Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions pharmaceutics Review Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions Ognjenka Rahi´c 1,* , Amina Tucak 1 , Naida Omerovi´c 2 , Merima Sirbubalo 1 , Lamija Hindija 1 , Jasmina Hadžiabdi´c 1 and Edina Vrani´c 1,* 1 Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; [email protected] (A.T.); [email protected] (M.S.); [email protected] (L.H.); [email protected] (J.H.) 2 Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; [email protected] * Correspondence: [email protected] (O.R.); [email protected] (E.V.) Abstract: Glaucoma is considered to be one of the biggest health problems in the world. It is the main cause of preventable blindness due to its asymptomatic nature in the early stages on the one hand and patients’ non-adherence on the other. There are several approaches in glaucoma treatment, whereby this has to be individually designed for each patient. The first-line treatment is medication therapy. However, taking into account numerous disadvantages of conventional ophthalmic dosage forms, intensive work has been carried out on the development of novel drug delivery systems for glaucoma. This review aims to provide an overview of formulation solutions and strategies in the development of in situ gel systems, nanosystems, ocular inserts, contact lenses, collagen corneal shields, ocular implants, microneedles, and iontophoretic devices. The results of studies confirming the effectiveness of the aforementioned drug delivery systems were also briefly presented. Keywords: glaucoma; novel ocular drug delivery systems; formulation Citation: Rahi´c,O.; Tucak, A.; Omerovi´c,N.; Sirbubalo, M.; Hindija, L.; Hadžiabdi´c,J.; Vrani´c,E. Novel Drug Delivery 1. Introduction Systems Fighting Glaucoma: Glaucoma Formulation Obstacles and Glaucoma is a chronic disease that affected approximately 60.5 million people world- Solutions. Pharmaceutics 2021, 13, 28. wide in 2010 [1]. This number is expected to rise approximately to 76.0 million by 2020 and https://dx.doi.org/10.3390/ 112.0 million by 2040 [2,3]. Glaucoma is the second most common eye disease after pharmaceutics13010028 cataracts [4]. It is known as the “silent thief of vision” because its symptoms are usually Received: 13 November 2020 only felt in the late stages of the disease when the visual field and vision are seriously Accepted: 22 December 2020 impaired [5]. Yet, it is the most common cause of vision loss internationally [2,6,7]. Published: 26 December 2020 Glaucoma is a neurodegenerative disorder of the optic nerve. It is a form of optic neuropathy, characterized by damage of the optic disc, the place where the optic nerve and Publisher’s Note: MDPI stays neu- blood vessels enter the retina (Figure1a) [ 8]. The retina is a thin layer on the rear eye part tral with regard to jurisdictional claims that collects light and it consists of neuronal and non-neuronal parts. One of five types of in published maps and institutional retinal neurons are ganglion cells [9]. These are unique retinal cells, which can produce affiliations. action potentials that are transmitted to the brain through the optic nerve, thus enabling vision. Of all retinal cells, only ganglion cells, in particular their axons, are affected by glaucomatous changes. This sensitivity is because: (1) a part of ganglion cell axons, between the retina and the lamina cribrosa, is not myelinated, and (2) ganglion cell axons Copyright: © 2020 by the authors. Li- are very long and susceptible to numerous disorders [10]. Although glaucomatous havoc censee MDPI, Basel, Switzerland. This affects the retinal ganglion cell stroma, photoreceptors, the lateral geniculate body, and the article is an open access article distributed visual cortex, the main reason for vision loss is the impairment of retinal ganglion cell under the terms and conditions of the lamina cribrosa Creative Commons Attribution (CC BY) axons within the of the optic nerve head [11]. license (https://creativecommons.org/ licenses/by/4.0/). Pharmaceutics 2021, 13, 