1801. Recent, Va llonia lepida (Reuss 1849) Europe. (Plate 7, figs. 5–6, 9) Granaria cf. subfusiformis (Sandberger 1875) 1849 Helix lepida Reuss, p. 24, pl. 2, fig.4. 1875 Helix (Va llonia) subpulchella Sandberger, p. 544, (Plate 7, figs. 10–11) pl. 29, figs. 3a–c. 1875 Pupa (Torquilla) subfusiformis Sandberger, p. 598. 1966 Va llonia lepida steinheimensis Gottschick – 1891 Pupa (Torquilla) subvariabilis Sandb. – Penecke, p. Steklov, p. 167, pl. 6, figs. 106–107. 367 (non Pupa subvariabilis Sandberger 1863). 1976 Va llonia subpulchella Sandberger – Schlickum, 1893 Pupa (Torquilla) subvariabilis Sandb. – Hilber, p. p. 10, pl. 2, fig.29. 308 (non Pupa subvariabilis Sandberger 1863). 1978 Va llonia lepida steinheimensis Gottschick – 1923 subfusiformis (Sandberger)– Wenz, p. 946. Gožik & Prysjazhnjuk, p. 167, pl. 16, figs. 9–11. 1976 Granaria subfusiformis (Sandberger)– 1981 Va llonia subpulchella (Sandberger 1874 [sic]) – Schlickum, p. 9, pl. 2, fig.25. Lueger,p. 33, pl. 3, fig.13a–c. Material: 1 specimen from Enzenbach, NHMW 1996 Va llonia lepida (Reuss 1849) – Gerber, p. 88, figs. 2012/0154/0057. 3d, 29a–g, 31a–f, 32a–c, 33 (cum syn.). 1998 Va llonia lepida – Finger, p. 48, pl. 11, figs. D–E. Dimensions: Height: 12 mm, width: ~4mm (deformed). 2002 Va llonia subpulchella (Sandberger 1874 [sic]) – Remarks: According to Lueger (1981), who empha- Harzhauser & Kowalke, p. 76, pl. 10, figs. 1–2. sized that G. subfusiformis is based on a very poor de- 2004 Va llonia subpulchella (Sandberger 1874 [sic]) – scription, this species might be conspecific with Gra- Harzhauser & Binder, p. 16, pl. 6, figs. 5–6. naria schuebleri (Klein 1846). The only available 2006 Va llonia lepida (Reuss, 1852) – Kókay, p. 70. specimen from the Rein Basin is deformed and the 2008 Va llonia subpulchella (Sandberger 1874 [sic]) – Harzhauser et al., p. 48, figs. 4.4–4a. internal features of the aperture are largely destroyed. Material: Several specimens from Enzenbach, NHMW Thus, the identification remains doubtful and we fol- 2012/0154/0055–0056, NHMW 2012/0119/0016. low the proposal of Wenz (1923). Dimensions: Illustrated specimen (height x width): 0.8 x Distribution: Granaria subfusiformis (Sandberger 2.1 mm. 1875) is recorded from various localities of the Silva- Remarks: The specimens from the Rein Basin are na-beds in southern Germany (Wenz 1923). Records conspecific with the ubiquitous Middle Miocene spe- from the Middle Miocene of Ukraine are based on cies, which is usually referred to as Va llonia subpulchel- verypoorlypreservedmaterialdescribedbyŁomnicki la (Sandberger 1875). Gerber (1996) states that (1886). The rlea y Middle Miocene mollusc fauna of Lake Rein 23

Family Fitzinger, 1833 1923 Ve rtigo (Ve rtigo) callosa (Reuss)– Wenz, p. 983. Subfamily Vertigininae Fitzinger, 1833 1966 Ve rtigo (Ve rtigo) antivertigo callosa Reuss – Steklov, p. 124, pl. 3, figs. 49–50. Genus Ve rtigo Müller, 1774 1967 Ve rtigo (Ve rtigo) callosa (Reuss)– Schütt, p. 206, Type species: Ve rtigo pusilla Müller, 1774. Recent, Europe. fig.8. 1976 Ve rtigo (Ve rtigo) callosa (Reuss)– Schlickum, p. Ve rtigo angulifera Boettger, 1884 9, pl. 2, fig.24. (Plate 8, figs. 5–7) 1981 Ve rtigo (Ve rtigo) callosa (Reuss)– Lueger, p. 20, pl. 2, figs. 3–5. 1884 Ve rtigo (Alaea) angulifera n. sp. –Boettger, p. 1998 Ve rtigo callosa – Finger, p. 44, pl. 9, figs. A–C. 271, pl. 4, figs. 10a–c. 1999 Ve rtigo callosa (Reuss 1849) – Stworzewicz, p. 1889 Ve rtigo (Alaea) angulifera Bttgr. – Boettger, p. 137, figs. 6–7. 86. Material: 1 specimen from Enzenbach, NHMW 1919 Ve rtigo (Alaea) angulifera Boettger – 2012/0154/0061. Gottschick & Wenz, p. 18, pl. 1, figs. 36–37. 1923 Ve rtigo (Ve rtilla) angulifera angulifera Boettger – Dimensions: Illustrated specimen (height x width): 1.25 x Wenz, p. 1006. 0.85 mm. 1967 Ve rtigo (Ve rtilla) angulifera angulifera O. Boettger Remarks: Boettger (1889) referred to an internal – Schütt, p. 207, fig.9. cast from Straßgang, which he compared with Ve rtigo 1985 Ve rtigo (Ve rtilla) angulifera angulifera Boettger – alloeodus Sandberger, 1858. Although not well vis- Čejchan, p. 176, pl. 1, figs. 1–5, pl. 2, figs. 1–3. ible in the illustrations, the specimens bear two blunt 1998 Ve rtigo angulifera – Finger, p. 44, pl. 9, fig. H. 1999 Ve rtigo angulifera O. Boettger – Stworzewicz, and prominent palatal denticles and a well developed p. 144, fig.18. columellaris. Morphologically they correspond fully 2008 Ve rtigoangulifera Boettger,1884–Harzhauser to the morphotypes presented by Finger (1998) et al., p. 50, figs. 5.7–8. from the Middle Miocene of Steinheim in Germany. Material: 3 specimens from Enzenbach, NHMW Distribution: Wenz (1923), Stworzewicz (1993, 2012/0154/0058–0060. 1999) and Kókay (2006) list this species from the Dimensions: Height x width: 1.25 x 0.75 mm. Early Miocene of France, Germany, Czech Republic, Distribution: This species appears already during the Hungary and Poland. Moser et al. (2009) mention it Early Miocene, when it is known from Frankfurt from the late Early or early Middle Miocene of Sand- (Germany), Dolnice (Czech Republic) and Bełchatów elzhausen in southern Germany. During the Middle (Stworzewicz1999). Around the Early/Middle Miocene it is a widespread species in the Silvana-beds Miocene boundary it is recorded from Undorf (Ger- of southern Germany and is also documented from many) and the Rein Basin and is reported also from the Badenian and Sarmatian of Austria and Hungary the Late Badenian of Hungary(Gál et al. 2000, Hír (Gál et al. 2000, Schütt 1967, Reischütz 2000). & Kókay 2004). During the late Middle Miocene Its easternmost records come from the Sarmatian of (Sarmatian) it is frequently recorded from the Stein- Ukraine (Gožik & Prysjazhnjuk 1978) and the heim Basin (Finger 1997), the North-Alpine Fore- Middle Miocene of the Caucasus region (Steklov land Basin (Schütt 1967) and the Gratkorn Basin in 1966). Its last occurrences are known from the Late Styria (Harzhauser et al. 2008). Its eastern-most Miocene of Austria and Hungary from the hinterland distribution covers the Middle Miocene of the of Lake Pannon (Lueger 1981, Harzhauser & Ukraineand the Fore-Caucasus (Gožik & Prys- Binder 2004). In the Rein Basin it is a rare species, jazhnjuk 1978, Čejchan 1985). In the Rein Basin known only from Enzenbach; also recorded from it is only known from Enzenbach. Straßgang in the Graz Basin.

Ve rtigo callosa (Reuss 1849) Subfamily Gastrocoptinae Pilsbry, 1916 (Plate 8, figs. 1–2, 15) Genus Gastrocopta Wollaston, 1878 1849 Pupa callosa m. – Reuss, p. 30, pl. 3, fig.7. Type species: Pupa acarus Benson, 1856. Recent, Cape Verde. 1889 Ve rtigo (Alaea) callosa (Rss.) mut. alloeodus Sbgr. – Boettger, p. 298. Gastrocopta acuminata (Klein 1846) 1916 Ve rtigo (Alaea) callosa (Reuss)– Gottschick & Wenz, p. 13, pl. 1, figs. 26–34. (Plate 8, figs. 9–11, 14) 24 Mathias Harzhauser et al.

1846 Pupa acuminata mihi – Klein, p. 75, pl. 1, figs. 19a– 2000). It is recorded from Rein and Enzenbach in the b. Rein Basin and from Straßgang in the Graz Basin. 1853 Pupa quadridentata mihi – Klein, p. 216, pl. 5, fig.13. Gastrocopta suevica (Boettger 1889) 1854 Pupa quadridentata Klein – Gobanz, p. 17. (Plate 8, figs. 8, 12) 1858 Pupa quadridentata Klein –Unger, p. 3. 1882 Pupa fissidens Sandb. – Standfest, p. 177 (non Pupa 1916 Leucochila acuminata (Klein) – Gottschick & (Ve rtigo) fissidens Sandberger, 1858). Wenz, p. 62, pl. 1, fig.4. 1889 [Leucochilus quadriplicatum] mut. suevica Sbgr.– 1923 Gastrocopta (Albinula) acuminata acuminata Boettger, p. 279 (non Pupa (Ve rtigo) suevica (Klein) – Wenz, p. 916. Sandberger 1875). 1966 Gastrocopta (Albinula) acuminata Klein – 1889 Leucochilus aff. quadriplicatum (A.Br.) (aff. 4-dentata) Steklov, p. 133, pl. 2, figs. 29–33, text-figs. 44–45. – Boettger, p. 287. 1981 Gastrocopta (Albinula) acuminata acuminata 1891 Pupa (Ve rtigo) flexidens Rss. – Penecke, p. 368 (non (Klein) – Lueger, p. 23, pl. 2, fig.10. Pupa (Ve rtigo) flexidens Reuss 1861). 1999 Gastrocopta acuminata (Klein 1846) – 1893 Pupa (Ve rtigo) flexidens Reuss – Hilber, p. 308 Stworzewicz, p. 161, figs. 56–58. (non Pupa (Ve rtigo) flexidens Reuss 1861). 2000 Gastrocopta (Albinula) acuminata (Klein 1846) – 1913 Pupa flexidens Rss. – Benesch, p. 351 (non Pupa Manganelli & Giusti, p. 60, pl. 1, figs. 1–6, pl. 2, (Ve rtigo) flexidens Reuss 1861). figs. 1–7. 1923 Ve rtigo (Ptydoalaea) cf.?flexidens (Reuss)– Wenz, 2004 Gastrocopta (Albinula) acuminata (Klein 1846) – p. 1005 Harzhauser & Binder, p. 20, pl. 8, figs. 15– 1984 [Gastrocopta (Sinalbinula)] suevica (O. Boettger) 20. – Zilch, p. 159, pl. 1, fig.2. 2006 Gastrocopta (Albinula) acuminata acuminata 1999 Gastrocoptasuevica (Sandberger 1875) – (Klein) – Kókay, p. 65, pl. 24, fig.7. Stworzewicz, p. 164, fig.62. Material: 3 specimens from Enzenbach, NHMW 2000 Gastrocopta (Albinula) suevica Boettger, 1889 – 2012/0154/0062–0064. Manganelli & Giusti, p. 76, pl. 8, fig.6 (cum Dimensions: Height x width: 2.0 x 1.2 mm, 2.4 x 1.6 mm. syn.). ? 2003 Gastrocopta (Albinula) cf. acuminata (Klein 1846) Remarks: In the Rein Basin assemblages this species – Mandic & Harzhauser, p. 97, pl. 1, figs. 5–6 was probably often intermingled with Gastrocopta (non Pupa acuminata Klein 1846). suevica (Boettger 1889). It differs omfr that species Material: 1 specimen from Enzenbach, NHMW clearly in its more globular outline and the two char- 2012/0154/0065. acteristic prominent palatal denticles and the presence Dimensions: Height x width: 2.95 x 1.7 mm. of a small infraparietal denticle. Remarks: The specimen from Enzenbach agrees fully Distribution: A widespread species in the Middle with the lectotype of Gastrocopta suevica (Boettger Miocene deposits of the Silvana-beds in the North Al- 1889) from the Middle Miocene of Steinheim as illustrated pine Foreland Basin, from Switzerland to southern in Zilch (1984) and Manganelli & Giusti (2000). Germany (Wenz 1923). Moser et al. (2009) men- Gastrocopta suevica is a comparatively conical-fusiform tion the species from the late Early or early Middle Gastrocopta and characterized by a third denticle between Miocene of Sandelzhausen in southern Germany, the two main palatal denticles. The species was formally which is roughly coeval with the deposits of the Rein introduced by Boettger (1889), although he re- Basin. In the Paratethys area it is present during the ferred to a name proposed by Sandberger (1875). Badenian and Sarmatian, frequently reported from Pupa (Ve rtigo) suevica, Sandberger, 1875, however, the Late Badenian of Hungary (Gál et al. 2000, Hír is a nomen nudum (Schlickum 1979a, Zilch & Kókay 2004, Kókay 2006) and the Sarmatian of 1984). Recently, this unnamed species was (re)de- Ukraine (Gožik & Prysjazhnjuk 1978). Last re- scribed by Stworzewicz & Prisyazhnyuk cords from Central Europe are documented from the (2006) as Gastrocopta (Sinalbinula) sandbergeri. A de- Late Miocene hinterland of Lake Pannon (Lueger tailed discussion on the complex taxonomic history of 1998, Harzhauser & Binder 2004). Steklov these species is given in Manganelli & Giusti (1966) reports occurrences from the Caucasus region (2000) and Stworzewicz & Prisyazhnyuk from the Middle Miocene up the Maeotian (Late (2006). Miocene). In southern Europe it persits up the Plio- Gastrocopta suevica (Boettger, 1889) was first cene (Perugia region, , Manganelli & Giusti mentioned from the Rein Basin by Standfest The rlea y Middle Miocene mollusc fauna of Lake Rein 25

(1882) as Pupa fissidens Sandberger, 1858, which is Type stratum: Lower Badenian lacustrine marls of the Rein an Oligocene to Early Miocene species. Penecke beds. (1891) recognized the mistake and proposed an iden- Material: 4 specimens from Enzenbach in the NHM collection tification with Pupa flexidens Reuss, 1861, which is (NHMW2012/0154/0066–0068,NHMW2012/0119/0017). also an Early Miocene species. Wenz (1923) doubted Diagnosis: Barrel-shaped pupoid shell with reticulate that the specimens from Rein, which have not been protoconch; teleoconch characterized by an axial illustrated so far, are conspecific with either of these sculpture which rapidly decreases in strength during species and suggested that it might rather represent a ontogeny; aperture simple without denticles or folds. Gastrocopta. Only Boettger (1889) already dis- Description: A barrel-shaped pupoid shell consisting cussed a relation of the Rein Basin species with Gas- of 5 whorls. The protoconch comprises c. 1.5 strongly trocopta quadridentata (Klein 1853) [= Gastrocopta convex, low trochiform whorls with very prominent acuminata (Klein 1846)] but did not have well pre- reticulate sculpture and attains a diameter of 350 μm. served specimens at hand. The first two teleoconch whorls are trochiform, sepa- A specimen, described as Gastrocopta cf. acumi- rated by deep sutures, strongly convex and increase nata (Klein) by Mandic & Harzhauser (2003) rapidly in width and height, coinciding with the maxi- from the lower Middle Miocene coastal marine Gain- mum diameter of the shell. The sculpture consists of dorf Formation in Lower Austria might also represent very prominent, strongly prosocline axial ribs. Their G. suevica. It has a third palatal denticle but lacks the strength decreases during growth whilst the density basal plica. increases. On the last whorls, the axial sculpture is Distribution: This species is known from the Middle weak and resembles growth lines. The convexity of Miocene of Steinheim (Germany). In the Rein Basin, these whorls decreases as well and the terminal part of it is documented from Enzenbach and Rein. Hilber the last whorl is nearly straight-sided. Aperture con- (1893) mentions it also from Straßgang in the Graz sisting of a slightly thickened peristome with straight Basin. A coeval occurrence in the North Alpine Fore- columellar lip, largely reduced parietal lip and moder- land Basin might be represented by the above dis- ately convex palatal lip and base; no folds or denticles cussed specimen in Mandic & Harzhauser are developed; umbilicus narrow but distinct. (2003). Remarks: The specimens from Enzenbach are remi- Occurrences mentioned from the Sarmatian and niscent of the Middle Miocene iratiana (Du- Pannonian of the Paratethys area as Gastrocopta suevica puy 1850) in outline and protoconch sculpture but (Boettger) by Kókay (2006) and Hír & Kókay are distinguished easily by the lack of a parietal denti- (2010) seem to represent rather Gastrocopta (Sinalbi- cle. The Middle Miocene Truncatellina lentilii (Mill- nula) sandbergeri. er 1900) is higher, rather smooth and bears a parietal denticle as well. Similarly, the Oligocene to Early Mio- cene Truncatellina cryptodus (Sandberger 1858) Subfamily Tr uncatellininae Steenberg, 1925 differs in its parietal denticle. Truncatellina podolica Genus Truncatellina Lowe, 1852 (Łomnicki 1886) from the Middle Miocene of Type species: Pupa linearis Lowe, 1852. Recent, Madeira. Ukraine is higher and lacks the prominent sculpture (see Gožik & Prysjazhnjuk 1978, Prysjazh- Truncatellina pantherae Harzhauser & Neubauer n. njuk 2008). sp. Steklov(1966) described a Truncatellina sp. from the Sarmatian of the Caucasus region, which is (Plate 8, figs. 3–4, 13) reminiscent of the Austrian species. It is morphologi- Etymology: Referring to the coat-of-arms of Styria, which shows a panther. cally very close to (Férussac Holotype: NHMW 2012/0154/0066; height: 1.75 mm, width 1807), from which it differs slightly in its sturdy shell 0.85 mm (Plate 8, fig.3). and the more circular aperture. Gožik & Prysjazh- Paratype 1: NHMW 2012/0154/0067; height: 1.8 mm, width: njuk (1978) describe this species again as Truncatel- 0.85 mm (Plate 8, fig.4). lina cylindrica sarmatica Prysjazhnjuk, 1978, from Paratype 2: NHMW 2012/0154/0068; height: 1.5 mm, width: the Sarmatian of Ukraine. A separation from the 0.8 (Plate 8, fig.13). slightly older Truncatellina pantherae is based on the Type locality: Enzenbach, Rein Basin, Styria, Austria. stout outline and very depressed spire of Truncatellina 26 Mathias Harzhauser et al.

sarmatica Prysjazhnjuk, 1978. Moreover, its aper- 2006 Triptychia (Triptychia) peneckei Schlosser 1907 – ture has a thickened and well developed peristome Schnabel, p. 163, pl. 7, fig.80. with a continuous parietal lip. Material: No material available; the collection of Gobanz Distribution: So far only known from Enzenbach in (1854) is lost. Dimensions: Probably between 34–43 mm in height (Schna- the Rein Basin. bel 2006). Suborder Pilsbry, 1900 Remarks: Wenz (1923) considered Triptychia pe- Infraorder Clausilioinei Nordsieck, 1993 neckei Schlosser, 1907 to be a synonym of Tripty- chia (Triptychia) grandis (Klein), which is now treat- Superfamily Mörch, 1864 ed as Triptychia kleini Schnabel (2006). Schnabel Family Filholiidae Wenz, 1923 (2006), however, accepted the species level status of Genus Triptychia Sandberger, 1875 Triptychia peneckei based on its strongly convex Type species: Clausilia antiqua von Zieten, 1832. Miocene, whorls, which differ considerably from T. kleini. The Germany. type specimen is lost and no additional specimen is known so far. Triptychia reinensis Schnabel, 2006 Distribution: Only known from the early Badenian (Plate 7, figs. 12–14) (Langhian) of the Rein Basin (Rein) and from Straß- gang in the Graz Basin. 2006 Triptychia (Triptychia) kleini reinensis n. ssp. Schnabel, p. 148, pl. 3, figs. 35–39. Material: Several fragmentary specimens from Rein and Tunner- Family Mörch, 1864 schacht at Leoben (IPUW) mentioned by Schnabel (2006); 2 Genus Cochlodina Férussac, 1821 specimens from the UMJ collection Inv. 1892/VII/30. Type species: Clausilia bidens Draparnaud, 1805. Recent, Dimensions: Largest specimen of Schnabel (2006), height x France. width: 37 x 8.9 mm; illustrated specimen: 28 x 11 mm. Remarks: Schnabel (2006) introduced Triptychia Subgenus Miophaedusa Norsieck, 1972 kleini as replacement name for the preoccupied Type species: Clausilia (Dilataria) perforata Boettger, 1877b. Clausilia grandis Klein, 1846, and described a new Early Miocene, Czech Republic. subspecies for the specimens from the Rein Basin. The differences in the aperture, such as the deeper position Cochlodina (Miophaedusa) reinensis Harzhauser & of the parietal fold, separate these specimens from Neubauer n. nom. Styria clearly from the Triptychia kleini kleini from the Middle Miocene Silvana-beds of Germany. Therefore, 1891 Clausilia () Gobanzi sp. nov. – we consider Triptychia reinensis Schnabel, 2006, to Penecke,p. 366, pl. 21, figs.10a–b (non Clausilia Gobanzi Pfeiffer 1868). represent a distinct species. As all indicative specimens 1893 Clausilia (Charpentieria) Gobanzi Pen. – Hilber, are illustrated by Schnabel (2006) we refer to this p. 308 (non Clausilia Gobanzi Pfeiffer 1868). publication. 1923 Charpentieria gobanzi (Penecke)– Wenz, p. 758 Distribution: Only known from the early Badenian (non Clausilia Gobanzi Pfeiffer 1868). (Langhian) of the Rein Basin (Rein) and the Leoben 1981 Cochlodina? gobanzi (Penecke)– Nordsieck, p. Basin (Tunnerschacht at Leoben, Styria). 107. 2000 Cochlodina (Miophaedusa)? gobanzi (Penecke)– Triptychia peneckei Schlosser, 1907 Nordsieck, p. 5. Material: No material available; the collection of Penecke 1854 Clausilia grandis (?) Klein – Gobanz, p. 18, (1891) is lost. fig.6 (non Clausilia grandis Klein, 1846 = Etymology: Referring to the locality Rein in Styria (Austria). Triptychia kleini Schnabel, 2006). Remarks: Fragment of a slender cylindrical shell with 1891 Triptychia ulmensis Sandb. – Penecke, p. 365 strongly reduced sculpture, comprising only the last (nonClausilia(Triptychia)ulmensisSandberger three whorls. Nordsieck (1981, 2000) placed this 1875). 1893 Triptychia Ulmensis Sandb. – Hilber, p. 308 (non species with question mark in Cochlodina (Miophae- Clausilia (Triptychia) ulmensis Sandberger dusa), which is adopted herein. Nordsieck (2000) 1875). pointed out that Clausilia Gobanzi Penecke, 1891, 1907 Triptychia Peneckei – Schlosser, p. 788. is preoccupied by Clausilia Gobanzi Pfeiffer, 1868. The rlea y Middle Miocene mollusc fauna of Lake Rein 27

Therefore, we propose Cochlodina (Miophaedusa) 1893 peregrina Sandb. – Hilber, p. reinensis as replacement name. 308 (non Succinea peregrina Sandberger Distribution: Only known from the early Middle 1875). Miocene of Rein in the Rein Basin. 1923 Succinea (Amphibina) minima minima Klein – Wenz, p. 893. Genus Pseudidyla Boettger, 1877 1976 Succinea (Hydrotropa?) minima Klein – Schlickum, p. 11, pl. 2, fig.34. Type species: Clausilia moersingensis Sandberger, 1875. Mio- 1998 Succinea minima v. Klein 1853 – Finger, cene, Germany. p. 18, pl. 12, fig. H. non2006 Succinea minima Klein, 1853 – Kókay, p. Pseudidyla standfesti (Penecke 1891) 74, pl. 27, fig.13. 1891 Clausilia (Pseudidyla) Standfesti sp. nov. – Material: 2 specimens from Enzenbach, NHMW Penecke, p. 367, pl. 21, figs. 11a–b. 2012/0154/0069–0070. 1893 Clausilia (Pseudidyla) Standfesti Pen. – Hilber, p. Dimensions: Largest specimen (height x width): 8.3 x 4.7 mm. 308. Description: Drop-shaped shell consisting of three 1923 Pseudidylastandfesti (Penecke)– Wenz, p. 793. whorls. The protoconch is low, comprises c. 1 whorl 1981 Pseudidyla? standfesti (Penecke)– Nordsieck, p. 107. and starts with a strongly convex initial part, which 2000 Pseudidyla? standfesti (Penecke)– Nordsieck, bears a dense pattern of wrinkles. Its diameter increas- p. 6. es rapidly, whilst the convexity decreases and the wrin- Material: No material available; the collection of Penecke kles are replaced by wrinkled axial ribs; the transition (1891) is lost. into the teleoconch is indistinct. The first teleoconch Remarks: Nordsieck (1981, 2000) placed this whorl is small, increases rapidly in height and is weak- poorly defined species with question mark in Pseu- ly convex. The last whorl is large, strongly widened didyla, which is adopted herein. and bears its maximum diameter in the lower third. It Distribution: Only known from the early Middle is evenly convex in its early part but becomes nearly Miocene of Rein in the Rein Basin. straight-sided above the maximum convexity close to the aperture; sutures are deeply incised. The wide, Infraorder Succineoinei Minichev & drop-shaped aperture is simple without thickened Slavoshevskaja, 1971 peristome. Shell surface smooth except for very deli- cate growth lines. Superfamily Beck, 1837 Remarks: The pase ration of the genera Oxyloma and Family Beck, 1837 Succinea is mainly based on anatomical features (Ker- Subfamily Succineinae Beck, 1837 ney et al. 1983). Nevertheless, we transfer this species Genus Oxyloma Westerlund, 1885 to Oxyloma based on the morphologic similarities Type species: Succinea hungarica Hazay, 1880 [= Oxyloma with extant Oxyloma species, such as dunkeri (Pfeiffer 1865)]. Recent, Hungary. (Risso 1826). This treatment was anticipated by Schlickum (1976), who placed the species with Oxylomaminima (Klein 1853) n. comb. some doubt in Hydrotropa Lindholm, 1927, which (Plate 9, figs. 1–2, 6) is now considered to be a synonym of Oxyloma (Man- 1853 Succinea minima v. Klein, p. 205. ganelli et al. 1995, MollBase.de). 1854 Succinea Pfeifferi Rossm. – Gobanz, p. 13 This species was identified as Succinea pfeifferi by [non Succinea pfeifferi Rossmässler, Gobanz (1854), which is a synonym of Oxyloma ele- 1835 = Oxyloma elegans (Risso 1826)]. gans (Risso 1826). The taex nt Oxyloma elegans differs 1875 Succinea (Amphibina) minima Klein – in its more convex spire whorls, the slightly deeper su- Sandberger, p. 601, pl. 29, fig.26. ture and the more prominent growth lines. The speci- 1882 Succinea peregrina Sandb. – Standfest, men from the Sarmatian of Várpalota in Hungary, de- p. 176 (non Succinea peregrina Sandberger 1875). scribed by Kókay (2006) as Succinea minima, is not 1891 Succinea peregrina Sandb. – Penecke, p. conspecific with the species from the Rein Basin. It 168 (non Succinea peregrina Sandberger has a shorter spire, is less elongate, has strongly convex 1875). whorls and has a more concave columella. 28 Mathias Harzhauser et al.

Distribution: Oxyloma minima appears around the Family Subulinidae Fischer & Crosse, 1877 Early/Middle Miocene boundary and is recorded Subfamily Rumininae Wenz, 1923 from Undorf (S Germany). During the Middle Mio- Genus Opeas Albers, 1850 cene it is recorded from several localities of the Silva- Type species: Bulimus pumilus Pfeiffer, 1840. Recent, Cuba. na-beds (Mörsingen, Hohenmemmingen, Zwiefalten- dorf ) and appears also in the late Middle Miocene of Opeas minutum (Klein, 1853) Steinheim (all Germany). A specimen from the Sar- matian of Ukraine, described as Linné (Plate 9, figs. 3–5, 7) by Gožik & Prysjazhnjuk (1978), might represent 1853 Bulimus minutus v. Klein, p. 212, pl. 5, fig.9. the easternmost occurrence. 1858 Bulimus n. sp.– Unger, p. 3. 1875 minuta Klein sp.– Sandberger, p. 596, pl. Infraorder Achatinoinei Schileyko, 1979 29, fig.16. 1882 Bulimus minutus Klein – Standfest, p. 179. Superfamily Swainson, 1840 1891 Stenogyra (Opeas) minuta Klein var. reunensis var. nov. Family Cecilioididae Mörch, 1864 – Penecke, p. 365, pl. 21, figs. 9a–b. 1893 Stenogyra (Opeas) minuta Kleinvar. Reunensis Pen. Genus Cecilioides Férussac, 1814 – Hilber, p. 308. Type species: Buccinum acicula Müller, 1774. Recent, Europe. 1913 Stenogyra minuta Klein – Benesch, p. 351. 1923 Opeas minutum (Klein) – Wenz, p. 872. Cecilioides aciculella (Sandberger 1875) 1966 Opeas minutum Klein – Steklov, p. 206, pl. 9, fig.180. (Plate 9, figs. 14–15) 1976 Opeas (Opeas) minutum (Klein) – Schlickum, p. 1875 Caecilianella aciculella Sandberger, p. 595, pl. 29, 14, pl. 3, fig.46. fig.15. 2006 Opeas minutum (Klein), 1853 – Kókay, p. 80, pl. 1923 Cecilioides (Cecilioides) aciculella (Sandberger)– 30, fig.16. Wenz, p. 1088. Material: Numerous shells from Enzenbach, 1976 Cecilioides (Cecilioides) aciculella (Sandberger)– NHMW 2012/0154/0073–0075, NHMW Schlickum, p. 19, pl. 5, fig.68. 2012/0119/0019. 1981 Cecilioides (Cecilioides) aciculella (Sandberger)– Dimensions: Illustrated specimen (height x width): 5.2 x Lueger, p. 49, pl. 7, fig.1. 1.9 mm. 1998 Cecilioides aciculella – Finger, p. 50, pl. 12, fig. I. 2004 Cecilioides (Cecilioides) aciculella (Sandberger)– Description: Elongate, slender shell consisting of 6 Harzhauser & Binder, p. 21, pl. 9, figs. 8–11. whorls. The low protoconch is poorly demarcated 2004 Cecilioides aciculella (Sandberger)– Hír & Kókay, from the teleoconch, comprising more than one, mod- p. 89, fig.9:3. erately convex whorl, which increases rapidly in diam- Material: 3 specimens from Enzenbach, NHMW eter from the small nucleus (diameter c. 600 µm). Its 2012/0154/0071–0072, NHMW 2012/0119/0018. surface is nearly smooth aside from faint spiral threads. Dimensions: Largest specimen (height x width): 1.9 x 0.8 mm. The onset of the teleoconch is indicated by the succes- Remarks: The juvenile shell corresponds fully to a sive formation of prosocyrt growth lines. In addition, specimen from the Sarmatian of Steinheim, illustrated widely spaced and narrow axial swellings appear at the by Finger (1998), and the also juvenile specimen adapical suture, causing a characteristic serrated su- from the Pannonian of the Vienna Basin (Har- ture. The teleoconch whorls are high, weakly convex zhauser & Binder 2004). and separated by deep sutures. The aperture is simple; Distribution: Cecilioides aciculella is a common spe- the thin inner lip is everted and forms a chink-like um- cies during the Middle Miocene, when it is recorded bilicus. from the Silvana-beds (e.g. Mörsingen, Germany), the Remarks: Penecke (1891) separated the specimens Sarmatian of the Steinheim Basin, the Late Badenian from the Rein Basin as subspecies Stenogyra minuta of Mátraszőlős and the Sarmatian of Felsőtárkány in reunensis. He referredto a letter by Boettger (1887), Hungary, and the Middle Miocene of Ukraine (Wenz who stated that the specimens are shorter, rather stok- 1923, Gál et al.1999, Híret al. 2001). Its latest oc- ky and the last whorl more convex compared to Opeas currences are known from the Late Miocene (Panno- minutum. The rehe in studied samples from Enzen- nian) of the Vienna Basin (Harzhauser & Binder bach yield such stout shells but the typical elongate 2004). morphology is present as well. Therefore, we follow The rlea y Middle Miocene mollusc fauna of Lake Rein 29

Wenz (1923) and consider Stenogyra minuta reunen- Bavaria as Glandina inflata var. porrecta Gobanz. sis a synonym of Opeas minutum. Compared to the illustration in Gobanz (1854) its Distribution: A widespread species in the Middle aperture is wider and especially the base is much wid- Miocene of southern Germany and the Swiss Molasse er. Consequently, a comparable shell from Mörsingen Basin. Wenz (1923) lists numerous localities, such as was also treated as Palaeoglandina gracilis porrecta by Mörsingen, Zwiefaltendorf, Steinheim and Undorf Schlickum (1976), but might rather represent a dif- near Regensburg. Kókay (2006) reports this species ferent species.Specimens from the Sarmatian of Hun- also from the Late Badenian of Herend in Hungary. In gary, which are also identified as Palaeoglandina graci- the Rein Basin, it is known from Rein and Enzenbach. lis porrecta by Kókay (2006), seem to differ in their Occurrences in the Miocene of Ukraine, which are broader and convex spire and the narrow adsutural based on poorly preserved casts described by collar with dense axial ribs.Hence, based on the illus- Łomnicki (1886), need confirmation. The eastern- trations in Gobanz (1854) it is questionable, wheth- most occurrence is mentioned by Steklov (1966) er all these specimens are conspecific with the species from the Karaganian (Middle Miocene) of the Cauca- from the Rein Basin. sus region. Distribution: The geographic and stratigraphic distri- butions of this species are difficult to evaluate. It is Superfamily Gray, 1840 known from Enzenbach in the Rein Basin and from Family H. & A. Adams, 1855 Straßgang in the Graz Basin. Other occurrences in the Genus Palaeoglandina Wenz, 1914 Middle Miocene Silvana-beds and the Sarmatian of Hungary need verification after new material from the Type species: Limnaea gracilis von Zieten, 1832. Miocene, type locality might become available. Germany. Superfamily Morse, 1864 Palaeoglandina porrecta (Gobanz 1854) Family Discidae Thiele, 1931 species inquirenda Genus Discus Fitzinger, 1833 1854 porrecta m. – Gobanz, p. 19, fig.5. 1858 Achatina porrecta Gobanz –Unger, p. 3. Type species: Helix ruderata Hartmann, 1821. Recent, Eu- rope. ? 1875 Glandina inflata var. porrecta Gobanz – Sandberger, p. 605, pl. 29, fig.32. 1923 (Palaeoglandina) gracilis porrecta (Gobanz) Discus pleuradrus (Bourguignat 1881) – Wenz, p. 846. (Plate 9, figs. 8–13) ? 1976 Palaeoglandina gracilis porrecta (Gobanz, 1854) – Schlickum, p. 19, pl. 5, fig.69. 1854 Helix stenospira Reuss – Gobanz, p. 17 (non Helix ? 2006 Palaeoglandina gracilis porrecta (Gobanz), 1854 – stenospira Reuss 1849). Kókay, p. 85, pl. 32, figs. 8–9. ?1854 Helix plicatella Reuss – Gobanz, p. 17 (non Helix plicatella Reuss 1849). Material: 1 specimen from Enzenbach, NHMW 1858 Helix stenospira Reuss–Unger,p. 3 (non Helix 2012/0154/0076. stenospira Reuss 1849). Dimensions: Height x width: 20.8 x 9.8 mm. 1881 Helix pleuradra Bourguignat, p. 55, pl. 3, figs. Remarks: Only a single poorly preserved specimen is 67–72. available, which is tentatively identified as Palaeoglan- 1882 Helix stenospira Reuss – Standfest, p. 177 (non dina porrecta. The type of Gobanz (1854) was col- Helix stenospira Reuss 1849). lected at Straßgang in the Graz Basin (and not at Rein) 1891 Patula (Discus) stenospira Rss. sp.– Penecke, p. and is lost. The UMJ collections, which yield parts of 359 (non Helix stenospira Reuss 1849). the Penecke-collection, lack any specimens of this 1893 Patula (Discus) stenospira Reuss–Hilber, p. 308 species as well. As the type is lost, and all syntopic ma- (non Helix stenospira Reuss 1849). 1913 Patula stenospira Rss. – Benesch, p. 350 (non terial is very poorly preserved, the status of this species Helix stenospira Reuss 1849). is dubious. The perception of this species was strongly 1923 Goniodiscus (Goniodiscus) pleuradra (Bourgui- influenced by Sandberger (1875), who illustrated a gnat)– Wenz, p. 341. comparatively stout and coarser sculptured specimen 1923 Goniodiscus (Goniodiscus) cf. lunula stenospira with broader and higher spire from Häufelsburg in (Reuss)– Wenz, p. 335. 30 Mathias Harzhauser et al.