28. https://dx.doi.org/10.3390/pharmaceutics13010028 https://www.mdpi.com/journal/pharmaceutics Pharmaceutics 2021,, 1313,, 28x FOR PEER REVIEW 2 of 58 The change change of of the the optic optic disc, disc, known known as “cupping as “cupping of the of optic the optic disc” disc” is its isvertical its vertical elon‐ gationelongation and andis accompanied is accompanied by the by loss the lossof the of neuroretinal the neuroretinal rim, rim, which which can can be visualized be visualized on theon thesuperior superior and and inferior inferior poles poles of the of the optic optic disc disc (Figure (Figure 1c)1 [3,12].c) [3,12 ]. Figure 1. ((aa)) Morphology Morphology of of the the eye; eye; ( (bb)) Optical Optical nerve nerve head head in in a a healthy healthy eye; eye; (c ()c )The The optical optical nerve nerve head in glaucoma is characterized by vertical elongationelongation ofof thethe cupcup andand lossloss ofof thethe neuroretinal neuroretinal rim. rim. Most frequently, glaucomatous changes of the optic disc occur as a result of elevated intraocularMost frequently, pressure (IOP)glaucomatous [3,13,14]. changes However, of the elevated optic disc IOP occur on its as own a result is not of elevated proof of intraocularglaucoma’s pressure existence. (IOP) On the [3,13,14]. other hand, However, it has elevated been proven IOP thaton its lowering own is IOPnot inproof ocular of glaucoma’shypertension existence. delays or On even the stops other changes hand, it in has optic been nerve proven axons that [13 lowering,14]. IOP in ocular hypertensionOpen-angle delays glaucoma or even is stops a threat changes called in “silent optic nerve thief” axons [5]. Another [13,14]. type of glaucoma, denotedOpen as‐angle “angle-closure glaucoma glaucoma”,is a threat called is characterized “silent thief” by [5]. an Another increase type in IOP of asglaucoma, a conse- denotedquence of as a “angle physical‐closure obstruction glaucoma”, of the is trabecular characterized meshwork by an byincrease the iris in [ 15IOP]. Apartas a conse from‐ quencethese, there of a physical is congenital obstruction or childhood of the trabecular glaucoma, meshwork which is a by result the ofiris inadequate [15]. Apart devel- from these,opment there of the is congenital aqueous outflow or childhood system. glaucoma, It may which be a surprise, is a result but of inadequate there is also develop normal‐ mentor low of tension the aqueous glaucoma, outflow with system. normal It may IOP be levels, a surprise, but it but is believedthere is also that normal vascular or andlow tensiongenetic glaucoma, factors influence with normal its occurrence IOP levels, [10 but,16 it]. is There believed is also that drug-induced vascular and genetic glaucoma, fac‐ torssecondary influence glaucoma its occurrence that is induced [10,16]. by There topical is andalso systemic drug‐induced medications, glaucoma, especially secondary corti- glaucomacosteroids that [10,16 is]. induced There are by types topical of glaucomaand systemic associated medications, with other especially systemic corticosteroids eye diseases [10,16].and conditions, There are such types as of pigmentary glaucoma associated glaucoma, with and other the list systemic continues eye [16 diseases]. and con‐ ditions, such as pigmentary glaucoma, and the list continues [16]. 2. Glaucoma Treatment 2.2.1. Glaucoma IOP Lowering Treatment Agents 2.1. IOPThe Lowering treatment Agents of glaucoma depends on several factors that are related to a patient or his environment. The outcome of these factors’ action varies from person to person, The treatment of glaucoma depends on several factors that are related to a patient or and the treatment must be individualized for each patient. It is very important to his environment. The outcome of these factors’ action varies from person to person, and notice that there are many cases of vision loss in patients with glaucoma because of non- theadherence. treatment Therefore, must be individualized there are several for approaches each patient. to glaucomaIt is very important treatment to such notice as