1976 Discus (Discus) pleuradra (Bourguignat) – Miocene shells. Most probably, Gobanz (1854) had Schlickum, p. 12, pl. 2, fig.37. rather high-spired specimens of this species at hand Material: Numerous shells from Enzenbach (NHMW when describing Helix plicatella Reuss from Rein. At 2012/0154/0077–0080, NHMW 2012/0119/0020) and Rein least the available collections do not contain any spec- (UMJ, NHMW). imens comparable with plicatella (Reuss Dimensions: Largest specimen (height x width): 2.7 x 4.6 mm. 1849), which was originally described from the Burdi- Description: Depressed trochiform shell comprising galian of Tuchořice in Czech Republic (Klika 1891). less than 1.5 protoconch whorls and up to 3 teleo- Distribution: Discus pleuradrus (Bourguignat) is conch whorls. The low and weakly convex protoconch known from the Middle Miocene Silvana-beds of attains a diameter of c. 800 µm and bears faint wrin- southern Germany and from Sansan in France. Early kles at the nucleus and delicate, slightly wrinkled spi- and Late Miocene occurrences seem to represent oth- ral threads; densely spaced growth lines may appear in er species (Moser et al. 2009). its last third close to the transition into the teleoconch. The teleoconch whorls are evenly convex, separated by “Discus“ schneideri Harzhauser & Neubauer n. sp. incised sutures and covered by regularly spaced axial ribs, which are prosocyrt to sigmoidal in apical view (Plate 11, figs. 18–20, 23–24) and strongly prosocline on the periphery. The axial Etymology: In honour of our colleague Simon Schneider CASP, ribs fade out towards the base and reappear as less Cambridge. prominent ribs close to the wide and deep umbilicus. Holotype: NHMW 2012/0154/0085; height: 1.0 mm, width: Aperture thin, circular and only slightly inclined. 2.9 mm (Plate 11, figs. 19, 23). Paratype 1: NHMW 2012/0154/0086; height: 0.65 mm, Remarks: The status of many Miocene and width: 1.9 mm (Plate 11, figs. 20, 24). Discus species is very unclear (see discussion in Mos- Paratype 2: NHMW 2012/0154/0087; height: 0.65 mm, er et al. 2009, Manganelli et al. 2011) and the width: 1.8 mm (Plate 11, fig.18). identification of the Rein Basin specimens is difficult. Type locality: Enzenbach, Rein Basin, Styria, Austria. This species is very frequent at Rein and Enzenbach Type stratum: Lower Badenian lacustrine marls of the Rein and displays some variability in spire height. Whilst beds. most shells correspond in shape to specimens de- Material: 4 shells from Enzenbach (NHMW 2012/0154/0085– scribed by Schlickum (1976) from Zwiefaltendorf, 0087, NHMW 2012/0119/0021). some specimens have a slightly more gradate spire. The Diagnosis: Small hygromiid with disc-shaped shell, specimen of Schlickum (1976) agrees also in the strong axial ribs and a prominent keel, adjoined by an weak axial sculpture on the periphery, whilst shells abapical concavity. Umbilicus deep and wide. Large, from the Early Miocene of Hungary, identified as D. convex, low trochiform protoconch with characteris- pleuradrus by Kókay (2006), differ in their promi- tic crazing effect sculpture. nent ribs. Janulus supracostatus (Sandberger 1872) Description: A small and disc-shaped species consist- is superficially similar but differs in its depressed spire ing of 1.25 convex, low trochiform protoconch whorls and the oblique aperture. Discus eugylphoides (Sand- and 2 less convex teleoconch whorls. The large proto- berger 1875) has strong axial ribs on the flanks and conch attains 750 µm in diameter and starts with a base. nearly smooth and immersed initial cap which passes This species has been repeatedly mentioned in the into a weakly granulous early part. This is soon re- literature from the Rein Basin as Helix stenospira placed by a conspicuous crazing effect sculpture which Reuss, but none of the authors has provided any il- is formed by irregular delicate spiral grooves and opis- lustrations. Therefore, already Wenz (1923) indicat- thocyrt axial grooves, bordering tiny pads. These may ed some doubt about the identifications by adding pass into tiny papillae in later protoconch stages. The “cf.” in his synopsis. A direct comparison clearly shows arrangement of the pads is not strict but a spiral struc- that the Rein Basin specimens differ considerably ture predominates. The apad ical side of the teleoconch from Discus stenospira (Reuss 1849), originally de- whorls is slowly increasing in with and bears promi- scribed from the Early Miocene of Tuchořice in Czech nent, densely spaced, prosocyrt axial ribs. The inter- Republic. The delicate axial sculpture of Discus steno- spaces are smooth aside from axially arranged wrin- spira, as described also by Boettger (1870), is op- kles, which appear close to the ribs and become more posed by the very prominent sculpture of the Middle prominent on the late part of the teleoconch. At that The rlea y Middle Miocene mollusc fauna of Lake Rein 31

stage of growth, a weak concavity appears close to the tle in common with the comparatively large and glob- periphery on the adapical side of the whorl. The pe- ular type species seetzeni (Pfeiffer1847) riphery is formed by a prominent, cord-like keel in the from the Near East region and its European pendant upper third delimitated by a concavity below, which X. geyeri (Soós 1926). Also the microsculpture of this passes over straight flanks into a convex base. The axial group needs a detailed analysis, which is beyond the ribs cross the keel, are strongly prosocline along the scope of this study. (Soós 1926) de- keel and cause a beaded outline. They become opis- velops hair-pits on the early teleoconch (Gitten- thocyrt and much weaker below the keel and re-ap- berger 1993). These are missing in the keeled species pear again on the base. The umbilicus is very wide and X. ebusitana gasulli (Paul 1984), which bears a prom- shows large part of the lower side of the protoconch. inent sculpture of radially arranged papillae. These dif- The aperture is destroyed. fer clearly from the crazing effect pattern of “Discus” Remarks: We place this species provisionally in “Dis- schneideri. Some North African species of the genus cus” but are aware that the conspicuous protoconch Rossmaessleria Hesse, 1907, are comparable in shape and the striking teleoconch features do not fit in Dis- but differ distinctly in their narrow to fully closed um- cus s.s. The closest relative is Patula alata Klika, 1891, bilicus. from the Early Miocene of Tuchořice (Czech Repub- Distribution: Only known so far from the Rein Basin lic), which differs mainly in its even more discoid (Enzenbach). shape and the lower number of axial ribs. Currently a revision of the Tuchořice fauna is in preparation by Infraorder Arionoinei Hoffmann, 1924 M.H. and T.A.N in which the generic status of both Superfamily Tryon, 1866 species will be settled. Family Baker, 1928 Some Miocene hygromiids display superficial Genus Euconulus Reinhardt, 1883 similarities with this species: Schlickum (1967) de- scribes Caracollina barreri (Bourguignat 1881) Type species: Helix fulva Müller, 1774. Recent, Europe. from the Middle Miocene of Zwiefaltendorf in Ger- many. The taex nt Caracollina lenticula (Férrussac Euconulus styriacus Harzhauser, Neubauer & 1821), which is the type species of the genus, is re- Binder n. sp. stricted to Western Europe and has a very wide um- (Plate 10, figs. 1–3, 22) bilicus. In contrast, Caracollina barreri has a closed umbilicus. Aside from the umbilicus, it differs clearly Etymology: Referring to Styria. Holotype: NHMW 2012/0154/0081; height 2.7 mm, width: from “Discus” schneideri in its much larger size and the 1.9 mm. much finer axial sculpture on the base. Caracollina dis- Type locality: Enzenbach, Rein Basin, Styria, Austria. ciformis (Wenz 1919), from the Middle Miocene of Type stratum: Lower Badenian lacustrine marls of the Rein Mörsingen, is larger, strongly depressed and lacks the beds. prominent keel. Material: Holotype only. Superficial misi laties are also seen in some species Diagnosis: Low trochiform shell with tightly coiled of Xerocrassa Monterosato, 1892 (Type species: whorls, a microsculpture of numerous delicate spiral Helix Seetzeni Pfeiffer 1847). Conchologically, this furrows and a distinct but rather narrow umbilicus. genus contains a broad range of morphologies com- The protoconch bears a characteristic pattern of spi- prising smooth and globular shells and ribbed, keeled rally arranged pits. ones. The latter type is represented by various species Description: Low protoconch comprising 1.2 nearly in Western Europe and on the western Mediterranean flat whorls of 680 μm diameter. The initial cap is islands [e.g. Xerocrassa barceloi (Hidalgo 1878), X. smooth, followed by conspicuous sculpture of c. 30 betulonensis (Bofill 1897), X. prietoi (Hidalgo spiral threads consisting of densely spaced tiny pits. 1878)] and by an eastern Mediterranean-Near East Te leoconch consisting of 4.5 tightly coiled whorls species group [e.g. X. claudiconus Hausdorf & Wel- forming a low trochiform outline. Their convexity is ter-Schultes in Welter-Schultes 1998, X. da- increasing during ontogeny and the sutures become vidiana (Bourguignat 1863), X. franciscoi Haus- more incised as well.A very weak concavity close be- dorf & Sauer 2009]. These prde essed, keeled, low the upper suture appears on the last whorl. A nar- strongly sculptured and usually small species have lit- row spiral cord appears along the lower suture but is 32 Mathias Harzhauser et al.

visible only if the following whorl is broken off. Mac- characteristic for Oxychilus procellarius sensu Schlic- roscopically, the shell surface is smooth aside from kum (1976). weak axial swellings on the early teleoconch. Its mi- Distribution: This species is described from the Mid- crosculpture is formed by very delicate and densely dle Miocene Silvana-beds of southern Germany spaced spiral grooves, causing a pattern of delicate and (Mörsingen, Zwiefaltendorf ) and from Steinheim flat spiral cords, which become nearly invisible on the (Wenz 1923). It persists into the Late Miocene and is last two whorls. The base is moderately convex and found at Leobersdorf and Eichkogel in Austria and bears subtle growth lines; umbilicus rather narrow Öcs in Hungary (Lueger 1981, Harzhauser & and simple. The aperture is destroyed; the cross sec- Binder 2004). tion of the last whorl suggests a circular outline of the aperture. Subfamily Godwiniinae Cooke, 1921 Remarks: The tlou ine and coiling corresponds fully Genus Aegopinella Lindholm, 1927 to representatives of Euconulus Reinhardt, 1883; especially the delicate spiral sculpture of the shell is Type species: Helix pura Alder, 1830. Recent, Great Britain. typical for several extant species of this genus (such as (Gray in Turton 1840), which Aegopinella cf. subnitens (Klein 1853) differs in its narrower umbilicus and regularly convex (Plate 10, figs. 10–12) last whorl). The teex nt North American Euconulus cf.1853 Helix subnitens Klein, p. 210, pl. 5, fig.7. polygyratus (Pilsbry 1899) develops a comparable 1854 Helix orbicularis Klein – Gobanz, p. 16 shell outline with a strongly convex penultimate whorl (non Helix orbicularis Klein 1846). cf.1875 Hyalinia orbicularis Klein – Sandber- and a slight adsutural concavity in the upper part of ger, p. 603, pl. 29, fig.28 (non Helix orbi- the last whorl. It differs omfr E. styriacus clearly in its cularis Klein 1846). high number of whorls and the higher last whorl. The 1882 Helix orbicularis Klein – Standfest, p. widespread (Müller1774) [syn. E. 177 (non Helix orbicularis Klein 1846). trochifomis (Montagu 1803)] differs in its higher 1891 Hyalina (Aegopina) orbicularis Klein sp. spire and more convex base and has a smooth proto- – Penecke, p. 358 (non Helix orbicularis conch (Bros & Martínez-Ortí 2009). Klein 1846). 1893 Hyalina (Aegopia) orbicularis Klein – Distribution: The genus was known as fossil so far Hilber, p. 308 (non Helix orbicularis from Pliocene deposits only (Wenz 1923). Euconulus Klein 1846). styriacus is only recorded from the early Middle Mio- cf.1923 Oxychilus subnitens subnitens (Klein) – cene of Enzenbach in the Rein Basin. Wenz, p. 282. cf.1976 Aegopinella subnitens (Klein) – Schlic- Family Hesse in Geyer, 1927 kum, p. 12, pl. 3, figs. 39–40. Subfamily Oxychilinae Hesse in Geyer, 1927 Material: 2 specimens from Rein (UMJ Inv. 1894/X/21). Dimensions: Largest specimen (height x width): 2.4 x 6.1 mm. Genus Oxychilus Fitzinger, 1833 Remarks: This species was intermingled with Discus Type species: Helix cellaria Müller, 1774. Recent, Europe. euglyphoides (Sandberger 1875) and Oxychilus cf. procellarius (Jooss 1918) in the collection of the Oxychilus procellarius (Jooss 1918) UMJ. The material of Penecke (1891), who men- tions a specimen of 19 mm diameter, seems to be lost. (Plate 10, figs. 4–9) The preservation of the few and small available speci- 1918 Hyalinia procellaria n. sp.– Jooss, p. 289. mens is poor and the identification is mainly based on 1976 Oxychilus procellarius (Jooss)– Schlickum, p. 13, the agreement in overall shape with typical specimens pl. 3, fig.42. from the Silvana-beds in southern Germany. Material: 2 specimens from Rein (UMJ Inv. 5823). Distribution: Widespread in the Middle Miocene Dimensions: Height x width: 1.9 x 4.1 mm, 3.0 x 7.3 mm. Silvana-beds of Germany (e.g. Mörsingen, Zwiefalten- Remarks: Both available specimens are poorly pre- dorf, Hohenmemmingen); also it is recorded from served and subadult. The identification remains some- Undorf and Steinheim (Wenz1923, Finger 1998). what doubtful and is based on the overall shape, the Additional occurrences from the Sarmatian of Haut- tightly coiled whorls and the deep sutures, which are zendorf (Austria) and of Mátraszőlős (Hungary) are The rlea y Middle Miocene mollusc fauna of Lake Rein 33

mentioned by Reischütz (2000) and Hír & Kókay Superfamily Rafinesque, 1815 (2004). Family Wagner, 1935 Genus Deroceras Rafinesque, 1820 Superfamily Zonitoidea Mörch, 1864 Family Mörch, 1864 Type species: Limax (Deroceras?) gracilis Rafinesque, 1820. Recent, North America. Genus Miozonites Pfeffer, 1929

Type species: Helix algiroides Reuss, 1849. Early Miocene, Deroceras sp. Czech Republic. (Plate 10, figs. 20–21) Miozonites costatus (Sandberger 1875) Material: 1 specimen from Enzenbach; NHMW 2012/0154/0082. (Plate 10, figs. 13–19) Dimensions: Length x width: 4.5 x 2.8 mm, 2.8 x 1.7 mm. 1875 Archaeozonites costatus Sandberger, p. 604. Remarks: The broad ovoid shells have a nucleus, 1882 Archaeozonites Haidingeri Reuss – Standfest, p. which is only slightly deflected to the left, a weak cen- 179 (non Helix Haidingeri Reuss, 1849). tral notch and a concave lower side. This morphology 1891 Archaeozonites Haidingeri Rss. sp.– Penecke, p. agrees well with shells of Deroceras as described by 358 (non Helix Haidingeri Reuss, 1849). 1893 Archaeozonites Haidingeri Reuss–Hilber, p. 308 Frank (2006). (non Helix Haidingeri Reuss, 1849). Distribution: The taex nt genus appears already dur- 1923 () costatus (Sandberger)– Wenz, ing the Miocene (Frank 2006) but is often intermin- p. 254. gled with and Limax. 1976 Archaeozonites costatus (Sandberger)– Schlik- kum, p. 18, pl. 5, fig.66. Superfamily Rafinesque, 1815 2002 Miozonites costatus (Sandberger, 1874 [sic]) – Family Elonidae Gittenberger, 1979 Binder, p. 168, pl. 1, figs. 14–16, pl. 3, fig.8, pl. 7, fig.3, pl. 8, fig.4. Genus Klikia Pilsbry, 1895 Material: 4 specimens from Rein; UMJ Inv. 1891/VII/18 (old Type species: Helix osculum Thomä, 1845. Miocene, Germany. inventory number from the geological collection of the Graz University). Klikia giengensis (Klein 1846) Dimensions: Largest specimen (height x width): 19 x 29 mm. Remarks: The specimens were originally identified as (Plate 11, figs. 9–11, 22) Archaeozonites Haidingeri Reuss, 1849 [= Miozonites 1846 Helix Giengensis v. Klein, p. 69, pl. 1, fig.9. algiroides (Reuss 1849)] by Standfest (1882) and 1858 Helix Giengensis Kraus –Unger, p. 3. Penecke (1891). This Oligocene to Early Miocene 1893 Helix (Gonostoma) osculum Thom.–Hilber, p. species, described from Tuchořice in Czech Republic, 308 (non Helix osculum Thomä 1845). is indeed very similar in general shape but differs in its 1923 Klikia (Klikia) giengensis giengensis (Klein) – lower spire, slightly more convex whorls and less dense Wenz, p. 539. 1976 Klikia (Klikia) giengensis (Klein) – Schlickum, p. axial sculpture. Miozonites steinheimensis (Jooss 16, pl. 4, fig.58. 1912), from the Sarmatian of Steinheim, lacks the 2004 Klikia giengensis (Klein) – Binder, p. 203, pl. 6, slight angulation of the whorls and has a higher and figs. 3a–b. more convex last whorl. The Early Miocene Metazon- 2006 Klikia (Klikia) giengensis (Klein) – Kókay, p. 91, ites subangulosus (von Zieten 1832) is comparative- pl. 35, fig.9. ly more globular and the last whorl is narrower. Material: 1 specimen from Rein, UMJ Inv. 1891/VII/21 (old Distribution: The species appears during the late Ear- inventory number from the geological collection of the Graz ly Miocene, when it is recorded from the Korneuburg University). Basin in Austria (Binder 2002) and Mauensee in Dimensions: Height x width: 5.4 x 10 mm. Switzerland (Jost et al. 2007). It becomes widespread Remarks: This species is characterized by its low spire, during the Middle Miocene from Switzerland to the slowly increasing diameter of the whorls, the col- Ukraine (Wenz1923). In the Rein Basin it is a rare lar-like everted peristome and the wide umbilicus. A species at Rein, known only from historical collec- dense pattern of tiny papillae covers the surface and is tions. most prominent on the adapical side of the shell. 34 Mathias Harzhauser et al.

This species was partly intermingled with a species Material: Numerous shells; Rein: UMJ Inv. 5821, UMJ Inv. identified as (Prosoosia)cf. godarti (Michaud 1882/XVIII/16, 1882/XVIII/37 (old inventory number from 1855) by Moser et al. (2009), referring to specimens the geological collection of the Graz University), Tallak: UMJ from Sandelzhausen (Germany). Prosoosia godarti Inv. 75.939, 75.845. (Michaud 1855), from the Pliocene of Hauterive Dimensions: Height x width: 6.2 x 10.5 mm, 5.4 x 8.5 mm, 5.9 x (France), differs omfr the specimen from Rein dis- 9.6 mm. tinctly in its depressed shape and the stronger increase of the last whorl’s diameter. Moreover, its umbilicus is Remarks: The material, stored in the collections of more perspectivic. the UMJ, was identified by Penecke as Helix devexa Reusson the label. Apula devexa (Reuss 1861), Distribution: This species appears already during the which is the type species of Apula, was described from Early Miocene (Binder 2004) and occurs around the the Burdigalian of Lipen (Czech Republic). It agrees Early/Middle Miocene boundary at Undorf (Germa- with the stratigraphically younger A. coarctata in over- ny) and Sansan (France). It is frequently mentioned all shape and has a comparable microsculpture but dif- from the Middle Miocene Silvana-beds (Mörsingen, fers in its lower aperture and less convex whorls. The Hohenmemmingen, Zwiefaltendorf ) and is also umbilicus of the Rein Basin specimens is reduced to a known from the Sarmatian of Várpalota (Hungary) narrow chink or even absent. This feature allows a (Schlickum 1976, Kókay 2006). The species group clear separation from the syntopic Klikia giengensis is also present in the late Early Miocene of Poland, de- (Klein1846). Another important difference is the scribed by Stworzewicz (1993) as Klikia giengensis much weaker and more delicate pattern of papillae bielanensis (Łomnicki 1902) and in the Sarmatian of compared to the blunt papillae of K. giengensis (Plate Ukraine, from where it is described as Klikia giengen- 11, fig.21). sis zamechovense Prysjazhnjuk in Gožik &Prys- jazhnjuk, 1978. It is recorded from Rein in the Rein Wenz (1923) treated Helix carinulata Klein of Basin and Straßgang in the Graz Basin. Gobanz (1854) as Leucochroopsis kleinii (Klein 1846). However, the description of Gobanz (1854) Genus Apula C. Boettger, 1911 rather suggests Apula coarctata. This interpretation is also supported by the fact that most shells of Apula Type species: Helix devexa Reuss, 1861. Early Miocene, Czech coarctata in the UMJ collection have old labels with Republic. the identification “Helix carinulata”.