laser that theretherapy, are incisional many cases surgery, of vision or medication loss in patients use. The with first-line glaucoma treatment because is mostlyof non‐ medicationadherence. Therefore,therapy. The there failure are several of this therapyapproaches implies to glaucoma the application treatment of other such methods as laser [therapy,17]. in‐ cisionalThe surgery, IOP is currently or medication the only use. known The first modifiable‐line treatment risk factor is mostly for glaucoma. medication It hastherapy. been Theproven failure that of reducing this therapy IOP implies can slow the down application the deterioration of other methods of the visual [17]. field, and thus preventThe theIOP development is currently the and only progression known modifiable of glaucoma risk factor [18–20 for]. Havingglaucoma. this It has in mind, been proven that reducing IOP can slow down the deterioration of the visual field, and thus Pharmaceutics 2021, 13, 28 3 of 58 the therapy aims to decrease IOP to an individual target level at which further progression of glaucomatous optic nerve damage is unlikely. The target IOP level for a particular eye is estimated based on the pre-treated
Recommended publications
  • Fig. L COMPOSITIONS and METHODS to INHIBIT STEM CELL and PROGENITOR CELL BINDING to LYMPHOID TISSUE and for REGENERATING GERMINAL CENTERS in LYMPHATIC TISSUES
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ 23 February 2012 (23.02.2012) WO 2U12/U24519ft ft A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 31/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US201 1/048297 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 18 August 201 1 (18.08.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/374,943 18 August 2010 (18.08.2010) US kind of regional protection available): ARIPO (BW, GH, 61/441,485 10 February 201 1 (10.02.201 1) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/449,372 4 March 201 1 (04.03.201 1) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventor; and EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (71) Applicant : DEISHER, Theresa [US/US]; 1420 Fifth LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Avenue, Seattle, WA 98101 (US).
    [Show full text]
  • Simbrinza BID Adjunctive to PGA Additive Effect of Twice Daily
    Alcon - Business Use Only Effective Date: 30-Mar-2017 Document: TDOC-0050474 Version: 3.0; Most-Recent; Effective; CURRENT Status: Effective Page 1 of 66 a Novartis company Short Title Simbrinza BID Adjunctive to PGA Long Title Additive Effect of Twice Daily Brinzolamide 1% /Brimonidine 0.2% Fixed Dose Combination as an Adjunctive Therapy to a Prostaglandin Analogue TDOC-0050474 Version 1.0 replaces TDOC-0018786 Version 1.0 (11-Mar-2015) Protocol Number: GLH694-P001 / NCT02419508 Study Phase: 4 Sponsor Name and Alcon Research, Ltd. Address: 6201 South Freeway Fort Worth, Texas 76134-2099 Investigational Product: SIMBRINZA™ Brinzolamide 1%/Brimonidine 0.2% tartrate ophthalmic suspension US IND# / EudraCT 2015-000736-15 Indication Studied: Ocular Hypertension Open Angle Glaucoma Printed By : Print Date: Alcon - Business Use Only Effective Date: 30-Mar-2017 Document: TDOC-0050474 Version: 3.0; Most-Recent; Effective; CURRENT Status: Effective Page 2 of 66 Investigator Agreement: I have read the clinical study described herein, recognize its confidentiality, and agree to conduct the described trial in compliance with Good Clinical Practices (GCP), the ethical principles contained within the Declaration of Helsinki, this protocol, and all applicable regulatory requirements. Additionally, I will comply with all procedures for data recording and reporting, will permit monitoring, auditing, and inspection of my research center, and will retain all records until notified by the Sponsor. Principal Investigator: Signature Date Name: Address: Printed By : Print Date: Alcon - Business Use Only Effective Date: 30-Mar-2017 Document: TDOC-0050474 Version: 3.0; Most-Recent; Effective; CURRENT Status: Effective Page 3 of 66 1 SYNOPSIS Sponsor: Alcon Research, Ltd.
    [Show full text]
  • Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis
    Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mösges, Carlos E. Baena-Cagnani, and Desiderio Passali Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Allergy.” All articles are open access articles distributed under the Creative Commons At- tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board William E. Berger, USA Alan P. Knutsen, USA Fabienne Ranc, France Kurt Blaser, Switzerland Marek L. Kowalski, Poland Anuradha Ray, USA Eugene R. Bleecker, USA Ting Fan Leung, Hong Kong Harald Renz, Germany JandeMonchy,TheNetherlands Clare M Lloyd, UK Nima Rezaei, Iran Frank Hoebers, The Netherlands Redwan Moqbel, Canada Robert P. Schleimer, USA StephenT.Holgate,UK Desiderio Passali, Italy Massimo Triggiani, Italy Sebastian L. Johnston, UK Stephen P. Peters, USA Hugo Van Bever, Singapore Young J. Juhn, USA David G. Proud, Canada Garry Walsh, United Kingdom Contents Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis,RalphMosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Volume 2014, Article ID 416236, 2 pages Clinical Efficacy of a Spray Containing Hyaluronic Acid and Dexpanthenol after Surgery in the Nasal Cavity (Septoplasty, Simple Ethmoid Sinus Surgery, and Turbinate Surgery), Ina Gouteva, Kija Shah-Hosseini, and Peter Meiser Volume 2014, Article ID 635490, 10 pages The Effectiveness of Acupuncture Compared to Loratadine in Patients Allergic to House Dust ,Mites Bettina Hauswald, Christina Dill, Jurgen¨ Boxberger, Eberhard Kuhlisch, Thomas Zahnert, and Yury M.
    [Show full text]
  • The Effect of Topical Beta-Adrenoceptor Blocking Agents on Pulsatile Ocular Blood Flow
    THE EFFECT OF TOPICAL BETA-ADRENOCEPTOR BLOCKING AGENTS ON PULSATILE OCULAR BLOOD FLOW C. D. MORSMAN, M. E. BOSEM, M. LUSKY and R. N. WEINREB San Diego, California SUMMARY factors (e.g. hypertension, diabetes, peripheral Thirty-three ocular hypertensive patients (21 with vascular disease and vasospasm) to the vascular primary open angle glaucoma and 12 glaucoma system suggest that blood flow in the optic nerve suspects) were randomly assigned to receive either head and retina may be altered in glaucoma.4 Of the timolol, levobunolol or betaxolol in one eye. Pulsatile various vascular beds within the posterior segment, ocular blood flow (POBF) was measured before the choroidal circulation is of particular interest since treatment (baseline) and 2 hours after drop adminis­ it provides the major contribution to the blood flow tration. After 1 week of regular twice-daily dosage, of the optic nerve at the level of the lamina cribrosa.5 POBF was measured again both immediately before Beta-2 adrenergic receptors have been demon­ and 2 hours after drop instillation. All measurements strated in human optic nerve,6 as well as in choroidal were made by an investigator masked to treatment. and retinal blood vessels.7 Blockade of these POBF increased by 11% (p = 0.09) at week 0 after receptors can cause vasoconstrictionS which could levobunolol administration, and by 22% (p = 0.20) at adversely affect visual function if adequate concen­ week 1 before drop administration compared with trations of the drug diffused into the posterior baseline. It dropped by 23% and 25% (p = 0.04 and segment of the eye or were absorbed systemically.