Apula coarctata (Klein 1853) Distribution: A widespread species in the Middle Miocene Silvana-beds from Switzerland to Germany (Plate 11, figs. 5–8, 21) (Wenz1923). Among other localities, it is mentioned 1853 Helix coarctata v. Klein, p. 206, pl. 5, fig.3. from Mörsingen, Zwiefaltendorf and Steinheim 1854 Helix carinulata Klein – Gobanz, p. 14 (Schlickum 1976, Finger 1998) and occurs at (non Helix carinulata Klein, 1853). Rein and Tallak in the Rein Basin and at Straßgang in 1882 H. devexa Reuss – Standfest, p. 177 the Graz Basin. Hír & Kókay (2010) report it from (non Helix devexa Reuss, 1861). the latest Sarmatian of Felsőtárkány in Hungary. Poor- 1891 Helix (Trichia) devexa Rss. – Penecke, p. ly preserved shells from the Badenian of Herend and 359 (non Helix devexa Reuss, 1861). Puszaminske in Hungary are described as “cf. coarcta- 1893 Helix (Trichia) devexa Reuss–Hilber, p. ta” by Kókay (2006). Occurrences of a Late Miocene 308 (non Helix devexa Reuss, 1861). subspecies in the Late Miocene of the Vienna Basin, 1923 Klikia (Apula) coarctata coarctata (Klein) mentioned by Wenz (1927) and Lueger (1981), – Wenz, p. 534. represent Apula vindobonensis (Harzhauser & 1976 Klikia (Apula) coarctata coarctata (Klein) Binder 2004). – Schlickum, p. 17, pl. 4, fig.60. 2007 Klikia coarctata (Klein) – Hiden & Rottenmanner, p. 6, pl. 1, figs. 1a–c. Genus Pseudochloritis C. Boettger, 1909 non2007 Klikia coarctata (Klein) – Hiden & Rottenmanner, p. 6, pl. 1, fig.3 [= Type species: Helix incrassata Klein, 1853. Miocene, Ger- Megalotachea reinensis (Gobanz 1854)]. many. The rlea y Middle Miocene mollusc fauna of Lake Rein 35

Pseudochloritis incrassata (Klein 1853) Distribution: A very widespread and characteristic (Plate 12, figs. 9–16, 19–24) species during the Middle Miocene in the Silvana- beds from Switzerland to southern Germany. Wenz 1846 Helix inflexa v. Martens – Klein, p. 71, pl. 1, fig.12 (1923) and Binder (2008) list numerous localities (non Helix inflexa von Zieten 1832). such as Andelfingen, Mörsingen, Hohenmemmingen, 1853 Helix incrassata Klein, p. 208, pl. 5, fig.6. Undorf and Zwiefaltendorf in Germany and Sorgen at 1854 Helix inflexa v. Martens – Gobanz, p. 15. Bregenz and Baden-Soos in Austria. Górka (2008) 1882 Helix Reinensis Gob. – Standfest, p. 176. documents Sarmatian occurrences at Słabkowice, 1882 Helix inflexa v. Martens – Standfest, p. 177. Suskrajowice and Zwierzyniec in Poland and Kókay 1891 Helix (Campylaea) Standfesti sp. nov. – Penecke, p. (2006) mentions the species from the Badenian of 360, pl. 21, figs. 3a–c. 1891 Helix (Campylaea) inflexa Klein – Penecke, p. Herend and the Sarmatian of Várpalota in Hungary. 362. In the Rein Basin it is recorded from Rein and Tallak. 1891 Helix (Campylaea) Standfesti sp. nov. var. trochoida- All the localities suggest an exclusively Middle Mio- lis – Penecke, p. 360, pl. 21, fig.4. cene distribution of Pseudochloritis incrassata. 1891 Helix (Campylaea) Standfesti sp. nov. var. depressa – Penecke, p. 360, pl. 21, fig.5. Family Tryon, 1866 1893 Helix (Campylaea) Standfesti Pen. – Hilber, p. Genus Leucochroopsis O. Boettger, 1908 308. 1893 Helix (Campylaea) inflexa Klein – Hilber, p. 308. Type species: Leucochroa (Leucochroopsis) emmerichi O. Boett- 1913 Helix Standfesti Pen. – Benesch, p. 350. ger, 1908. Miocene, Germany. 1923 Tropidomphalus (Pseudochloritis) incrassatus stand- festi (Penecke)– Wenz, p. 516. Leucochroopsis kleinii (Klein 1846) 1923 Tropidomphalus (Pseudochloritis) incrassatus incras- (Plate 11, figs. 12–14) satus (Klein) – Wenz, p. 510. 2008 Pseudochloritis incrassata (Klein 1853) – Binder, 1846 Helix Kleinii Krauss – Klein, p. 69, pl. 1, fig.8. p. 172, pl. 3, figs. 2–4, pl. 6, fig.2(cum syn.). 1891 Helix (Trichia) leptoloma A. Braun – Penecke, p. 2008 Tropidomphalus incrassatus (Klein 1853) – Gór- 360 (non Helix leptoloma Braun in Wa lchner, ka, p. 107, figs. 3.1–4. 1851). 1893 Helix (Trichia) leptoloma Reuss–Hilber, p. 308 Material: Several specimens; Tallak: 4 specimens (UMJ Inv. (non Helix leptoloma Braun in Wa lchner, 1851). 75.482, 75.949); Rein: 2 specimens (UMJ Inv. 5818), 15 speci- 1923 Trichia (Leucochroopsis) kleini kleini [sic] (Klein) – mens (UMJ Inv. 1882/XVIII/13), 1 specimen (NHMW Wenz, p. 429. 2005z0068/0001), 5 specimens (NHMW 2005z0059/0014), 1 1976 Leucochroopsis kleini [sic] (Klein) – Schlickum, specimen (NHMW 1926/0002/1345). p. 15, pl. 3, fig.52. Dimensions: Height x width: 15.9 x 24.1 mm, 26.5 x 17.9 mm, 2004 Leucochroopsis kleini [sic] (Klein 1846) – Har- 15.1 x 25.0 mm, 14.4 x 24.2 mm, 15.1 x 23.6 mm. zhauser & Binder, p. 25, pl. 11, figs. 8–10. Remarks: The UMJ collection stores a suite of speci- 2007 Trichia kleini [sic] (Wenz) – Hiden & Rotten- mens from the former geological collection of the manner, p. 6, pl. 1, fig.7. Graz University with the inventory number 1882. Material: 1 specimen from Enzenbach: NHMW XVIII.13. Three of these specimens are labeled as syn- 2012/0154/0083. types of Helix (Campylaea) standfesti Penecke 1891. Dimensions: Height x width: 3.2 x 4.2 mm. None of these, however, can be identified unambigu- Remarks: Penecke (1891) mentioned a single speci- ously with the illustrations in Penecke (1891), which men of Helix leptoloma Braun in Wa lchner, 1851. might be strongly idealized. Recently, Binder (2008) This is an Oligocene species and therefore, Wenz revised several species of Pseudochloritis from the Eu- (1923) treated this record as Leucochroopsis kleinii ropean Miocene and concluded that Pseudochloritis (Klein, 1846), which is followed herein. The avail- zelli (Kurr 1856) and Pseudochloritis standfesti (Pe- able specimen bears the characteristic microsculpture necke 1891) range within the variability of Pseudo- of tiny papillae as illustrated also by Lueger (1981). chloritis incrassata (Klein 1853) and thus are junior The slightly angulated shape corresponds to the synonyms [see Binder (2008) for a detailed descrip- “subcarinulata”-morph of Sandberger (1875, pl. tion and additional illustrations of P. incrassata from 28, fig.8), which is treated as synonym of L. kleinii by Rein]. Wenz (1923) and Schlickum (1964). 36 Mathias Harzhauser et al.

Distribution: Leucochroopsis kleinii is widespread in ? 2002 Holcotachea beaumonti (Matheron 1842) – the Middle Miocene Silvana-beds from Switzerland to Binder, p. 175, pl. 2, figs. 11a–b, pl. 6, fig. 5, pl. 7, Germany (Wenz1923) and is also found in Stein- fig.1(non Helix beaumonti Matheron 1842). heim (Finger 1998) and the Sarmatian of Hollab- 2007 Klikia coarctata (Klein) – Hiden & Rottenman- runn (Austria) and Felsőtárkány (Hungary) (Schütt ner, p. 6, pl. 1, fig.3(non Helix coarctata v. Klein 1853). 1967, Híret al. 2001). Its last occurrence is docu- mented from the Late Miocene (Lueger 1981, Har- Material: Several specimens; Rein: 2 specimens (GBA, no num- zhauser & Binder 2004). ber), 7 specimens (UMJ Inv. 5818); Tallak: 4 specimens (UMJ Inv. 75.949); Enzenbach: 6 specimens (UMJ Inv. 60.465). Dimensions: Height x width: 16.7 x 26.1 mm, 13.3 x 22.7 mm, Leucochroopsis sp. 16.1 x 24.2 mm. (Plate 11, figs. 15–17) Remarks: Pfeffer (1929) and Binder (2002) treat- Material: 1 specimen from Enzenbach: NHMW ed this species as Holcotachea Pfeffer, 1929. This ge- 2012/0154/0084. nus, however, is indistinguishable from Megalotachea Dimensions: Height x width: 5.2 x 6.8 mm. and we follow Nordsieck (1986) in synonymizing Remarks: The specimen is reminiscent of Leucoch- both genera. roopsis kleinii (Klein 1846) but differs in its more This species is characterized by its weakly angu- convex whorls and spherical outline. Moreover, its lated periphery, which passes into regularly convex columellar lip is slightly broader, covering parts of the whorls in latest stages of growth in most specimens. It narrow umbilicus. The papillose microsculpture is re- has a low conical spire and a fully covered umbilicus. stricted to the base but extends on the adapical side of The suture line is dropping strongly just prior to the the whorls in L. kleinii. Leucochroopsis asthena (Bour- moderately flaring and thin outer lip. There is some guignat 1881), from the Middle Miocene of Sansan variability concerning the convexity of the whorls; the in France, is also less globose (see Fischer 2000). The strongly angulated morphology(Plate 12, figs. 1–4) is species seems to be related to the Burdigalian Leucoch- rather rare. roopsis francofurtana (Wenz1919) [= Helix crebri- Gobanz (1854) seems to have treated this mor- punctata var. minor Boettger 1877], which is com- phology as Helix depressa, referring to the species de- parable concerning the globose shape but develops a scribed by Klein (1846, p. 68, pl. 1, fig.7) from weak angulation on the last whorl. southern Germany. Helixdepressa sensu Klein (1846), however, represents Parachloraea oxystoma Family Helicidae Rafinesque, 1815 (Thomä 1845) and is an Oligocene species (Wenz Genus Megalotachea Pfeffer, 1929 1923, Pfeffer 1929, Nordsieck 1986). Binder (2002) considered shells from the late Karpatian (Bur- (= Holcotachea Pfeffer 1929) digalian) of the Korneuburg Basin (Austria) to be Type species: Helix turonensis Deshayes, 1831. Miocene, conspecific with the stratigraphically younger species France. from the Rein Basin. Although the general morpho- logyand sculpture of these shells agree well with Meg- Megalotachea reinensis (Gobanz 1854) n. comb. alotachea reinensis (Gobanz 1854), the rather poor preservation of the subadult shells leaves some uncer- (Plate 12, figs. 1–8, 17–18) tainties as to whether both occurrences are conspecif- 1854 Helix Reinensis m. – Gobanz, p. 14, figs. 4a–c. ic. The Miocene M. beaumonti (Matheron 1842) 1854 Helix depressa v. Martens–Gobanz, p. 14 differs in its even more conical spire, the less convex (non Helix depressa Klein 1846). base, the slightly wider last whorl and the position of 1858 Helix Reinensis Gbz. – Unger, p. 3. the slight angulation of the periphery, which is in a 1891 Helix (Pentataenia) reunensis [sic] Gobanz – Pe- distinctly lower position compared to M. reinensis. necke, p. 363. 1893 Helix (Pentataenia) Reunensis [sic] Gob. – Hilber, Distribution: This species is known so far only from p. 308. the early Middle Miocene of the Rein and Graz basins 1913 Helix reunensis [sic] Gobanz – Benesch, p. 350. where it is recorded from Rein, Tallak and Straßgang. 1923 Cepaea reinensis (Gobanz) – Wenz, p. 651. It might already appear during the late Early Miocene 1929 Holcotachea reinensis (Gobanz) – Pfeffer, p. 163. in the Korneuburg Basin. The rlea y Middle Miocene mollusc fauna of Lake Rein 37

Megalotachea turonensis (Deshayes 1831) Class Bivalvia Linnaeus, 1758 (Plate 11, figs. 1–4) Superorder HeterodontaNeumayr, 1883 Order Venerida Gray, 1854 1831 Helix turonensis Deshayes, p. 139, pl. 1, figs. 1–2. Family Sphaeriidae Deshayes, 1854 1891 Helix (Pentataenia) Lartetii Bois. var. reunensis var. nov. – Penecke, p. 364, pl. 21, figs. 7a–b. Subfamily Sphaeriinae Baker, 1927 1893 Helix (Pentataenia) Larteti [sic] Boiss. var. Reunen- Genus Musculium Link, 1807 sis Pen. – Hilber, p. 308. Type species: Tellina lacustris Müller, 1774. Recent, Northern 1923 Cepaea eversa eversa (Deshayes 1831) – Wenz, p. Hemisphere, Australia, Hawaii, South America. 617. 1923 Cepaea eversa larteti [sic] (Boissy 1840) – Wenz, Musculium miocaenicum p. 619. Neubauer & Harzhauser n. sp. 1971 Megalotachea turonensis (Deshayes 1831) – Truc, p. 284, pl. 15, figs. 1–3 (cum syn.). (Plate 5, figs. 6–11, 14) 2002 Megalotachea turonensis (Deshayes 1831) – Bin- Etymology: Referring to the Miocene age. der, p. 175, pl. 2, figs. 8–10, pl. 8, fig.3(cum syn.). Holotype: NHMW 2012/0154/0088; length: 4.1 mm, height: Material: 1 specimen from Rein UMJ Inv. 1891/VII/26 (old 3.8 mm, width: 1.4 mm. number from the Geological collection of the University Graz). Type locality: Enzenbach, Rein Basin, Styria, Austria. Type stratum: Lower Badenian lacustrine marls of the Rein Dimensions: Height x width: 26.4 x 22.6 mm. beds. Remarks: The whereabouts of the syntypes of Helix Material: Holotype only (a single left valve). (Pentataenia) Lartetii reunensis Penecke, 1891, are Description: Shell outline almost circular, anteriorly unknown and the only available specimen is not iden- slightly elongated; in lateral view semilunar in outline. tical with the specimen of Penecke(1891). The vari- Prodissoconch narrow and broad elliptical (1.1 x ation (or subspecies) reunensis was based only on the 0.9 mm), distinctly demarcated from adult shell, slightly flattened adapical part of the whorls, whilst forming offset cap. Growth lines weak, concentrical, Penecke (1891) emphasized their similarity with beginning on late prodissoconch and covering the en- specimens from the early Middle Miocene Grund sec- tire adult shell. Hinge plate slightly arcuate, very nar- tion in Lower Austria as described by Hörnes (1856) row, especially at position of cardinal teeth. C2 short, (= Megalotachea hoernesi Pfeffer 1929). This species distinct, parallel to hinge plate, positioned at distal is represented by large numbers of shells in the NHM margin, right-hand side of maximum angle of hinge collections, which document some variability in spire plate (= below center of umbo); C4 covered by sedi- morphology but agree well with the coeval shell from ment, not discernible. Lateral teeth of equal strength the Rein Basin. Truc (1971) and Binder (2002) and distance to cardinal teeth; forming short, promi- consider these shells to represent Megalotachea turo- nent, rounded cusps with granular surface. Ligamen- nensis (Deshayes1831), which is followed herein. tal pit narrow lanceolate, originating at position of The slightly larger average size and the more spherical C4, stretching over half length of distance C4–P2. outline, however, might require a separation of the Internal surface covered with irregularly distributed early Middle Miocene shells as a distinct subspecies, circular pores (diameter 3–4 µm). such as Megalotachea turonensis lartetii (Boissy Remarks: Musculium is a rarely documented genus in 1840). the Miocene of Europe. The only species found in the Distribution: This species is widespread during the literature is Musculium (Parvimusculium) staroboga- late Early and early Middle Miocene of western and tovi Anistratenko in Anistratenko et al., 1991, central Europe (Wenz 1923, Truc 1971). In the cir- from the late Middle Miocene of the Caucasus region. cum-Paratethyan area it appears during the late Early It is similar in shape but larger and differs markedly in Miocene (Karpatian) of the Korneuburg Basin and is the prominent juvenile shell and the distinct growth extremely abundant in the early Middle Miocene lines. (Badenian) of the Grund Formation Lower Austria Shell outline and umbonal characteristics closely (Grund, Guntersdorf ). In the Rein Basin it is very resemble extant Musculium partumeium (Say 1822) rare. from North America. Measurements range within the 38 Mathias Harzhauser et al.

dimensions common for this species. The hinge plate uni-goettingen.de/ (accessed: June 15, 2012). of M. partumeium species is, however, distinctly less Anistratenko, O.Yu.& Anistratenko, V.V. (2009): A arcuate. The distance between cardinal teeth and pos- problem of Ta xonomy of Maeotian Gastropod mollusks terior tooth is about twice the distance to the anterior “Skeneopsis planorbis”.– In: GoŽik, P.F. (ed.): Fossil fauna and flora of the Ukraine: Paleoecological and Stratigraphi- tooth, while in the Austrian species it is about equal. cal aspects. – Proc. Inst. Geol. Sci. NAS Ukraine, Kiev: The geographic distribution and the great temporal 351–353 [in Russian with English summary]. gap make an affiliation to M. partumeium doubtful Anistratenko, O., Degtyarenko, E. & Anistratenko, and according to Herrington (1962) the earliest V. (2010): Shell and radula comparative morphologyof the record for the American species is from the Early Gastropod Molluscs family Valvatidae from the North Pleistocene. coast. – 20 (2): 91–101 [in Russian with English summary]. Distribution: Known so far only from Enzenbach in Anistratenko, V.V., Kovalenko, V.A. & Prisjazhnjuk, the Rein Basin. V.A. (1991): New data on fossil mollusks from middle Sar- matian of Cis-Caucasian. – Biull. Moskovskoga obshchest- Acknowledgements va ispitatelei prirodi, otd. geol. 66: 99–105 [in Russian]. We thank Ewa Stworzewicz(Polish Academy of Sciences, Baker, F.C. (1927): On the division of the Sphaeriidae into two Kraków), SimonSchneider (Natural History Museum Vienna) subfamilies, and the description of a new species and genus and Vitaliy V. Anistratenko (Schmalhausen Institute of Zoology of Unionidae with descriptions of new varieties. – Ameri- of NAS, Ukraine) for help with literature and taxonomic discus- can Midland Naturalist 10: 220–223. sions. Michael Rasser (Staatliches Museum für Naturkunde, Baker, H.B. (1928): Mexican mollusks collected for Dr. Bryant Stuttgart) provided material from Steinheim for comparison. We Wa lker in 1926, I. – Occasional Pap. Mus. Zool., Univ. are grateful to Vitaliy V. Anistratenko for a constructive and Michigan 193: 1–64. helpful review. The study was performed during a research grant Beck, H. (1837–1838): Index molluscorum praesentis aevi mu- of the University of Vienna for T.A.N. and contributes to the sei principis augustissimi Christiani Frederici. – Fasciculus FWF project P25365–B25 “Freshwater systems in the Neogene primus [1837]: vi + 100 pp., fasciculus secundus [1838]: and Quaternary of Europe: Changes in gastropod , 101–124 pp., specierum novarum et characteres breves provinciality, and faunal gradients”. [1838]: 8 pp., Hafniae. Benesch, Fr. von (1913): Über einen neuen Aufschluß im References Te rtiärbecken von Rein, Steiermark.– Verh. k.k. Geol. Reichsanst. 1913: 342–351. Adams, H. & Adams, A. (1853–1858): The genera of Recent Benson, W.H. (1856): New land shells collected by E.A. La- arranged according to their organization. – 2 vol. yard, Esq., and described by W.H. Benson, Esq. –Ann. and of text (661 pp.), 1 vol. of plates, Van Voorst. Magaz. Nat. Hist. Ser. 2 (18): 433–439. Albers, J.C. (1850): Die Heliceen, nach natürlicher Verwandt- Binder, H. (2002): Die Land- und Süßwassergastropoden aus schaft systematisch geordnet. – 262 pp., Enslin. dem Karpatium des Korneuburger Beckens (Niederöster- Alder, J. (1830): A catalogue of the land and fresh-water testa- reich, Untermiozän).– Beitr. Paläontol. 27: 161–203. ceous Mollusca found in the vicinity of Newcastle upon Binder, H. (2004): Te rrestrial, freshwater and brachyhalin Ga- Tyne, with remarks. – Transact. Nat. Hist. Soc. Northum- stropoda from the Lower Miocene deposits of Oberdorf berland and Durham 1: 26–41. (Steiermark, Österreich). – Ann. Naturhist. Mus. Wien Alder, J. (1838): Supplement to a catalogue of the land and 105A: 189–229. fresh-water testaceous Mollusca, found in the vicinity of Binder, H. (2008): The systematic positions of the genera Pseu- Newcastle. – Transact. Nat. Hist. Soc. Northumberland dochloritis C. Boettger, 1909, and Joossia Pfeffer, 1929 and Durham 1: 337–342. (Gastropoda: : Helicoidea: Helicidae). – Arch. Andreae, A. (1884): Ein Beitrag zur Kenntnis des Elsässer Te r- Molluskenk. 137: 167–193. tiärs. – Abh. Geol. Spezialkarte Elsass-Lothringen 2: Bodon, M., Manganelli, G. & Giusti, F. (2001): A survey 1–322. of the valvatiform hydrobiid genera, with special reference Andreae, A. (1892): Penecke: Die Mollusken-Fauna des un- to Hauffenia Pollonera, 1898 (Gastropoda: Hydro- termiocänen Süsswasserkalkes von Reun in Steiermark biidae). – Malacologia 43: 103–215. (Sandbergers’s Horizont der Helix Ramondi Brongn.). Boettger, C.R. (1909): Ein Beitrag zur Erforschung der euro- – N. Jb. Mineral., Geol., Palaeontol. 1892: 435. päischen Heliciden. – Nachrichtsbl. Dt. Malakozool. Ges. Andreae, A. (1902): Zweiter Beitrag zur Binnenconchylienfau- 41: 1–19. na des Miocäns von Oppeln in Schlesien. – Mitt. Roemer- Boettger, C.R. (1911): Ein systematisches Verzeichnis der be- Museum, Hildesheim 18: 1–31. schälten Landschnecken Deutschlands, Österreich-Un- AnimalBase Project Group (2005–2010): AnimalBase. garns und der Schweiz. – Nachrichtsbl. Dt. Malakozool. Early zoological literature online. – World wide web elec- Ges. 43: 17–25, 133–135. tronic publication, available from http://www.animalbase. Boettger, O. (1870): Revision der tertiären Land- und The rlea y Middle Miocene mollusc fauna of Lake Rein 39

Süsswasser-Versteinerungen des nördlichen Böhmens.– Jb. demie der Wissenschaften und Künste in Agram (28, 1874) k.k. Geol. Reichsanst. 20: 283–302. erschienene Abhandlung, 143 pp., Actienbuchdruckerei. Boettger, O. (1877a): Ueber die Fauna der Corbicula-Schich- Brusina, S. (1876): Description d’especes nouvelles, provenant ten im Mainzer Becken.– Palaeontographica 24: 185–219. des terrains tertiaires de Dalmatie. – J. Conchyliologie 24: Boettger, O. (1877b): Clausilienstudien.– Palaeontographica 109–116. N.F., Suppl. 3: 1–122. Brusina, S. (1884): Die Neritodonta Dalmatiens und Slavoni- Boettger, O. (1878): Abbildungen seltner oder wenig bekann- ens nebst allerlei malakologischen Bemerkungen. – Jb. Dt. ter Limneen des Mainzer Beckens. – Ber. Thätigk. Offenb. Malakozool. Gesell. 11: 17–120. Ver. Naturk. 17/18: 13–17. Brusina, S. (1896): Neogenska zbirka iz Ugarske, Hrvatske, Sla- Boettger, O. (1884): Fossile Binnenschnecken aus den un- vonije i Dalmacije na Budimpestanskoj izlozbi. – Hrvatsko termiocänen Corbicula-Thonen von Niederrad bei Frank- Naravoslovno Drutvo 9: 98–150. furt (Main).– Ber. Senckenberg. Naturforsch. Gesell. Brusina, S. (1897): Gragja za neogensku malakološku faunu 1883/1884: 258–280. Dalmacije, Hrvatske i Slavonije uz neke vrste iz Bosne, Her- Boettger, O. (1889): Die Entwicklung der Pupa-Arten des cegovine i Serbije. – Djela Jugoslavenske akademije znano- Mittelrheingebietes in Zeit und Raum.– Jb. Nassauisch. sti i umjetnosti 18: 1–43. Ver. Naturk. 42: 225–327. Brusina, S. (1902): Iconographia molluscorum fossilium in Boettger, O. (1908): Die fossilen Mollusken der Hydrobien- tellure tertiaria Hungariae, Croatiae, Slavoniae, Dalmatiae, kalke von Budenheim bei Mainz. – Nachrichtsbl. Dt. Mala- Bosniae, Herzegovinae, Serbiae et Bulgariae inventorum.– kozool. Gesell. 40: 145–157. Officina Soc. Typographicae. Bofill y Poch, A. (1897): Sobre una nueva forma malacológi- Čejchan, P. (1985): Ve rtigo (Vertilla) angulifera angulifera ca de la provincia de Gerona (Nenia subarcuata). – Bol. (Gastropoda, ) from the Lower Miocene of Real Acad. Cien. y Artes Barcelona 3 (1): 364–368. Czechoslovakia. – Vestnik ústředniho ústavu geologického Boissy, St. A. de. (1840): Description de quelques espèces 60: 175–178. d’Hélices fossiles provenant principalement des terrains Charpentier, J. de (1837): Catalogue des mollusques ter- d’eau douce du Midi de la France.– Rev. Zool. cuvierienne restres et fluviatiles de la Suisse. Formant la seconde partie 1839: 74–75. de la faune Helvétique. – Nouv. Mém. Soc. Helvét. Sci. Nat. Bourguignat, J.R. (1857): Aménités Malacologiques, LXIV. 1: 1–28. Du genre Carychium.– Rev. Mag.Zool. (2) 9 (5): 209–232. Children, J.G. (1834): Synopsis of the contents of the British Bourguignat, J.R. (1860): Aménités Malacologiques, LXIV. Museum. – 28th edition, 240 pp., British Museum. Du genre Carychium.– Aménités Malacologiques 2: 51– Clar, E. (1935): Die Eggenberger Bresche und das Alter einiger 74 [Extrait de la Revue et Magasin de Zoologie]. Formengruppen im Bergland von Graz.– Z. Geomorph. Bourguignat, J.R. (1863–1868): Mollusques nouveaux, liti- 8/6: 279–305. gieux ou peu connus, 1–2. – 324 pp., Savy. Clessin, S. (1877): Die tertiären Binnenconchylien von Un- Bourguignat, J.R. (1881): Histoire malacologique de la col- dorf. – Correspondenz-Blatt zool. und mineral. Ver. Re- line de Sansan, précédée suivie d’un aperçu climatologique gensburg 31: 34–41. et topographique de Sansan a époque des deposits de cette Clessin, S. (1885): Die Conchylien der Obermiocaenen Ablage- colline. – Ann. sci. géol. 11: 49–175. rungen von Undorf. – Malakozool. Blätter, N.F. 7: 71–95. Braun, A. (1851): Darstellung der geognostischen Verhältnisse Cooke, C.M. (1921): Notes on Hawaiian Zonitidae and Succi- des Mainzer Beckens und seiner fossilen Fauna und Flora. neidae. – Occasional Papers, Bernice P. Bishop Museum 7: – In: Wa lchner, F.A. (ed.): Handbuch der Geognosie 263–277. zum Gebrauche bei seinen Vorlesungen und zum Selbststu- Cox, L.R. (1960): Thoughts on the classification of the Gastro- dium mit besonderer Berücksichtigung der geognostischen poda. – Proc. Zool. Soc. London 33: 239–261. Verhältnisse des Grossherzogthums Baden. – 1121–1169 Cox, L.R. & Knight, J.B. (1960): Suborders of the Archaeo- pp., Christian Theodor Gross. gastropoda. – Proc. Malacol. Soc. London 33: 262–264. Brongniart, M. (1810): Sur des Te rrains qui paraissent avoir Čtyroký P. (1972): Die Molluskenfauna der Rzehakia- étè formes sous l’eau douce. – Ann. Mus. d’Hist. nat. 15: (Oncophora)-Schichten Mährens. – Ann. Naturhist. Mus. 357–405. Wien 76: 41–141. Bros, V. & Martínez-Ortí, A. (2009): Introducción al estu- Cuvier, G. (1795): Second Mémoire sur l’organisation et les dio de los gasterópodos (Mollusca) de la laguna de Mont- rapports des animaux à sang blanc, dans lequel on traite de cortès (Pallars Sobirà, Cataluña, NE de la península ibéri- la structure des Mollusques et de leur division en ordre, lu à ca). – Arxius de Miscel·lànea Zoològica 7: 46–61. la société d’Histoire Naturelle de Paris, le 11 prairial an troi- Brusina, S. (1872): Naravoslovne crtice sa sjevero-istočne obale sième. – Magaz. Encyclopédique, J. Sci., Lett. Arts 2: 433– Jadranskoga mora. Dio prvi. Putopis. – Rad Jugoslavenske 449. akademije znanosti i umjetnosti 19: 105–177. Deshayes, G.P. (1830–1832): Encyclopedie methodique ou Brusina, S. (1874): Fossile Binnen-Mollusken aus Dalmatien, par ordre des matèries. – Hist. nat. vers et mollusques, 3 Kroatien und Slavonien nebst einem Anhange. – Deutsche vols., 1152 pp. vemehrte Ausgabe der kroatischen im Rad der südslav. Aka- Deshayes, G.P. (1854): Description of new shells from the col- 40 Mathias Harzhauser et al.

lection of Hugh Cuming, Esq. – Proc. Zool. Soc. London Caenogastropoda: Hydrobiidae). – Acta Zoologica Aca- 13–23: 317–371. demiae Scientiarum Hungaricae 54: 159–167. Desmarest, A.G. (1814): Note sur les Ancyles ou Patelles d’eau Fechter, R. & Falkner, G. (1990): Weichtiere. – In: Stein- douce, et particulièrement sur deux espèces de ce genre, non bach, G. (ed.): Die farbigen Naturführer 10. – 287 pp., encore décrites, l’une fossile et l’autre vivante.– Bull. Soc. Mosaik. Philomatique Paris 3: 18–20. Férussac, A.E.J.P.J.F. d’A. de (1807): Essai d’une méthode Draparnaud, J.P.R. (1801): Tableau des mollusques terrestres conchyliologique appliquée aux mollusques fluviatiles et et fluviatiles de la France. – 116 pp., Renaud, Bossange, terrestres d’après la considération de l’ et de son test. Masson & Besson. Nouvelle édition augmentée d’une synonymie des espèces Draparnaud, J.P.R. (1805): Histoire naturelle des mollusques les plus remarquables, d’une table de concordance systéma- terrestres et fluviatiles de la France. – 164 pp., Colas. tique de celles qui ont été décrites par Géoffroy, Poiret et Duméril, A.M.C. (1806): Zoologie analytique, ou méthode Draparnaud, avec Müller et Linné, et terminée par un cata- naturelle de classification des animaux, rendue plus facile à logue d’espèces observées en divers lieux de la France. – 142 l’aide de tableaux synoptiques. – 344 pp., Allais. pp., Delance. Dunker, W. (1848): Ueber die in der Molasse bei Günzburg Férussac, A.E.J.P.J.F. d’A. de (1814): Mémoires géologiques unfern Ulm vorkommenden Conchylien und Pflanzenre- sur les terreins formés sous l’eau douce par les débris fossiles ste. – Palaeontographica 1: 155–168. des mollusques vivant sur la terre ou dans l’eau non salée. – Dupuy, D. (1850): Description de quelques espèces de coquilles 76 pp., Poulet. terrestres fossils de Sansan. – J. Conchyliologie 1: 300–313. Férussac, A.E.J.P.J.F. d’A. de (1821–1822): Tableaux systéma- Ebner, F. (1981): Vulkanische Tuffe im Miozän der Steiermark. tiques des animaux mollusques classés en familles naturelles, – Mitt. Naturwiss. Ver. Steiermark 111: 39–55. dans lesquels on a établi la concordance de tous les systèmes, Ebner, F. (1983): Erläuterungen zur geologischen Basiskarte 1 : suivis d’un prodrome général pour tous les mollusques ter- 50.000 der Naturraumpotentialkarte „Mittleres Murtal“ restres ou fluviatiles, vivants ou fossiles. – 147 + 110 pp., (mit einem Beitrag von Becker, L.P. & Neubauer F.). – Bertrand Sowerby. Mitt. Ges. Geol. und Bergbaustudenten Österreichs 29: Finger, I. (1998): Gastropoden der kleini-Schichten des Stein- 99–131. heimer Beckens (Miozän, Süddeutschland).– Stuttg. Beitr. Ebner, F. & Gräf, W. (1979): Bemerkungen zur Faziesvertei- Naturk. Ser. B 259: 1–51. lung im Badenien des Reiner Beckens. – Mitteilungsbl. Abt. Fischer, H. & Crosse, P. (1877): Mission scientifique au Mineral. Landesmus. Joanneum 47: 11–17. Mexique et dans l’Amérique Centrale. – Rech. zool. 1 (6): Ebner, F. & Gräf, W. (1982): Bentonite und Glastuffe der Stei- 1–592. ermark.– Arch. Lagerstättenforsch. Geol. Bundesanst. 2: Fischer J.-C. (2000): La malacofaune de Sansan. – In: Gins- 31–45. burg, L. (ed.): La faune miocéne de Sansan et son environ- Ebner, F. & Sachsenhofer, R.F. (1991): Die Entwicklungs- ment.– Mém. Mus. Hist. nat. 183: 129–154. geschichte des Steirischen Te rtiärbeckens.– Mitt. Abt. Fitzinger, L.I. (1833): Systematisches Verzeichniß der im Erz- Geol. und Paläontol. Landesmus. Joanneum 49: 1–96. herzogthume Oesterreich vorkommenden Weichthiere, als Ebner, F. & Stingl, K. (1998): Geological Frame and Position Prodrom einer Fauna derselben. – Beitr. Landesk. of the Early Miocene Lignite Opencast Mine Oberdorf (N Oesterreich’s unter der Enns 3: 88–122. Voitsberg, Styria, Austria). – Jb. Geol. Bundesanst. 140/4: Fleming, J. (1818): Conchology.–Encyclopedia Britannica 403–406. (Supplement to eds. 4–6) 3: 284–314. Ebner, F., Mali, H., Obenholzner, J.H., Vortisch, W. & Fleming, J. (1828): A history of British , exhibiting the Wieser, J. (1998): Pyroclastic Deposits from the Middle descriptive characters and systematic arrangement of the Miocene Stallhofen Formation.– Jb. Geol. Bundesanst. genera and species of quadrupeds, birds, reptiles, fishes, mol- 140/4: 425–428. lusca, and radiata of the United Kingdom, including the in- Ebner, F., Dunkl, I., Mali, H. & Sachsenhofer, R.F. digenous, extirpated, and extinct kinds, together with peri- (2002): Stratigraphic evidence of pyroclastic layers in Mio- odical and occasional visitants.– 565 pp., Bell & Bradfute. cene basins of the Eastern Alps (Austria). – Geologica Car- Flügel, H. (1959): Aufnahmen 1958 auf Blatt „Grazer Berg- pathica (special issue) 53: 1–5. land“ 1 : 100000. – Verh. Geol Bundesanst 1959/3: A19– Edwards, F.E. (1852): The Eocene Mollusca, part 2, Pulmonata A22. Part 2. – Monogr. Palaeontograph. Soc. London 18 (6): Flügel, H. (1961): Die Geologie des Grazer Berglandes. – 57–122. Mitt. Mus. Bergb., Geol. und Te ch. Landesmus. Joanneum Eichwald, E. (1830): Naturhistorische Skizze von Lithauen, 23: 1–212. Volhynien und Podolien in Geognostisch-Mineralogischer, Flügel, H.W. (1975): Die Geologie des Grazer Berglandes. – Botanischer und Zoologischer Hinsicht. – 256 pp., Voss. Mitt. Abt. Geol., Paläontol. und Bergb. Landesmus. Joan- Eichwald, E. (1853): Lethaia Rossica ou Paléontologie de la neum, Sonderh. 1: 1–288. Russie 3, dernière période. – 533 pp., Schweizerbart. Flügel, H.W. (1997): Bericht 1996 über die lithostratigraphi- Erőss, Z.P. & Petró, E. (2008): A new species of the valvati- sche Gliederung des Miozäns auf Blatt 164 Graz.– Jb. form hydrobiid genus Hauffenia from Hungary (Mollusca: Geol. Bundesanst. 140/3: 383–386. The rlea y Middle Miocene mollusc fauna of Lake Rein 41

Flügel, H.W. & Neubauer, F. (1984): Steiermark. Geologie Górka, M. (2008): Shell colour pattern in two fossil helicid der österreichischen Bundesländer in kurzgefaßten Einzel- snails, Tropidomphalus incrassatus (Klein 1853) and Ce- darstellungen. – 1 Karte, 1 : 200.000, Geol. Bundesanst. paea sylvestrina Wenz, 1919. – Acta Geologica Polonica Wien. 58: 105–111. Flügel, H.W., Nowotny, A. & Gross, M. (2011): Geologi- Gottschick, F. (1911): Aus dem Te rtiärbeckens von Stein- sche Karte 1:50.000, Blatt 164 Graz. – 1 Karte, Geol. Bun- heim a. A. – Jahresh. Ver. Vaterländ. Naturk. Württemb. 66: desanst. Wien. 496–534. Fraas, E. (1868): Begleitworte zur geognostischen Spezialkarte Gottschick, F. (1920): Die Umbildung der Süßwasserschnek- von Württemberg: Atlasblatt Stuttgart mit den Umgebun- ken des Te rtiärbeckens von Steinheim a. A. unter dem Ein- gen von Ludwigsburg, Cannstatt, Vaihingen und Markgrö- flusse heißer Quellen. – Jenaische Z. Naturwiss. 56: 155– ningen. – 20 pp., Stuttgart. 216. Frank, C. (2006): Plio-pleistozäne und holozäne Mollusken Gottschick, F. (1928): Zwei neue Schneckenarten aus dem Österreichs. – Mitt. Prähist. Komm. 62 (1–2): 1–860 (2 schwäbischen Obermiozän.– Arch. Molluskenk. 60: 146– volumes). 150. Frauenfeld, G. (1864): Vorläufige Aufzählung der Arten der Gottschick, F. & Wenz, W. (1916): Die Sylvanaschichten Gattungen Hydrobia Htm. und Amnicola Gld. Hldm. in von Hohenmemmingen und ihre Fauna. – Nachrichtsbl. der kaiserlichen und in Cuming’s Sammlung. – Verh. zool.- Dt. Malakozool. Ges. 48: 55–74. bot. Ges. Wien 13: 1017–1032. Gottschick, F. & Wenz, W. (1919): Die Land- und Süsswas- Froriep, L.F. (1806): C. Dumeril’s Analytische Zoologie. Aus sermollusken des Te rtiärbeckens von Steinheim am Aal- dem Französischen mit Zusätzen. – 344 pp., Landes-Indu- buch. I. Die Vertiginiden. – Nachrichtsbl. Dt. Malakozool. strie-Comptoir. Ges. 51: 1–23. Fuchs, T. (1870): Beiträge zur Kenntniss fossiler Binnenfaunen. Gožik, P.F. & Prysjazhnjuk V.A. (1978): Presnovodnye i III. Die Congerienschichten von Radmanest im Banate.– nazemnye Molljuski miocena Pravoberežnoj Ukrainy. – Jb. der k.k. Geol. Reichsanst. 20: 341–364. 171 pp., Akad. Nauk Ukrainy, S.S.R. Gaál, I. (1911): A Hunyadmegyei Rákosd szarmatakorú csiga- Gray, J.E. (1840): Shells of molluscous animals. – Synopsis of faunája. – Magyar Földtani Intézet Èvkönyve 18: 1–108. the contents of the British Museum 42: 105–152. Gál, E., Hír, J., Kessler, E., Kókay, J., Mészáros, L. & Gray, J.E. (1847): A list of the genera of recent Mollusca, their Venczel, M. (1999): Középső miocén ősmaradványok a synonyma and types. – Proc. Zool. Soc. London 15: 129– Mátraszőlős, Rákóczi - kápolna alatti útbevágásból. I. A 219. Mátraszőlős 1. lelőhely. – Folia Hist. Nat. Mus. Matraensis Gray, J.E. (1854): On the division of ctenobranchous gastero- 23: 33–78. podous Mollusca into larger groups and families. – Proc. Gál, E., Hír, J., Kessler, E., Kókay, J. & Venczel, M. (2000): Zool. Soc. London 21: 32–44. Middle Miocene fossils from the section of the road at the Gross, M., Fritz, I., Piller, W.E., Soliman, A., Harzhaus- Rákóczi Chapel, Mátraszőlős. II. Locality Mátraszőlős 2. – er, M., Hubmann, B., Moser, B., Scholger, R., Folia Hist. Nat. Mus. Matraensis 24: 39–75. Suttner, T.J. & Bojar H.-P. (2007): The Neogene of the Gaudry, J.A. (1867): Animaux fossiles et géologie de l’Attique Styrian Basin – Guide to Excursions.– Joannea Geologie d’apres les recherches faites en 1855–56 et en 1860. – 475 und Paläontologie 9: 117–193. pp., Savy. Haldeman, S.S. (1840): A monograph of the Limniades and Gerber, J. (1996): Revision der Gattung Va llonia Risso, 1826 other freshwater univalve shells of North America. – 16 pp., (Mollusca: Gastropoda: Valloniidae). – Schriften zur Mala- Dobson. kozoologie aus dem Haus der Natur 8: 1–227. Handler, R., Ebner, F., Neubauer, F., Bojar, A.-V.& Her- Gittenberger, E. (1979): On Elona (Pulmonata, Eloniadae mann, S. (2006): 40Ar/39Ar dating of Miocene tuffs from fam. nov.). – Malacologia 18: 139–145. the Styrian part of the Pannonian Basin: an attempt to re- Gittenberger, E. (1993): On geyeri (Soos 1926) fine the basin stratigraphy.– Geologica 57/6: and some conchologically similar taxa (Mollusca: Gastro- 483–494. poda Pulmonata: Hygromiidae). – Zool. Mededelingen Hartmann, W. (1821): System der Erd- und Flußschnecken der 67: 303–320. Schweiz. Mit vergleichender Aufzählung aller auch in den Glöer, P. (2002): Die Tierwelt Deutschlands, 73. Te il: Die Süß- benachbarten Ländern, Deutschland, Frankreich und Itali- wassergastropoden Nord- und Mitteleuropas. Bestim- en sich vorfindenden Arten. – Neue Alpina 1: 194–268. mungsschlüssel, Lebensweise, Verbreitung. – 327 pp., Con- Harzhauser, M. & Binder, H. (2004): Synopsis of the Late chBooks. Miocene mollusc fauna of the classical sections Richardhof Gobanz, J. (1854): Die fossilen Land- und Süsswasser-Mollus- and Eichkogel in the Vienna Basin (Austria, Pannonian, ken des Beckens von Rein in Steiermark. – Sitzungsber. MN 9–MN 11). – Arch. Molluskenk. 133: 109–165. Math.-naturwissensch. Cl. kaiserl. Akad. Wissensch. 13: Harzhauser, M. & Kowalke, T. (2002): Sarmatian (Late 180–201. Middle Miocene) Gastropod Assemblages of the Central Golikov, A.N. & Starobogatov, Y.I. (1975): Systematics of Paratethys. – Facies 46: 57–82. prosobranch gastropods. – Malacologia 15: 185–232. Harzhauser, M. & Mandic, O. (2008): Neogene lake sys- 42 Mathias Harzhauser et al.