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of medicines belonging to the ATC group R01 (Nasal preparations) Table of Contents Page INTRODUCTION 5 DISCLAIMER 7 GLOSSARY OF TERMS USED IN THIS DOCUMENT 8 ACTIVE SUBSTANCES Cyclopentamine (ATC: R01AA02) 10 Ephedrine (ATC: R01AA03) 11 Phenylephrine (ATC: R01AA04) 14 Oxymetazoline (ATC: R01AA05) 16 Tetryzoline (ATC: R01AA06) 19 Xylometazoline (ATC: R01AA07) 20 Naphazoline (ATC: R01AA08) 23 Tramazoline (ATC: R01AA09) 26 Metizoline (ATC: R01AA10) 29 Tuaminoheptane (ATC: R01AA11) 30 Fenoxazoline (ATC: R01AA12) 31 Tymazoline (ATC: R01AA13) 32 Epinephrine (ATC: R01AA14) 33 Indanazoline (ATC: R01AA15) 34 Phenylephrine (ATC: R01AB01) 35 Naphazoline (ATC: R01AB02) 37 Tetryzoline (ATC: R01AB03) 39 Ephedrine (ATC: R01AB05) 40 Xylometazoline (ATC: R01AB06) 41 Oxymetazoline (ATC: R01AB07) 45 Tuaminoheptane (ATC: R01AB08) 46 Cromoglicic Acid (ATC: R01AC01) 49 2 Levocabastine (ATC: R01AC02) 51 Azelastine (ATC: R01AC03) 53 Antazoline (ATC: R01AC04) 56 Spaglumic Acid (ATC: R01AC05) 57 Thonzylamine (ATC: R01AC06) 58 Nedocromil (ATC: R01AC07) 59 Olopatadine (ATC: R01AC08) 60 Cromoglicic Acid, Combinations (ATC: R01AC51) 61 Beclometasone (ATC: R01AD01) 62 Prednisolone (ATC: R01AD02) 66 Dexamethasone (ATC: R01AD03) 67 Flunisolide (ATC: R01AD04) 68 Budesonide (ATC: R01AD05) 69 Betamethasone (ATC: R01AD06) 72 Tixocortol (ATC: R01AD07) 73 Fluticasone (ATC: R01AD08) 74 Mometasone (ATC: R01AD09) 78 Triamcinolone (ATC: R01AD11) 82
    [Show full text]
  • Brimonidine Tartrate; Brinzolamide
    Contains Nonbinding Recommendations Draft Guidance on Brimonidine Tartrate ; Brinzolamide This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs. Active Ingredient: Brimonidine tartrate; Brinzolamide Dosage Form; Route: Suspension/drops; ophthalmic Strength: 0.2%; 1% Recommended Studies: One study Type of study: Bioequivalence (BE) study with clinical endpoint Design: Randomized (1:1), double-masked, parallel, two-arm, in vivo Strength: 0.2%; 1% Subjects: Males and females with chronic open angle glaucoma or ocular hypertension in both eyes. Additional comments: Specific recommendations are provided below. ______________________________________________________________________________ Analytes to measure (in appropriate biological fluid): Not applicable Bioequivalence based on (95% CI): Clinical endpoint Additional comments regarding the BE study with clinical endpoint: 1. The Office of Generic Drugs (OGD) recommends conducting a BE study with a clinical endpoint in the treatment of open angle glaucoma and ocular hypertension comparing the test product to the reference listed drug (RLD), each applied as one drop in both eyes three times daily at approximately 8:00 a.m., 4:00 p.m., and 10:00 p.m. for 42 days (6 weeks). 2. Inclusion criteria (the sponsor may add additional criteria): a. Male or nonpregnant females aged at least 18 years with chronic open angle glaucoma or ocular hypertension in both eyes b.
    [Show full text]
  • 16171145.Pdf
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Radboud Repository PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/86683 Please be advised that this information was generated on 2017-12-06 and may be subject to change. OBSTETR GYNEC European Journal of Obstetrics & Gynecology ELSEV and Reproductive Biology 61 (1995) 171-173 Case report Critical limb ischemia after accidental subcutaneous infusion of sulprostone Yvonne W.C.M. de Koninga, Peter W. Plaisierb, I. Leng Tanc, Fred K. Lotgering*a aDepartment o f Obstetrics and Gynaecology, Erasmus University, School o f Medicine and Health Sciences, EUR EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands bDepartment o f General Surgery, Erasmus University, School o f Medicine and Health Sciences, EUR EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands cDepartment o f Radiology, Erasmus University, School o f Medicine and Health Sciences, EUR EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands Received 23 September 1994; accepted 20 January 1995 Abstract A 34-year-old patient was treated with constant intravenous infusion of sulprostone because of postpartum hemorrhage from a hypotonic uterus. The arm in which sulprostone had been infused was painful 23 h after infusion. A day later, the arm was found to be blueish, edematous and extremely painful as a result of arterial spasm. The vasospasm was probably caused by accidental subcutaneous infusion of sulprostone as a result of a displaced intravenous catheter.