tems of Central and South-Eastern Europe: Faunal diversi- Hír, J., Kókay, J., Venczel, M., Gál, E. & Kessler, E. (2001): ty, gradients and interrelations.– Palaeogeogr., Palaeocli- Előzetes beszámoló a felsőtárkányi “Güdörkert” n. őslényta- matol., Palaeoecol. 260: 417–434. ni lelőhelykomplex újravizsgálatáról. [A preliminary report Harzhauser, M., Gross, M. & Binder, H. (2008): Bi- on the revised investigation of the paleontological locality- ostratigraphy of Middle Miocene (Sarmatian) wetland sys- complex “Güdörkert” at Felsőtárkány, Northern Hungary]. tems in an Eastern Alpine Intramontane Basin (Gratkorn – Folia Historico-Naturalia Musei Matraensis 25: 41–64. Basin, Austria). The terrestrial gastropod approach. – Geo- Hoernes, R. (1880): Vorlage einer geologischen (Manuscript-) logica Carpathica 59: 45–58. Karte der Umgebung von Graz.– Verh. Kaiserl.-königl. Harzhauser, M., Neubauer, T.A., Mandic, O., Zuschin, Geol. Reichsanst. 1880/17: 326–330. M. & Ćorić, S. (2012): A Middle Miocene endemic fresh- Hoffmann, H. (1924): Zur Anatomie und Systematik der Phi- water mollusc assemblage from an intramontane Alpine lomyciden. – Jenaische Z. Naturwissensch. 60: 363–396. lake (Aflenz Basin, Eastern Alps, Austria). – Paläontol. Z. Hörnes, M. (1856): Die fossilen Mollusken des Te rtiär-Beckens 86: 23–41. von Wien. I. Band. Univalven. – Abh. k.k. Geol. Reichsan- Haszprunar, G. & Huber, G. (1990): On the central nervous stalt 3 (10): 461–736. system of Smeagolidae and Rhodopidae, two families ques- ICZN (1999): International Code of Zoological Nomenclature. tionably allied with the Gymnomorpha (Gastropoda, Euth- – International Tr ust for Zoological Nomenclature, Lon- yneura). – J. Zool. 220: 185–199. don. Hausdorf, B. & Sauer, J. (2009): Revision of the Helicellinae ICZN (2001): Opinion 1965: Euchilus Sandberger, 1870, of Crete (Gastropoda: Hygromiidae). – Zool. J. Linn. Soc. and Stalioa Brusina, 1870 (Mollusca: Gastropoda): Bithi- 157: 373–419. nia deschiensiana Deshayes, 1862, and Paludina desmare- Hauser, A. (1951): Die Stellung der Eggenbergerbresche im stii Prévost, 1821, designated as the respective type spe- Becken von Rein bei Gratwein.– Mitt. Naturwissenschaft. cies, with the conservation of Bania Brusina, 1896. – Bull. Ver. Steiermark 79/80: 124–126. Zool. Nomenclature 58: 63–65. Hazay, J. (1880): Die Molluskenfauna von Budapest.– Malako- Jeffreys, J.G. (1830): A synopsis on the testaceous pneumono- zoologische Blätter 3: 1–69. branchous Mollusca of Great Britain. – Transact. Linn. Soc. Held, F. (1836): Aufzählung der in Bayern lebenden Mollusken. London 16: 323–392. – Isis 29: 271–282. Jekelius, E. (1932): Die Molluskenfauna der Dazischen Stufe Held, F. (1838): Notizen über die Weichthiere Bayerns (Fort- des Beckens von Braov. – Memoriile Institutului Geologic setzung).– Isis 12: 902–919. al Romaniei 2: 1–118. Herrington, H.B. (1962): A revision of the Sphaeriidae of Jekelius, E. (1944): Sarmat und Pont von Soceni (Banat). – North America. – Miscellaneous Publ., Mus. Zool., Univ. Memoriile Institutului Geologic al Romaniei 5: 1–167. Michigan 118: 1–74. Jooss, C.H. (1912): Neue Landschnecken aus dem Obermiocän Hesse, P. (1907): – In: Rossmässler, E.A. (ed.): Iconographie von Steinheim am Aalbuch in Württemberg. – Nachrichts- der Land- und Süßwassermollusken, 14. – 128 pp., C.W. bl. Dt. malakozool. Ges. 44: 50–74. Kreidel, Wiesbaden. Jooss, C.H. (1918): Vorläufige Mitteilungen über tertiäre Land- Hesse, P. (1927): – In: Geyer, D. (ed.): Unsere Land- und Süß- und Süsswasser-Mollusken. – Centralbl. Mineral., Geol. wassermollusken. – 3rd edition, 262 pp., G. Lutz’ Verlag, und Palaeontol. 1918: 287–294. Stuttgart. Jörger, K.M., Stöger, I., Kano, Y., Fukuda, H., Knebels- Hidalgo, J.G. (1878): Catalogue des mollusques terrestres des berger, T. & Schrödl, M. (2010): On the origin of Ac- îles Baléares. – J. Conchyliologie 26: 215–247. ochlidia and other enigmatic euthyneuran gastropods, with Hiden, H. & Rottenmanner, G. (2007): Das Neogenbecken implications for the systematics of . – BMC von Rein und seine Fossilführung. – Der Steirische Minera- Evolutionary Biology 10: 323 (20 pp.). log 21: 6–8. Jost, J., Kälin, D., Schulz-Mirbach, T. & Reichenbach- Hilber, V. (1893): Das Te rtiärgebiet um Graz, Köflach und er, B. (2007): Late Early Miocene lake deposits near Mau- Gleisdorf. – Jb. k.k. Geol. Reichsanst. 43: 281–368. ensee, central Switzerland: fish fauna (otoliths, teeth), ac- Hilber, V. (1915): Steirische Dinotherien.– Mitt. Naturwis- companying biota and palaeoecology. – Eclogae Geologi- senschaft. Ver. Steiermark 51: 111–132. cae Helveticae 99: 309–326. Hilgendorf, F. (1867): Über Planorbis multiformis im Stein- Keferstein, W.M. (1864): Dr H. G. Bronn’s Klassen und heimer Süßwasserkalk. – Monatsber. Königl.-Preuss. Akad. Ordnungen der Weichthiere (Malacozoa), wissenschafftlich Wissensch. Berlin 1866: 474–504. dargestellt in Wort & Bild. Bd. 3 (2), Malacozoa Cephalo- Hír, J. & Kókay, J. (2004): Middle Miocene molluscs and ro- phora. – 853–1159 pp., Winter. dents from Mátraszőlős (Mátra Mountains, Hungary). – Kennard, A.S. & Woodward, B.B. (1926): Synonymy of the Fragmenta Palaeontologica Hungarica 22: 83–97. British Non-marine Mollusca (Recent and Post-Tertiary). Hír, J. & Kókay, J. (2010): A systematic study of the middle- – 447 pp., Richard Clay & Sons. late Miocene rodents and lagomorphs (Mammalia) of Kerney, M.P., Cameron, R.A.D. &Jungbluth, J.H. (1983): Felsőtárkány 3/8 and 3/10 (Northern Hungary) with Die Landschnecken Nord- und Mitteleuropas. Ein Bestim- stratigraphical relations. – Geodiversitas 32: 307–329. mungsbuch für Biologen und Naturfreunde. – 384 pp., Parey. The rlea y Middle Miocene mollusc fauna of Lake Rein 43

Klein, A. von(1846): Conchylien der Süsswasserkalkformati- schen Lage der pannonischen Schichten in der Umgebung on Württembergs.– Jahresh. Ver. Vaterländ. Naturk. des Balatonsees. – Resultate der wissenschaftlichen Erfor- Württemberg 2: 60–116. schung des Balatonsees, 1, Anhang: Palaeontologie der Um- Klein, A. von(1853): Conchylien der Süsswasserkalkformati- gebung des Balatonsees 4: 1–216. on Württembergs.– Jahresh. Ver. Vaterländ. Naturk. Lowe,R.T. (1852): Brief diagnostic notices of new Maderan land Württemberg 9: 203–223. shells.–Ann.Magaz.Nat. Hist.(2) 9(50): 112–120, 275–279. Klika, B. (1891): Die Te rtiären Land- und Süsswasser-Conchy- Ložek, V. (1964): Quartärmollusken der Tschechoslowakei. – lien des nordwestlichen Böhmen. – Arch. naturwissen- Rozpravy Ústredního ústavu geologického, 31: 1–374. schaftl. Landesdurchforsch. Böhmen 7: 1–122. Lueger, J.P. (1981): Die Landschnecken im Pannon und Pont Kókay, J. (2006): Nonmarine mollusc fauna from the Lower and des Wiener Beckens. – Denkschr. Österreich. Akad. Wiss., Middle Miocene, Bakony Mts.,W Hungary. – Geologica Mathem.-naturwissenschaft. Kl. 120: 1–124. Hungarica, Ser. Palaeontologica 56: 1–196. Maillard, G. (1891): Monographie des mollusques tertiaires Koken, E. (1896): Die Gastropoden der Trias um Hallstatt. – terrestres et fluviatiles de la Suisse. – Mém. Soc. Paléontol. Jb. k.k. Geol. Reichsanst. 46: 37–126. Suisse 18: 1–127. Kollmann, K. (1965): Jungtertiär im Steirischen Becken.– Mandic, O. & Harzhauser, M. (2003): Molluscs from the Mitt. Geol. Gesell. Wien 57/2: 479–632. Badenian (Middle Miocene) of the Gaindorf Formation Kopetzky, G. (1957): Das Miozän zwischen Kainach und Laß- (Alpine Molasse Basin, NE Austria) – Ta xonomy, Paleoe- nitz in Südweststeiermark.– Mitt. Mus. Bergb., Geol. und cology and Biostratigraphy. – Ann. Naturhist. Mus. Wien Te ch. Landesmus. Joanneum 18: 3–112. 104A: 85–127. Kowalke, T. & Reichenbacher, B. (2005): Early Miocene Manganelli, G. & Giusti,F. (2000): The gastrocoptids of the (Ottnangian) Mollusca of the Western Paratethys – ontoge- Fossil Forest of Dunarobba (Central Italy) and a prelimi- netic strategies and palaeoenvironments.– Geobios 38: nary revision of the European Te rtiary nominal species of 609–635. Albinula and Ve rtigopsis (Gastropoda Pulmonata: Gastro- Kröll, A., Flügel, H.W., Seiberl, W., Weber, F., Wa lach, coptidae). – Boll. Soc Paleontol Italiana 39: 55–82. G. & Zych, D. (1988): Erläuterungen zu den Karten über Manganelli, G., Bodon, M., Favilli, L. & Giusti, F. den prätertiären Untergrund des Steirischen Beckens und (1995): Gastropoda Pulmonata.– In:Minelli, A.,Ruf- der Südburgenländischen Schwelle. – 49 pp., Geologische fo, S. & La Posta, S. (eds): Checklist delle specie della Bundesanstalt. fauna italiana 16: 1–60. Kubart, B. (1924): Beiträge zur Te rtiärflora der Steiermark Manganelli, G., Martini, I. & Benocci, A. (2011): A new nebst Bemerkungen über die Entstehung der Braunkohle. Janulus species (Gastropoda, Pulmonata, ) – Arb. phytopalaeontol. Lab. Univ. Graz 1: 1–62. from the Zanclean (early Pliocene) of Tuscany (central Ita- Kurr, J.G. von(1856): Land- und Süsswasserconchylien der ly). – Boll. Soc. Paleontol. Italiana 50: 165–173. Te rtiärformation Oberschwabens.– Jahresh. Ver. vaterländ. Matheron, P.M. (1842): Catalogue méthodique et descriptif Naturk. Württemb. 12: 38–43. des corps organisés fossiles du départment des Bouches-du- Lightfoot, J. (1786): An account of some minute British shells, Rhone et lieux circonvoisins. Extrait du Réportoire des tra- either not duly observed, or totally unnoticed by authors. – vaux de la Société de statistique de Marseille, 6. – 269 pp., Philosoph. Transact. Royal Soc. London 76: 160–170. Carnaud Fils. Lindholm, W.A. (1927): Zur Nomenklatur einiger paläarkti- Meier-Brook, C. (1983): Ta xonomic studies on Gyraulus scher Landschnecken-Gattungen.– Arch. Molluskenk. 59: (Gastropoda: Planorbidae). – Malacologia 24: 1–113. 321–331. Michaud, A.L.G. (1855): Descriptions de coquilles fossiles dé- Link, H.F. (1807): Beschreibung der Naturalien-Sammlung der couvertes dans les environs de Hauterive (Drôme). – Ann. Universität zu Rostock. Part 2. – 160 pp., Adlers Erben. Soc. Linnéenne Lyon, N.S. 2: 33–64. Linnaeus, C. (1758): per regna tria naturae, Miller, K. (1900): Die Schneckenfauna des Steinheimer secundum classes, ordines, genera, species, cum characteri- Obermiocäns. – Jahresh. Ver. Vaterl. Naturk. Württemb. bus, differentiis, synonymis locis. To mus 1. – 10th edition, 56: 385−406. 824 pp., Laurentius Salvius, Holmiae. Minichev, Yu.S. & Slavoshevskaja, L.V. (1971): Locard, A. (1892): Monographie des mollusques tertiaires ter- Osobennosti evoliutsii renopericardialnogo kompleksa restres et fluviatiles de la Suisse, Deuxième Partie. – Mém. nazemnykh Pulmonata. − Zoologicheskii Zhurnal 50: Soc. Paléontol. Suisse 19: 131–275. 350−360 [in Russian]. Łomnicki, A.M. (1886): Slodkowodny utwor trzseciorzedny Minichev, Yu.S. & Starobogatov, Ya.I. (1975): K na Podolu galicijskiem. – 48–119 pp., Sprawozdanie Komi- postroeniiu sistemy evtinevralnykh briukhonogikh. − syi Fisyjograficznej. Vsesoiuznoe soveshchanie po izucheniiu molliuskov 5: Łomnicki, A.M. (1902): Materyały do mioceńskiego utworu 8−11 [in Russian]. słodkowodnego w okolicy Krakowa (Zur Kenntnis der Mirolli, M., (1960): Morfologia, biologia e posizione sistema- mioänen Süsswasserbildungen in der Umgegend vou Kra- tica di Wa tsonula wautieri, n.g., n.s. (Basommatophora, kau).– Kosmos 27: 227–239. Ancylidae). – Mem. Istit. Italiano Idrobiol. 12: 121–162. Lörenthey, I. (1911): Beitrage zur Fauna und stratigraphi- MollBase.de (2012): Database of Molluscs of Central Europe 44 Mathias Harzhauser et al.