    [Show full text]
  • Two Phase 3 Clinical Trials Comparing the Safety and Efficacy of Netarsudil to Timolol in Patients with Elevated Intraocular
    Two Phase 3 Clinical Trials Comparing the Safety and Efficacy of Netarsudil to Timolol in Patients With Elevated Intraocular Pressure: Rho Kinase Elevated IOP Treatment Trial 1 and 2 (ROCKET-1 and ROCKET-2) JANET B. SERLE, L. JAY KATZ, EUGENE MCLAURIN, THERESA HEAH, NANCY RAMIREZ-DAVIS, DALE W. USNER, GARY D. NOVACK, AND CASEY C. KOPCZYNSKI, FOR THE ROCKET-1 AND ROCKET-2 STUDY GROUPS PURPOSE: To evaluate the efficacy and ocular and sys- ROCKET-2) for timolol (P < .0001 for netarsudil vs temic safety of netarsudil 0.02% ophthalmic solution, a timolol). rho-kinase inhibitor and norepinephrine transporter in- CONCLUSIONS: In 2 large, randomized, double-masked hibitor, in patients with open-angle glaucoma and ocular trials reported here, once-daily dosing of netarsudil hypertension. 0.02% was found to be effective and well tolerated for DESIGN: Double-masked, randomized noninferiority the treatment of patients with ocular hypertension and clinical trials: Rho Kinase Elevated IOP Treatment Trial open-angle glaucoma. The novel pharmacology and 1 and 2 (ROCKET-1 and ROCKET-2). aqueous humor dynamic effects of this molecule suggest METHODS: After a washout of all pre-study ocular hy- it may be a useful addition to the armamentarium of potensive medications, eligible patients were randomized ocular hypotensive medications. (Am J Ophthalmol to receive netarsudil 0.02% once daily (q.d.), timolol 2018;186:116–127. Ó 2017 The Authors. Published 0.5% twice a day (b.i.d.), and (ROCKET-2 only) netar- by Elsevier Inc. This is an open access article under the sudil 0.02% b.i.d.
    [Show full text]
  • 1-(4-Amino-Cyclohexyl)
    (19) & (11) EP 1 598 339 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 211/04 (2006.01) C07D 211/06 (2006.01) 24.06.2009 Bulletin 2009/26 C07D 235/24 (2006.01) C07D 413/04 (2006.01) C07D 235/26 (2006.01) C07D 401/04 (2006.01) (2006.01) (2006.01) (21) Application number: 05014116.7 C07D 401/06 C07D 403/04 C07D 403/06 (2006.01) A61K 31/44 (2006.01) A61K 31/48 (2006.01) A61K 31/415 (2006.01) (22) Date of filing: 18.04.2002 A61K 31/445 (2006.01) A61P 25/04 (2006.01) (54) 1-(4-AMINO-CYCLOHEXYL)-1,3-DIHYDRO-2H-BENZIMIDAZOLE-2-ONE DERIVATIVES AND RELATED COMPOUNDS AS NOCICEPTIN ANALOGS AND ORL1 LIGANDS FOR THE TREATMENT OF PAIN 1-(4-AMINO-CYCLOHEXYL)-1,3-DIHYDRO-2H-BENZIMIDAZOLE-2-ON DERIVATE UND VERWANDTE VERBINDUNGEN ALS NOCICEPTIN ANALOGE UND ORL1 LIGANDEN ZUR BEHANDLUNG VON SCHMERZ DERIVÉS DE LA 1-(4-AMINO-CYCLOHEXYL)-1,3-DIHYDRO-2H-BENZIMIDAZOLE-2-ONE ET COMPOSÉS SIMILAIRES POUR L’UTILISATION COMME ANALOGUES DU NOCICEPTIN ET LIGANDES DU ORL1 POUR LE TRAITEMENT DE LA DOULEUR (84) Designated Contracting States: • Victory, Sam AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Oak Ridge, NC 27310 (US) MC NL PT SE TR • Whitehead, John Designated Extension States: Newtown, PA 18940 (US) AL LT LV MK RO SI (74) Representative: Maiwald, Walter (30) Priority: 18.04.2001 US 284666 P Maiwald Patentanwalts GmbH 18.04.2001 US 284667 P Elisenhof 18.04.2001 US 284668 P Elisenstrasse 3 18.04.2001 US 284669 P 80335 München (DE) (43) Date of publication of application: (56) References cited: 23.11.2005 Bulletin 2005/47 EP-A- 0 636 614 EP-A- 0 990 653 EP-A- 1 142 587 WO-A-00/06545 (62) Document number(s) of the earlier application(s) in WO-A-00/08013 WO-A-01/05770 accordance with Art.
    [Show full text]
  • Table 1. Glaucoma Medications: Mechanisms, Dosing and Precautions Brand Generic Mechanism of Action Dosage/Avg
    OPTOMETRIC STUDY CENTER Table 1. Glaucoma Medications: Mechanisms, Dosing and Precautions Brand Generic Mechanism of Action Dosage/Avg. % Product Sizes Side Effects Warnings Reduction CHOLINERGIC AGENTS Direct Pilocarpine (generic) Pilocarpine 1%, 2%, 4% Increases trabecular outflow BID-QID/15-25% 15ml Headache, blurred vision, myopia, retinal detachment, bronchiole constriction, Angle closure, shortness of breath, retinal narrowing of angle detachment Indirect Phospholine Iodide (Pfizer) Echothiophate iodide 0.125% Increases trabecular outflow QD-BID/15-25% 5ml Same as above plus cataractogenic iris cysts in children, pupillary block, Same as above, plus avoid prior to any increased paralysis with succinylcholine general anesthetic procedure ALPHA-2 AGONISTS Alphagan P (Allergan) Brimonidine tartrate 0.1%, 0.15% with Purite Decreases aqueous production, increases BID-TID/up to 26% 5ml, 10ml, 15ml Dry mouth, hypotension, bradycardia, follicular conjunctivitis, ocular irritation, Monitor for shortness of breath, dizziness, preservative uveoscleral outflow pruritus, dermatitis, conjunctival blanching, eyelid retraction, mydriasis, drug ocular redness and itching, fatigue allergy Brimonidine tartrate Brimonidine tartrate 0.15%, 0.2% Same as above Same as above 5ml, 10ml Same as above Same as above (generic) Iopidine (Novartis) Apraclonidine 0.5% Decreases aqueous production BID-TID/up to 25% 5ml, 10ml Same as above but higher drug allergy (40%) Same as above BETA-BLOCKERS Non-selective Betagan (Allergan) Levobunolol 0.25%, 0.5% Decreases
    [Show full text]
  • Rhopressa™ Netarsudil Ophthalmic Solution 0.02%
    Rhopressa™ Netarsudil ophthalmic solution 0.02% CDER Dermatologic and Ophthalmic Drugs Advisory Committee October 13, 2017 Aerie Pharmaceuticals, Inc. 1 Introduction Marvin Garrett Vice President, Regulatory Affairs and Quality Assurance Aerie Pharmaceuticals, Inc. 2 Aerie Pharmaceuticals • 2005: Aerie founded as a spin-out from Duke University: – Dr. Eric Toone – Dr. Casey Kopczynski – Dr. David Epstein – Dr. Epstein’s goal from the beginning: Develop a therapy that targeted the diseased tissue in glaucoma, the trabecular outflow pathway • 2006: Aerie discovered its first Rho kinase inhibitor • 2009: Aerie invented netarsudil • 2012: Netarsudil 1st clinical study • 2017: NDA filed 3 Netarsudil: A New Drug