with nomenclatural remarks. – Available from http://www. from the Oligocene-Miocene transition in the Valley of La- mollbase.de/ (accessed: June 15, 2012). kes, Central Mongolia.– Paleont. J. 47: 374–385. Montagu, G. (1803): Te stacea Britannica, or natural history of Neumayr, M. (1869): II. Beiträge zur Kenntniss fossiler Bin- British shells, marine, land, and fresh-water, including the nenfaunen. – J. k.k. Geol. Reichsanst. 19: 355–382. most minute: systematically arranged and embellished with Neumayr, M. (1875): 2. Paläontologischer Theil. – In: Her- figures. – 606 pp., White. bich, F. & Neumayr, M. (1875): Beiträge zur Kenntniss Monterosato, T.A. M. de (1892): Molluschi terrestri delle fossiler Binnenfaunen: VII. Die Süsswasserablagerungen im isole adiacenti alla Sicilia. – Atti Reale Accad. Sci., Lett. südöstlichen Siebenbürgen.– Jb. k.k. Geol. Reichsanst. 25: Belle Arti Palermo 3 (2): 1–33. 410–431. Montfort, D. de (1810): Conchyliologie systématique, et clas- Neumayr, M. (1880): V. Te rtiäre Binnenmollusken aus Bosnien sification méthodique des coquilles, offrant leurs figures, und der Hercegovina. – J. k.k. Geol. Reichsanst. 30: 463– leur arrangement générique, leurs descriptions caractéris- 486. tiques, leurs noms, ainsi que leur synonymie en plusieurs lan- Neumayr, M. (1883): Zur Morphologie des Bivalvenschlosses. gues. Ouvrage destiné à faciliter l’étude des coquilles, ainsi – Sitzungsber. Akad. Wiss. Wien 88: 385–419. que leur disposition dans les cabinets d’histoire naturelle. Newton, R.B. (1891): On the necessity for the abandonment Coquilles univalves, non cloisonnées, 2. – 676 pp., Schoell. of the generic name Cyclostoma, with suggestions relating Mörch, O.A.L. (1864): Synopsis molluscorum terrestrium et others involved in this genus. – Ann. and Magaz. Nat. Hist. fluviatilium Daniae. Fortegnelse over de i Danmark fore- 6 (7): 345–348. kommende land- og ferskvandsbløddyr. – 105 pp., Naturhi- Nordsieck, H. (1981): Fossile Clausilien, VI. Die posteozänen storisk Forening verdenskabel meddelels for 1863. tertiären Clausilien Mittel- und West-Europas.– Arch. Morse, E.S. (1864): Observations on the terrestrial Pulmonif- Molluskenk. 111: 97–114. era, including a catalogue of all species of terrestrial and flu- Nordsieck, H. (1986): Das System der tertiären Helicoidea viatile Mollusca known to inhabit the state. – J. Portland Mittel- und Westeuropas (Gastropoda:Stylommatophora). Soc. Nat. Hist. 1: 1–63. – Heldia 1: 109–120. Morton, J.E. (1955): The evolution of the Ellobiidae with a dis- Nordsieck, H. (2000): Annotated check-list oft he fossil (pre- cussion on the origin of the Pulmonata.– Proc. Zool. Soc. Pleistocene) Clausiliidae (Gastropoda: Stylommatophora) London 125: 127–168. from central and western Europe.– Mitt. dt. malakozool. Moser, M., Niederhöfer, H.-J.& Falkner, G. (2009): Con- Ges. 65: 1–15. tinental molluscs of the fossil site Sandelzhausen (Miocene, Nordsieck, H. (1993): Phylogeny and system of the Pulmo- Upper Freshwater Molasse from Bavaria) and their value for nata (Gastropoda). – Arch. Molluskenk. 121: 31–52. palaeoecological assessment. – Paläontol. Z. 83: 25–54. Noulet, J.B. (1854): Mémoires sur les coquilles fossiles des Te r- Mottl, M. (1958): Neue Säugetierfunde aus dem Jungtertiär rains d’eau douce du Sud-Ouest de la France. – 127 pp., der Steiermark. V. Neue Proboscidierfunde aus dem Sarmat Masson. der Steiermark.– Mitt. Mus. Bergb., Geol. und Te ch. Lan- Noulet, J.B. (1857): Mémoires sur les coquilles fossiles des Te r- desmus. Joanneum Graz 19: 16–41. rains d’eau douce du Sud-Ouest de la France. – 24 pp., Mas- Mottl, M. (1970): Die jungtertiären Säugetierfaunen der Stei- son. ermark, Südost-Österreichs. – Mitt. Mus. Bergb., Geol. und Nützel, A. & Bandel, K. (1993): Studies on the side-branch Te ch. Landesmuseum Joanneum Graz 31: 3–92. planorbids (Mollusca, Gastropoda) of the Miocene crater Müller, O.F. (1773–1774): Vermivm terrestrium et fluviatili- lake of Steinheim am Albuch (southern Germany). – Scrip- um, seu animalium infusoriorum, helminthicorum et ta Geologica, Spec. Iss. 2: 313–357. testaceorum, non marinorum, succincta historia. – 135 + d’Orbigny, A. (1850–1852): Prodrome de Paléontologie. Stra- 214 pp., Heineck & Faber. tigraphique universelle des animaux mollusques et rayonnés Neubauer, T.A., Mandic, O. & Harzhauser, M. (2011): faisant suitre au cours élémentaire de paléontologie et de Middle Miocene freshwater mollusks from Lake Sinj (Di- géologie stratigraphique. – To me I: 394 pp. [1850], To me naride Lake System, SE Croatia, Langhian). – Arch. Mol- II: 427 pp. [1850], To me III: 194 pp. [1852], Masson. luskenk. 140: 201–237. Papp, A. (1939): Untersuchungen an der sarmatischen Fauna Neubauer, T.A., Mandic, O., Harzhauser, M. & von Wiesen. – J. Zweigst. Wien Reichsst. Bodenforsch. 89: Hrvatović, H. (2013a): A new Miocene lacustrine mol- 315–355. lusc fauna of the Dinaride Lake System and its palaeobio- Papp, A. (1953): Die Molluskenfauna des Pannon des Wiener geographic, palaeoecologic, and taxonomic implications.– Beckens. – Mitt. geol. Gesell. Wien 44: 85–222. Palaeontology 56: 129–156. Paul, C.R.C. (1984): Pleistocene non-marine molluscs from Neubauer, T.A., Mandic, O. & Harzhauser, M. (2013b): Cova de Ca Na Reia, Eivissa. – Boll. Soc. d’Hist. Nat. The Middle Miocene freshwater mollusk fauna of Lake Balears 28: 95–114. Gacko (SE Bosnia and Herzegovina): taxonomic revision Paulucci, M. (1878): Matériaux pour servir à l’étude de la and paleoenvironmental analysis.– Fossil Record 16: 77–96. faune malacologique terrestre et fluviatile de l’Italie et de ses Neubauer, T.A., Harzhauser, M., Daxner-Höck, G. & îles. – 54 pp., Savy. Piller, W.E. (2013): New data on the terrestrial gastropods Penecke, K.A. (1891): Die Mollusken-Fauna des untermiocä- The rlea y Middle Miocene mollusc fauna of Lake Rein 45

nen Süsswasserkalkes von Reun in Steiermark – 92 pp., Nichols. (Sandbergers’s Horizont der Helix Ramondi Brongn.). Radoman, P. (1973): New classification of fresh and brackish – Z. dt. Geol. Gesell. 43: 346–368. water Prosobranchia from the Balkan Peninsula and Asia Peters, C. (1853): Das Süßwasserbecken von Rein in Steier- Minor.– Prirodnjacki Muzej u Beogradu, Posebna Izdanja mark.– Jb. k.k. Geol. Reichsanst. 4/2: 433–434. 32: 1–30. Petrascheck, W. (1924): Kohlengeologie der Österreichi- Rafinesque, C.S. (1815): Analyse de la nature ou tableau de schen Te ilstaaten. II. Te il. – 213–272 p., Verlag für Fachlite- l’univers et des corps organisés. – 223 pp., Palermo (priva- ratur GmbH. tely published). Pfeffer, G. (1929): Zur Kenntnis tertiärer Landschnecken.– Rafinesque, C.S. (1820): Annals of nature or annual synopsis Geol.-Paläontol. Abh. 3: 1–230. of new genera and species of animals, plants, discovered in Pfeiffer, C. (1828): Naturgeschichte deutscher Land- und North America. First annual number, for 1820. – 16 pp., Süsswasser-Mollusken. Dritte Abtheilung. – 84 pp., Lan- Smith. des-Industrie-Comptoir. Reinhardt, O. (1883): Einige von Herrn D. W. Kobelt in Pfeiffer, L. (1840): Uebersicht der im Januar, Februar und Schwanheim a. M. zur Begutachtung übersandte, von Herrn März 1839 auf Cuba gesammelten Mollusken. – Arch. Na- Hungerford gesammelte japanische Hyalinen.– Sitzungs- turgesch. 6: 250–261. ber. Gesell. Naturforschender Freunde Berlin 1883: 82–86. Pfeiffer, L. (1847): Diagnosen neuer Heliceen.– Z. Malako- Reischütz, A. (2000): Die Molluskenfauna der Sarmatschich- zool. 4: 12–16. ten von Hautzendorf (Weinviertel, Niederösterreich). – Pfeiffer, L. (1865): Die Mollusken der Dobrudscha. – Malako- Nachrichtenbl. Ersten Vorarlberg. Malakol. Gesell. 8: 21– zool. Blätter 12: 100–105. 27. Pfeiffer, L (1868): Monographia heliceorum viventium. Si- Reuss, A.E. (1849): Beschreibung der fossilen Ostracoden und stens descriptiones systematicas et criticas omnium huius Mollusken der tertiären Süsswasserschichten des nördli- familiae generum et specierum hodie cognitarum.– Brock- chen Böhmens.– In: Reuss, A.E. & Meyer, H. v. (Hrsg.): haus 6: 1–598. Die tertiären Süsswassergebilde des nördlichen Böhmens Pilsbry, H.A. (1893): Preliminary outline of a new classifica- und ihre fossilen Thierreste.– Palaeontographica 2: 16–43. tion of the Helices. – Proc. Acad. Nat. Sci. Philadelphia 44: Reuss, A.E. (1861): Die fossilen Mollusken der tertiären Süß- 387–404. wasserkalke Böhmens. – Sitzungsber. k. Akad. Wissensch., Pilsbry, H.A. (1895). – In: Tryon, G.W. (ed.): Manual of math.-naturwissenschaft. Cl. 42: 55–85. Conchology, structural and systematic, with illustrations of Risso, A. (1826): Histoire naturelle des principales productions the species. – Sec. ser., Pulmonata 9 (Helicidae Vol. 7): 366 de l’Europe méridionale et particulièrement de celles des pp., Acad. Nat. Sci. Philadelphia. environs de Nice et des Alpes Maritimes.– 492 pp., Levrault. Pilsbry, H.A. (1899): Remarks on the American species of Rossmässler, E.A. (1835–1837): Iconographie der Land- und Conulus. – The Nautilus 12: 113–117. Süßwasser-Mollusken, mit vorzüglicher Berücksichtigung Pilsbry, H.A. (1900): On the zoological position of der europäischen noch nicht abgebildeten Arten, 1. – Heft and Achatinella.– Proc. Acad. Nat. Sci. Philadelphia 52: 1: 132 pp., Heft 2: 26 pp., Heft 3: 33 pp., Heft 4: 27 pp., 561–567. Heft 5–6: 70 pp., Arnold. Pilsbry, H.A. (1916–1918): Manual of ConchologyPupillidae Rzehak, A. (1893): Die Fauna der Oncophora Schichten Mäh- (Gastrocoptinae). – Sec. Ser., Pulmonata 24: 380 pp., Acad. rens.– Verh. naturforsch. Vereins Brünn 31: 142–192. Nat. Sci. Philadelphia. Sachsenhofer, R.F., Bechtel, A., Reischenbacher, D. & Pollonera, C. (1898): Intorne ad alcune Conchiglie del Friuli. Weiss, A. (2003): Evolution of lacustrine systems along the – Boll. Mus. Zool. ed Anatomia comparata Univ. To rino Miocene Mur-Mürz fault system (Eastern Alps, Austria) 13: 1–4. and implications on source rocks in pull-apart basin. – Ma- Ponder, W.F. & Lindberg, D.R. (1995): Gastropod phyloge- rine and Petroleum Geology 20: 83–110. ny, Challenges for the 90’s. – In: Taylor, J.D. (ed.): Origin Sandberger,C.L.F. (1858–1863): Die Conchylien des Main- and evolutionary radiation of the Mollusca. – 135–154 pp., zer Te rtiärbeckens. – 458 pp., C.W. Kreidel. Oxford Univ. Press. Sandberger, C.L.F. (1870–1875): Die Land- und Süsswasser- Postl, W., Hauzenberger, C. & Goessler, W. (2008): Ver- Conchylien der Vorwelt. – Lieferungen 1–3: 1–96 pp. gleichende geochemische und mineralogische Untersu- [1870], Lieferungen 4–5: 97–160 pp. [1871], Lieferungen chungen an Hornstein aus Rein bei Graz (Steiermark, 6–8: 161–256 pp. [1872], Lieferungen 9–10: 257–352 pp. Österreich) und Baiersdorf bei Riedenburg, W Regensburg [1873], Lieferung 11: 353–1000 pp. [1875], C.W. Kreidel. (Bayern, Deutschland).– Joannea Mineralogie 4: 99–114. Sandberger, C.L.F. (1886): Die fossilen Binnen-Conchylien Prysjazhnjuk, V. (2008): Te rrestrial and freshwater molluscs des Hornsteins von Dukovan bei Oslawan in Mähren.– of Trijebine, Sjenica (south-western Serbia). – Bull. Acad. Verh. k.k. Geol. Reichsanst. 16: 403–404. serbe sci. et arts. Classe sci. math. nat. 135: 85–109. Say, T. (1817): Descriptions of seven species of American fresh Pulteney, R. (1799): Catalogues of the birds, shells, and some water and land shells, not noticed in the systems. – J. Acad. of the more rare plants, of Dorsetshire. From the new and Nat. Sci. Philadelphia 1: 13–18. enlarged edition of Mr. Hutchins’s history of that county. Say, T. (1822): Description of univalve terrestrial and fluviatile 46 Mathias Harzhauser et al.

shells of the United States. – J. Acad. Nat. Sci. Philadelphia schen Te rtiärbeckens.– Verh. k.k. zool.-bot. Gesell. Wien 2: 370–381. 12: 529–538. Schileyko, A.A. (1979): Sistema otrjada Geophila (= Helici- Strauch, F. (1977): Die Entwicklung der europäischen Vertre- da) (Gastropoda, Pulmonata). – Transact. zool. Inst. Akad. ter der Gattung Carychium O. F. Müller seit dem Miozän Sci. SSSR 80: 44–69. (Mollusca: Basomatophora). – Arch. Molluskenk. 107: Schlickum, W.R. (1964): Die Molluskenfauna der Süßbrack- 149–193. wassermolasse Niederbayerns. – Arch. Molluskenk. 93: Studer, S. (1789): – In: Coxe, W.: Travels in Switzerland, in a 1–609. series of letters to William Melmoth, Esq. in three volumes, Schlickum, W.R. (1976): Die in der pleistozänen Gemeinde- 3: 446 pp., Cadell. kiesgrube von Zwiefaltendorf a.D. Donau abgelagerte Mol- Stworzewicz, E. (1993): Palaeobiogeographical characteris- luskenfauna der Silvanaschichten. – Arch. Molluskenk. tics of Miocene fauna of Poland. – Scripta Geo- 107: 1–31. logica Spec. Iss. 2: 397–406. Schlickum, W.R. (1979a): Zur oberpannonen Molluskenfau- Stworzewicz, E. (1999): Miocene land snails from Bełchatów na von Öcs, II.– Arch. Molluskenk. 109: 407–415. (Central Poland), IV: Pupilloidea (Gastropoda Pulmona- Schlickum, W.R.(1979b): Die Gattung Hydrocena im europä- ta). Systematic, biostratigraphic and palaeoecological stud- ischen Te rtiär (Neritacea Hydrocenidae). – Arch. Mollus- ies. – Folia Malacologica 7: 133–170. kenk. 110 (1–3): 71–73. Stworzewicz, E. (2007): 2. Molluscan fauna (Gastropoda: Schlosser,M. (1907): Die Land- und Süsswassergastropoden Pulmonata: Pupilloidea): a systematic review. – Ann. vom Eichkogel bei Mödling. Nebst einer Besprechung der Naturhist. Mus. Wien 108A: 25–41. Gastropoden aus dem Miocän von Rein in Steiermark.– Jb. Stworzewicz, E. & Prisyazhnyuk, V.A. (2006): A new spe- k.k. Geol. Reichsanst. 57: 753–792. cies of Miocene terrestrial gastropod Gastrocopta from Po- Schlotheim, E.F. von (1820): Die Petrefactenkunde auf land and the validity of “Pupa (Ve rtigo) suevica”. – Acta Pal- ihrem jetzigen Standpunkte durch die Beschreibung seiner aeontologica Polonica 51: 165–170. Sammlung versteinerter und fossiler Überreste des Thier- Swainson, W. (1840): A treatise on malacology or shells and und Pflanzenreichs der Vorwelt erläutert. – 457 pp., Becker. shell-fish. – 419 pp., Longman, London. Schmidt, A. (1855): Der Geschlechtsapparat des Stylommato- Szarwoska, M. (2006): Molecular phylogeny, systematics and phoren in taxonomischer Hinsicht gewürdigt. – Abh. na- morphological character evolution in the Balkan Rissoo- turwissenschaft. Ver. Sachsen u. Thüringen Halle 1: 1–52. idea (Caenogastropoda). – Folia Malacologica 14: 99–168. Schnabel, T. (2006): The cenozoic Filholiidae Wenz, 1923. Taylor, D.W. (1960): Late Cenozoic molluscan faunas from Part 3: The Miocene species of the genus Triptychia.– Arch. the High Plains U.S. Geological Survey.– Professional Pa- Molluskenk. 135: 133–203. per 337: 1–94. Schütt,H. (1967): Die Landschnecken der untersarmatischen Thiele, J. (1925–1926): Mollusca = Weichtiere. – In: Kükent- Rissoenschichten von Hollabrunn, N.Ö. – Arch. Mollus- hal, W. & Krumbach, T. (eds): Handbuch der Zoologie. kenk. 96: 199–222. – 15–256 pp., De Gruyter. Soós, L. (1926): Eine neue Xerophila aus Deutschland, Xer. gey- Thiele, J. (1931): Handbuch der systematischen Weichtierkun- eri, und anatomische Bemerkungen über Xer. barcinonensis de, 1. – 377–778 pp., Fischer. (Bgt.). – Arch. Molluskenk. 58: 96–106. Thomä, C. (1845): Fossile Conchylien aus den Te rtiärschichten Standfest, F. (1882): Ueber das Alter der Schichten von Rein bei Hochheim und Wiesbaden gesammelt und im naturhi- in Steiermark.– Verh. k.k. Geol. Reichsanst. 1882: 176– storischen Museum zu Wiesbaden aufgestellt. – Jahrbücher 179. Nassau. Ver. Naturk. 2: 125–162. Steenberg,E.M. (1925): Études sur l’anatomie et la systéma- Truc, G. (1971): Heliceae (Gastropoda) du néogen du bassin tique des maillots (Fam. s. lat.). – Videnskabelige Rhodanien (France). – Geobios 4: 273–327. Meddelelser fra Dansk naturhistorisk Forening i Kjøben- Tryon, G.W. (1886): Manual of Conchology, structural and havn 80: 1–215. systematic. With illustrations of the species. Second series: Šteffek, J., Falniowski, A., Szarowska, M. & Grego, J. Pulmonata, 2. Zonitidae. – 265 pp., Academy of Natural (2011): “Hauffenia” Pollonera, 1898 (Caenogastropo- Sciences. da: Hydrobiidae) in Slovakia: a preliminary report.– Folia Turton, W. (1831): A manual of the land and freshwater shells of Malacologica 19: 1–7. the British Islands arranged according to the more modern Steklov, A.A. (1966): Nazemnye molluski neogena systems of classification, and described from perfect speci- Predkavkaza i ich stratigrafitsjeskoje znatsjenije. – 262 pp., mens in the author’s cabinet: with coloured plates of every spe- Akad. Nauka S.S.S.R., Moskva [in Russian]. cies.– 152 pp., Longman, Orme, Brown, Green & Longmans. Stimpson, W. (1865): Researches upon the Hydrobiinae and al- Turton, W. (1840): A manual of the land and fresh-water shells lied forms: chiefly made from materials in the Museum of of the British Islands, with figures of each of the kinds. A the Smithsonian Institution.– Smithsonian Miscellaneous new edition, thoroughly revised and much enlarged, by Collections 7: 1–59. John Edward Gray. – 324 pp., Longman, Orme, Brown, Stoliczka, F. (1862): Beitrag zur Kenntnis der Molluskenfau- Green, and Longmans Paternoster Row. na der Cerithien- und Inzersdorfer Schichten des ungari- Unger, F. (1843): Geognostische Skizze der Umgebung von The rlea y Middle Miocene mollusc fauna of Lake Rein 47