Class for Lowering IOP We are requesting a recommendation for approval of netarsudil ophthalmic solution 0.02% for reduction of intraocular pressure (IOP) in patients with open-angle glaucoma or ocular hypertension given one drop QD 4 Agenda Unmet Medical Needs Richard A. Lewis, MD Chief Medical Officer Aerie Pharmaceuticals, Inc. Past President, American Glaucoma Society Program Design and Efficacy Casey Kopczynski, PhD Chief Scientific Officer Aerie Pharmaceuticals, Inc. Safety Theresa Heah, MD, MBA VP Clinical Research and Medical Affairs Aerie Pharmaceuticals, Inc. Benefits and Risks Janet Serle, MD Professor of Ophthalmology Glaucoma Fellowship Director Icahn School of Medicine at Mount Sinai 5 List of Expert Responders • Cynthia Mattox, MD – Associate Professor of Ophthalmology, Tufts University School of Medicine – Current President, American Glaucoma Society • Mark Reasor, PhD – Professor of Physiology & Pharmacology, Robert C. Byrd Health Sciences Center, West Virginia University • Bennie H. Jeng, MD – Professor and Chair, Department of Ophthalmology & Visual Sciences, University of Maryland School of Medicine • Dale Usner, PhD – Biostatistics Consultant to Aerie Pharmaceuticals, Inc.
    [Show full text]
  • Use of Emulsions for Intra- and Periocular Injection
    (19) & (11) EP 1 611 879 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/107 (2006.01) 12.08.2009 Bulletin 2009/33 (21) Application number: 04291684.1 (22) Date of filing: 02.07.2004 (54) Use of emulsions for intra- and periocular injection Verwendung von Emulsionen zur intra- und periocularen Injection Utilisation des émulsions pour injection intra- et périoculaire. (84) Designated Contracting States: (74) Representative: de Mareüil-Villette, Caroline et al AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Cabinet Plasseraud HU IE IT LI LU MC NL PL PT RO SE SI SK TR 52 rue de la Victoire 75440 Paris Cedex 09 (FR) (43) Date of publication of application: 04.01.2006 Bulletin 2006/01 (56) References cited: EP-A- 0 521 799 EP-A- 1 020 194 (73) Proprietors: WO-A-02/09667 WO-A-93/18852 • Novagali Pharma S.A. WO-A-94/05298 WO-A-03/053405 91000 Evry (FR) US-A- 5 632 984 • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) • KLANG S H ET AL: "PHYSICOCHEMICAL 75016 Paris (FR) CHARACTERIAZATION AND ACUTE TOXICITY • INSTITUT NATIONAL DE LA SANTE ET DE LA EVALUATION OF A POSITIVELY-CHARGED RECHERCHE MEDICALE (INSERM) SUBMICRON EMULSION VEHICLE" JOURNAL 75013 Paris (FR) OF PHARMACY AND PHARMACOLOGY, • YISSUM RESEARCH DEVELOPMENT COMPANY LONDON, GB, vol. 46, no. 12, December 1994 OF THE HEBREW UNIVERSITY OF JERUSALEM (1994-12), pages 986-993, XP008005426 ISSN: 91390 Jerusalem (IL) 0022-3573 • KLANG S ET AL: "INFLUENCE OF EMULSION (72) Inventors: DROPLET SURFACE CHARGE ON • Rabinovich-Guilatt, Laura INDOMETHACIN OCULAR TISSUE 75015 Paris (FR) DISTRIBUTION" PHARMACEUTICAL • De Kozak, Yvonne DEVELOPMENT AND TECHNOLOGY, NEW 75013 Paris (FR) YORK, NY, US, vol.
    [Show full text]