Grätz. – In: Schreiner, G. (ed.): Grätz. Ein naturhisto- Wenz,W. (1919): Zur Nomenklatur tertiärer Land- und risch-statistisch-topographisches Gemälde dieser Stadt und Süsswassergastropoden III.– Senckenbergiana 1: 238–240. ihrer Umgebungen. – 69–82 pp., Ferstl’sche Buchhand- Wenz,W.(1922): Die Entwicklung der Steinheimer Planorben lung, Graz. und ihre Bedeutung für die Deszendenzlehre. –Ber. Senk- Unger, F. (1850): Genera et species plantarum fossilium. – 627 kenberg. Naturforsch. Gesell. Frankfurt am Main 52: 135– pp, Braumüller. 158. Unger, F. (1852): Iconographia plantarum fossilium. – Denk- Wenz,W. (1923–1930): Fossilium Catalogus I: Animalia. Ga- schr. kaiserl. Akad. Wissensch., math.-naturwissenschaft. stropoda extramarina tertiaria. – Pars 17 (1): 1–352 pp. Cl. 4: 73–118. [1923], Pars 18 (2): 353–736 pp. [1923], Pars 20 (3): 737– Unger, F. (1858): Über fossile Pflanzen des Süsswasser-Kalkes 1068 pp. [1923], Pars 21 (4): 1069–1420 pp. [1923], Pars und Quarzes. – Denkschr. kaiserl. Akad. Wissensch., math.- 22 (5): 1421–1734 pp. [1923], Pars 23 (6): 1735–1862 pp. naturwissenschaft. Cl. 14: 1–12. [1923], Pars 32 (7): 1863–2230 pp. [1926], Pars 38 (8): Wagner, H. (1935): Magyarorszag, hovatorszag es Dalmacia 2231–2502 pp. [1928], Pars 40 (9): 2503–2886 pp. [1929], hazatlan csigai. Die Nacktschnecken Ungarns, Croatiens Pars 43 (10): 2887–3014 pp. [1929], Pars 46 (11): 3015– und Dalmatiens.– Ann. Hist.-Nat. Mus. National. Hun- 3387 pp. [1930], W. Junk. garici, Pars zoologica 29: 169–211. Wenz,W. (1927): Weitere Beiträge zur Fauna der pontischen Wa lker, B. (1903): Notes on eastern American Ancyli. – The Schichten von Leobersdorf. – Senckenbergiana 9: 41–48. Nautilus 17: 13–19, 25–31. Westerlund, C.A. (1885): Fauna der in der paläarctischen Re- Wa lker, B. (1918): A synopsis of the classification of the fresh- gion (Europa, Kaukasien, Sibirien, Turan, Persien, Kurdi- water Mollusca of North America, North of Mexico, and a stan, Armenien, Mesopotamien, Kleinasien, Syrien, Arabi- catalogue of the more recently described species, with notes, en, Egypten, Tripolis, Tunesien, Algerien und Marocco) le- Part I:Synopsis. – Univ. Michigan, Mus. Comp. Zool., Mis- benden Binnenconchylien. V. Fam. Succinidae, Auriculi- cellan. Publ. 6: 1–213. dae, Limnaeidae, Cyclostomidae & Hydrocenidae. – 135 Wautier, J. (1975): Présence d’espèces du genre Ferrissia Wa l- pp., Håkan Ohlsson. ker, 1903 (Gastropoda, Basommatophora) dans le Néo- Winkler-Hermaden, A. (1957): Geologisches Kräftespiel gène du Bassin Rhodanien (France). – Geobios 8: 423–433. und Landformung. – 822 pp., Springer Verlag. Weber, L. & Weiss, A. (1983): Bergbaugeschichte und Geolo- Wollaston, T.V. (1878): Te stacea Atlantica or the land and gie der Österreichischen Braunkohlenvorkommen.– Arch. freshwater shells of the Azores, Madeiras, Salvages, Canar- Lagerstättenforsch. Geol. Bundesanst. 4: 1–317. ies, Cape Verdes, and Saint Helena. – 588 pp., Reeve. Welter-Schultes, F.W. (1998): Die Landschnecken der grie- von Zieten, C.-H. (1830–1832): Die Versteinerungen chischen Insel Gávdos, der südlichsten Insel Europas. – Württembergs. – 102 pp., Verlag & Lithographie der Expe- Schriften Malakozool. 12: 1–120. dition des Werkes unserer Zeit. Wenz, W. (1914): Paläontologischer Te il. – In: Fischer, K. & Zettler, M.L. & Glöer, P. (2008): Zur Ökologie und Mor- Wenz, W. (1914): Die Landschneckenkalke des Mainzer phologie der Sphaeriidae der Norddeutschen Tiefebene. – Beckens und ihre Fauna. – Jahrbücher Nassau. Ver. Naturk. Heldia, special volume 8: 1–61. Wiesbaden 67: 30–154. Zilch, A. (1984): Die Typen und Typoide des Natur-Museums Wenz,W. (1915): Die fossilen Arten der Gattung Strobilops Senckenberg, 74: Mollusca: Pupillacea (4): Chondrinidae: Pilsbry und ihre Beziehungen zu den lebenden. – N. Jb. Gastrocoptinae, Hypselostomatinae, Aulacospirinae. – Ar- Mineral., Geol. Paläontol. 2: 63–88. chiv für Molluskenkunde 115: 151–177. 48 Mathias Harzhauser et al.

Explanation of plates

Plate 1

Freshwater molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1–2: Theodoxus sp.; NHMW 2012/0154/0001, Enzenbach. Figs. 3–4: Pomatias consobrinum (Sandberger 1875); UMJ Inv. 1891/VII/4, Rein. Fig. 5: Bania gobanzi (Frauenfeld 1864); NHMW 2012/0154/0006, Enzenbach. Fig. 6: Bania gobanzi (Frauenfeld 1864); NHMW 2012/0154/0007, Enzenbach. Fig. 7: Bania gobanzi (Frauenfeld 1864); NHMW 2012/0154/0008, Enzenbach. Figs. 8, 14: Bania gobanzi (Frauenfeld 1864); NHMW 2012/0154/0009, Enzenbach. Fig. 9: Hauffenia mandici Neubauer & Harzhauser n. sp.; holotype, NHMW 2012/0154/0002, Enzenbach. Fig. 10: Hauffenia mandici Neubauer & Harzhauser n. sp.; paratype 1, NHMW 2012/0154/0003, Enzenbach. Figs. 11, 13: Hauffenia mandici Neubauer & Harzhauser n. sp.; paratype 2, NHMW 2012/0154/0004, Enzenbach. Fig. 12: Hauffenia mandici Neubauer & Harzhauser n. sp.; NHMW 2012/0154/0005, Enzenbach. Scale bar represents 5mm (Figs. 1–4) and 0.5 mm (Figs. 5–11). The rlea y Middle Miocene mollusc fauna of Lake Rein 49 50 Mathias Harzhauser et al.

Plate 2

Freshwater molluscs, Rein Basin; Middle Miocene, Langhian Fig. 1: Radix enzenbachensis Neubauer & Harzhauser n. sp.; holotype, NHMW 2012/0154/0010, Enzenbach. Fig. 2: Radix enzenbachensis Neubauer & Harzhauser n. sp.; paratype 1, NHMW 2012/0154/0011, Enzenbach. Fig. 3: Radix enzenbachensis Neubauer & Harzhauser n. sp.; paratype 2, 2012/0154/0012, Enzenbach. Fig. 4: Stagnicola armaniacensis (Noulet 1857); NHMW 2012/0154/0013, Enzenbach; juvenile specimen. Figs. 5–6: Stagnicola armaniacensis (Noulet 1857); UMJ Inv. 5815, Rein. Figs. 7–8: Stagnicola armaniacensis (Noulet 1857); UMJ Inv. 1882/XVIII/19, Rein. Figs. 9–10: Stagnicola armaniacensis (Noulet 1857); UMJ 1891/VII/7, Rein. Fig. 11: Stagnicola armaniacensis (Noulet 1857); NHMW 2012/0154/0014, Enzenbach. Fig. 12: Segmentina lartetii (Noulet 1854); NHMW 2012/0154/0031, Rein (Glöckelanderl). Fig. 13: Segmentina lartetii (Noulet 1854); NHMW 2012/0154/0032, Enzenbach. Fig. 14: Segmentina lartetii (Noulet 1854); NHMW 2012/0154/0033, Enzenbach. Fig. 15: Segmentina lartetii (Noulet 1854); NHMW 2012/0154/0034, Enzenbach. Fig. 16: Segmentina lartetii (Noulet 1854); NHMW 2012/0154/0035, Rein (Glöckelanderl). Scale bar represents 5mm (Figs. 5–10) and 1mm (Figs. 1–4, 13–16). The rlea y Middle Miocene mollusc fauna of Lake Rein 51 52 Mathias Harzhauser et al.

Plate 3

Freshwater molluscs, Rein Basin; Middle Miocene, Langhian Fig. 1: Gyraulus kleini (Gottschick & Wenz 1916); NHMW 2012/0154/0015, Enzenbach. Figs. 2, 14: Gyraulus kleini (Gottschick & Wenz 1916); NHMW 2012/0154/0016, Enzenbach. Fig. 3: Gyraulus kleini (Gottschick & Wenz 1916); NHMW 2012/0154/0017, Enzenbach; with aberrant aperture. Fig. 4: Gyraulus kleini (Gottschick & Wenz 1916); NHMW 2012/0154/0018, Enzenbach; with aberrant aperture. Fig. 5: Planorbarius mantelli (Dunker 1848). NHMW 2012/0154/0028. Enzenbach. Fig. 6: Gyraulus kleini (Gottschick & Wenz 1916); NHMW 2012/0154/0019, Enzenbach. Figs. 7–8, 10: Planorbarius mantelli (Dunker 1848); UMJ Inv. 60.461, Hörgas (= Enzenbach). Fig. 9: Planorbarius mantelli (Dunker 1848); UMJ Inv. 60.461, Hörgas (= Enzenbach). Figs. 11–12: Planorbarius mantelli (Dunker 1848); UMJ Inv. 60.461, Hörgas (= Enzenbach). Fig. 13: Planorbarius mantelli (Dunker 1848); UMJ Inv. 60.461, Hörgas (= Enzenbach). Fig. 15: Planorbarius mantelli (Dunker 1848). NHMW 2012/0154/0029. Enzenbach. Fig. 16: Planorbarius mantelli (Dunker 1848). NHMW 2012/0154/0030. Enzenbach. Scale bar represents 1mm (Figs. 1–6), 5mm (Figs. 9–10) and 10 mm (Figs. 7–8, 11–13). The rlea y Middle Miocene mollusc fauna of Lake Rein 53 54 Mathias Harzhauser et al.

Plate 4

Freshwater molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1–2: Gyraulus krohi Neubauer & Harzhauser n. sp.; paratype 1, NHMW 2012/0154/0021, Enzenbach. Figs. 3–4, 7: Gyraulus krohi Neubauer & Harzhauser n. sp.; holotype, NHMW 2012/0154/0020, Enzenbach. Figs. 5–6: Gyraulus sp.; NHMW 2012/0154/0023, Enzenbach. Figs. 8, 10–11: Gyraulus sp.; NHMW 2012/0154/0024, Enzenbach. Fig. 9: Gyraulus sp.; NHMW 2012/0154/0025, Enzenbach. Figs. 12–13: Gyraulus sp.; NHMW 2012/0154/0026, Enzenbach. Fig. 14: Gyraulus sp.; NHMW 2012/0154/0027, Enzenbach. Scale bar represents 1mm unless noted otherwise. The rlea y Middle Miocene mollusc fauna of Lake Rein 55 56 Mathias Harzhauser et al.

Plate 5

Freshwater molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1, 12: Ferrissia deperdita (Desmarest 1814); NHMW 2012/0154/0036, Enzenbach. Fig. 2: Ferrissia deperdita (Desmarest 1814); NHMW 2012/0154/0037, Enzenbach. Figs. 3, 13: Ferrissia wittmanni (Schlickum 1964); NHMW 2012/0154/0039, Rein. Fig. 4: Ferrissia wittmanni (Schlickum 1964); NHMW 2012/0154/0040, Rein. Fig. 5: Ferrissia deperdita (Desmarest 1814); NHMW 2012/0154/0038, Enzenbach. Figs. 6–11, 14: Musculium miocaenicum Neubauer & Harzhauser n. sp.; holotype, NHMW 2012/0154/0088, Enzenbach; left valve. Scale bar represents 1mm unless noted otherwise. The rlea y Middle Miocene mollusc fauna of Lake Rein 57 58 Mathias Harzhauser et al.

Plate 6

Te rrestrial molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1, 9, 12: Carychium gibbum Sandberger, 1875; NHMW 2012/0154/0045, Enzenbach. Fig. 2: Carychium gibbum Sandberger, 1875; NHMW 2012/0154/0046, Enzenbach. Fig. 3: Carychium gibbum Sandberger, 1875; NHMW 2012/0154/0047, Enzenbach. Fig. 4: Carychium gibbum Sandberger, 1875; NHMW 2012/0154/0048, Enzenbach; lamellar apparatus. Fig. 5: Carychium cf. eumicrum Bourguignat, 1857; NHMW 2012/0154/0044, Enzenbach. Fig. 6: Carychium eumicrum Bourguignat, 1857; NHMW 2012/0154/0041, Enzenbach. Fig. 7: Carychium eumicrum Bourguignat, 1857; NHMW 2012/0154/0042, Enzenbach. Figs. 8, 13: Azeca peneckei Andreae, 1892; NHMW 2012/0154/0049, Enzenbach. Fig. 10: Carychium eumicrum Bourguignat, 1857; NHMW 2012/0154/0043, Enzenbach. Figs. 11, 14: Azeca peneckei Andreae, 1892; NHMW 2012/0154/0050, Enzenbach. Scale bar represents 100 µm except for Fig. 8 (1 mm). The rlea y Middle Miocene mollusc fauna of Lake Rein 59 60 Mathias Harzhauser et al.

Plate 7

Te rrestrial molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1, 7: Strobilops planus (Clessin 1885); NHMW 2012/0154/0051, Enzenbach. Figs. 2, 8: Strobilops planus (Clessin 1885); NHMW 2012/0154/0052, Enzenbach. Fig. 3: Strobilops planus (Clessin 1885); NHMW 2012/0154/0053, Enzenbach. Fig. 4: Strobilops planus (Clessin 1885); NHMW 2012/0154/0054, Enzenbach. Figs. 5, 9: Va llonia lepida (Reuss 1849); NHMW 2012/0154/0055, Enzenbach. Fig. 6: Va llonia lepida (Reuss 1849); NHMW 2012/0154/0056, Enzenbach. Figs. 10–11: Granaria cf. subfusiformis (Sandberger 1875); NHMW 2012/0154/0057, Enzenbach (note that this deformed spec- imen was digitally restored). Fig. 12: Triptychia reinensis Schnabel, 2006; UMJ Inv. 1892/VII/30, Rein. Figs. 13–14: Triptychia reinensis Schnabel, 2006; UMJ Inv. 1892/VII/30, Rein. Scale bar represents 1mm (Figs. 1–6), 5mm (Figs. 10–11) and 10 mm (Figs. 12–14). The rlea y Middle Miocene mollusc fauna of Lake Rein 61 62 Mathias Harzhauser et al.

Plate 8

Te rrestrial molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1–2, 15: Ve rtigo callosa (Reuss 1849); NHMW 2012/0154/0061, Enzenbach. Fig. 3: Truncatellina pantherae Harzhauser & Neubauer n. sp.; holotype, NHMW 2012/0154/0066, Enzenbach. Fig. 4: Truncatellina pantherae Harzhauser & Neubauer n. sp.; paratype 1, NHMW 2012/0154/0067, Enzenbach. Fig. 5: Ve rtigo angulifera Boettger, 1884; NHMW 2012/0154/0058, Enzenbach. Fig. 6: Ve rtigo angulifera Boettger, 1884; NHMW 2012/0154/0059, Enzenbach. Fig. 7: Ve rtigo angulifera Boettger, 1884; NHMW 2012/0154/0060, Enzenbach. Figs. 8, 12: Gastrocopta suevica (Boettger 1889); NHMW 2012/0154/0065, Enzenbach. Fig. 9: Gastrocopta acuminata (Klein 1846); NHMW 2012/0154/0062, Enzenbach. Fig. 10: Gastrocopta acuminata (Klein 1846); NHMW 2012/0154/0063, Enzenbach. Figs. 11, 14: Gastrocopta acuminata (Klein 1846); NHMW 2012/0154/0064, Enzenbach. Fig. 13: Truncatellina pantherae Harzhauser & Neubauer n. sp.; paratype 2, NHMW 2012/0154/0068, Enzenbach. Scale bar represents 100 µm. The rlea y Middle Miocene mollusc fauna of Lake Rein 63 64 Mathias Harzhauser et al.

Plate 9

Te rrestrial molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1–2: Oxylomaminima (Klein 1853); NHMW 2012/0154/0069, Enzenbach. Fig. 3: Opeas minutum (Klein 1853); NHMW 2012/0154/0073, Enzenbach. Fig. 4: Opeas minutum (Klein 1853); NHMW 2012/0154/0074, Enzenbach. Figs. 5, 7: Opeas minutum (Klein 1853); NHMW 2012/0154/0075, Enzenbach. Fig. 6: Oxylomaminima (Klein 1853); NHMW 2012/0154/0070, Enzenbach. Fig. 8: Discus pleuradrus (Bourguignat 1881); NHMW 2012/0154/0077, Enzenbach. Figs. 9, 12–13: Discus pleuradrus (Bourguignat 1881); NHMW 2012/0154/0078, Enzenbach. Fig. 10: Discus pleuradrus (Bourguignat 1881); NHMW 2012/0154/0079, Enzenbach. Fig. 11: Discus pleuradrus (Bourguignat 1881); NHMW 2012/0154/0080, Enzenbach. Fig. 14: Cecilioides aciculella (Sandberger 1875); NHMW 2012/0154/0071, Enzenbach. Fig. 15: Cecilioides aciculella (Sandberger 1875); NHMW 2012/0154/0072, Enzenbach. Scale bar represents 1mm unless noted otherwise. The rlea y Middle Miocene mollusc fauna of Lake Rein 65 66 Mathias Harzhauser et al.

Plate 10

Te rrestrial molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1–3, 22: Euconulus styriacus Harzhauser, Neubauer & Binder n. sp.; holotype, NHMW 2012/0154/0081, Enzenbach. Figs. 4–6: Oxychilus procellarius (Jooss 1918); UMJ Inv. 5823, Rein. Figs. 7–9: Oxychilus procellarius (Jooss 1918); UMJ Inv. 5823, Rein. Figs. 10–12: Aegopinella cf. subnitens (Klein 1853); UMJ Inv. 1894/X/21, Rein. Figs. 13–15: Miozonites costatus (Sandberger 1875); UMJ Inv. 1891/VII/18, Rein. Figs. 16–18: Miozonites costatus (Sandberger 1875); UMJ Inv. 1891/VII/18, Rein. Fig. 19: Miozonites costatus (Sandberger 1875); UMJ Inv. 1891/VII/18, Rein. Figs. 20–21: Deroceras sp.; NHMW 2012/0154/0082, Enzenbach. Scale bar represents 1mm (Figs. 1–12, 20–21) and 10 mm (Figs. 13–19). The rlea y Middle Miocene mollusc fauna of Lake Rein 67 68 Mathias Harzhauser et al.

Plate 11

Te rrestrial molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1–4: Megalotachea turonensis (Deshayes 1831); UMJ Inv. 1891/VII/26, Rein. Figs. 5–8, 21: Apula coarctata (Klein 1853); UMJ Inv. 5821, Rein. Figs. 9–11, 22: Klikia giengensis (Klein 1846); UMJ Inv. 1891/VII/21, Rein. Figs. 12–14: Leucochroopsis kleinii (Klein 1846); NHMW 2012/0154/0083, Enzenbach. Figs. 15–17: Leucochroopsis sp.; NHMW 2012/0154/0084, Enzenbach. Fig. 18: “Discus” schneideri Harzhauser & Neubauer n. sp.; paratype 2, NHMW 2012/0154/0087, Enzenbach. Figs. 19, 23: “Discus” schneideri Harzhauser & Neubauer n. sp.; holotype, NHMW 2012/0154/0085, Enzenbach. Figs. 20, 24: “Discus” schneideri Harzhauser & Neubauer n. sp.; paratype 1, NHMW 2012/0154/0086, Enzenbach. Scale bar represents 1mm (Figs. 12–22), 5mm (Figs. 5–11) and 10 mm (Figs. 1–4). The rlea y Middle Miocene mollusc fauna of Lake Rein 69 70 Mathias Harzhauser et al.

Plate 12

Te rrestrial molluscs, Rein Basin; Middle Miocene, Langhian Figs. 1–4: Megalotachea reinensis (Gobanz 1854); GBA (no number), Rein. Figs. 5–8: Megalotachea reinensis (Gobanz 1854); UMJ Inv. 75.949, Tallak. Figs. 9–12: Pseudochloritis incrassata (Klein 1853); UMJ Inv. 75.482, Tallak. Figs. 13–16: Pseudochloritis incrassata (Klein 1853); UMJ Inv. 5818, Rein. Figs. 17–18: Megalotachea reinensis (Gobanz 1854); GBA (no number), Rein. Figs. 19–21: Pseudochloritis incrassata (Klein 1853); UMJ Inv. 1882/XVIII/13C, Rein; probably a syntype of Helix (Campylaea) Standfesti Penecke, 1891. Figs. 22–24: Pseudochloritis incrassata (Klein 1853); NHMW 2005z0068/0001, Rein. Scale bar represents 10 mm. The rlea y Middle Miocene mollusc fauna of Lake Rein 71