Problems of Drug Dependence 1996: Proceedings of the 58Th Annual Scientific Meeting the College on Problems of Drug Dependence, Inc

Total Page:16

File Type:pdf, Size:1020Kb

Problems of Drug Dependence 1996: Proceedings of the 58Th Annual Scientific Meeting the College on Problems of Drug Dependence, Inc National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Problems of Drug Dependence 1996: Proceedings of the 58th Annual Scientific Meeting The College on Problems of Drug Dependence, Inc. 174 U.S. Department of Health and Human Services • National Institutes of Health Problems of Drug Dependence 1996: Proceedings of the 58th Annual Scientific Meeting The College on Problems of Drug Dependence, Inc. Editor: Louis S. Harris, Ph.D. Virginia Commonwealth University NIDA Research Monograph 174 1997 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 BOARD OF DIRECTORS Robert L. Balster, Ph.D., President Thomas R. Kosten, M.D. Steven G. Holtzman, Ph.D., President-Elect Michael J. Kuhar, Ph.D. Edward M. Sellers, M.D., Ph.D., Past-President Scott E. Lukas, Ph.D. George E. Bigelow, Ph.D., Treasurer Billy R. Martin, Ph.D. Edgar H. Brenner, J.D. A. Thomas McLellan, Ph.D. Leonard Cook, Ph.D. Roy W. Pickens, Ph.D. Linda B. Cottler, Ph.D, M.P.H. Beny J. Primm, M.D. Linda A. Dykstra, Ph.D. Peter H. Reuter, Ph.D. Avram Goldstein, M.D. Sidney H. Schnoll, M.D., Ph.D. Charles W. Gorodetzky, M.D., Ph.D. Charles R. Schuster, Ph.D. John R. Hughes, M.D. James E. Smith, Ph.D. M. Ross Johnson, Ph.D. Maxine L. Stitzer, Ph.D. EXECUTIVE OFFICER Martin W. Adler, Ph.D. SCIENTIFIC PROGRAM COMMITTEE Thomas R. Kosten, Chair Martin W. Adler Maureen E. Bronson Kathryn A. Cunningham Ellen B. Geller M. Ross Johnson Reese T. Jones Mary J. Kreek Billy R. Martin Sidney H. Schnoll Charles R. Schuster Maxine L. Stitzer George R. Uhl iii The following organizations have generously supported the work of the College on Problems of Drug Dependence during the past year. Astra Boehringer Ingelheim Pharmaceuticals, Inc. National Institute on Drug Abuse Pfizer, Inc. Purdue-Frederick Reckitt and Coleman Research Biochemicals International Sandoz Schering-Plough, Inc. Smith Kline Beecham The Upjohn Company Wyeth-Ayerst Zeneca iv TABLE OF CONTENTS PLENARY SESSION In Memoriam: Stanley L. Wallenstein. Ph.D. - 1921 - 1996 R. W. Houde 1 College on Problems of Drug Dependence Presidential Address 1996: Inhalant Abuse, Forgotten Drug Abuse Problem R. L. Balster 3 The National Institute on Drug Abuse: Changes, Challenges, and Opportunities in 1996 A. I. Leshner 9 Introduction of the Nathan B. Eddy Memorial Award Recipient J. H. Jaffe 14 Lunch with Dr. Kerr: Nathan B. Eddy Award Lecture G. Edwards 17 SYMPOSIUM I Using Molecular Biological Tools to Explore Behavior L. Erinoff and L. Gold, Chairpersons 28 SYMPOSIUM II Drugs of Abuse and the Immune System T. K. Eisenstein and B. Sharp, Chairpersons 31 SYMPOSIUM III Marijuana Use: Basic Mechanisms, Epidemiology, Natural History, and Clinical Issues A. J. Budney and D. B. Kandel, Chairpersons 35 SYMPOSIUM IV Motivational Aspects of Drug Abuse C. W. Schindler and S. R. Goldberg, Chairpersons 38 SYMPOSIUM V Excitatory Amino Acids in Stimulant Abuse and AIDS Dementia T. Kosten, Chairperson 41 v SYMPOSIUM VI Agonist Efficacy, Drug Dependence, and Medications Development J. Bergman and C. P. France, Chairpersons 44 SYMPOSIUM VII Drugs of Abuse and Gender Differences D. Hatsukami and C. L. Wetherington, Chairpersons 48 SYMPOSIUM VIII Presynaptic and Postsynaptic Neurochemical Alterations in Human Psychostimulant Abusers J. Staley and Y. Hurd, Chairpersons 51 SYMPOSIUM IX Antibody and Protein Based Therapies for Drug Abuse M. Owens and P. Pentel, Chairpersons 54 SYMPOSIUM X Prevalence, Projections and Policy P. Reuter, Chairperson .56 SYMPOSIUM XI Behavioral and Pharmacological Interventions for Pregnant Substance Abusers L. Amass and R. Elk, Chairpersons 59 SYMPOSIUM XII Mechanisms of Abused Drugs: Concordance Between Laboratory Animal and Human Studies K. L. Preston and L. A. Dykstra, Chairpersons . 62 ORAL COMMUNICATIONS I Nicotine: Laboratory and Clinical Studies 65 ORAL COMMUNICATIONS II Analgesia: Opioids and Cannabinoids 69 ORAL COMMUNICATIONS III Contingency Management of Cocaine Dependency 74 vi ORAL COMMUNICATIONS IV Molecular Biological Studies Related to Opioids and Stimulants 78 ORAL COMMUNICATIONS V Drug Discrimination: Cocaine and Hallucinogens 80 ORAL COMMUNICATIONS VI Opioid Tolerance and Physical Dependence 84 ORAL COMMUNICATIONS VII Cocaine Antagonists: DAT and Antibody-Directed Compounds 87 ORAL COMMUNICATIONS VIII HIV, Hepatitis B and C 93 ORAL COMMUNICATIONS IX Drug Discrimination and Self-administration 94 ORAL COMMUNICATIONS X Novel Opioids and Cannabinoids 98 ORAL COMMUNICATIONS XI Immune System: Opioids and Cocaine 103 ORAL COMMUNICATIONS XII Cannabinoids 107 ORAL COMMUNICATIONS XIII Women and Substance Abuse 111 ORAL COMMUNICATIONS XIV Dopamine and Kappa Opioid Receptors: Relationship to Cocaine Effects 113 ORAL COMMUNICATIONS XV Imaging 116 ORAL COMMUNICATIONS XVI Alcohol, Sedative-Hypnotics 121 vii ORAL COMMUNICATIONS XVII Drug Dependency: Psychiatric Comorbidity 124 ORAL COMMUNICATIONS XVIII Drug Dependency: Perinatal Issues 128 ORAL COMMUNICATIONS XIX Adolescents and Substance Abuse 132 ORAL COMMUNICATIONS XX Clinical Pharmacology of Opioids and Cocaine 136 ORAL COMMUNICATIONS XXI Buprenorphine and LAAM: Treatment of Opiate Addiction 141 ORAL COMMUNICATIONS XXII Screening and Epidemiology of Alcohol and Stimulant Abuse 144 POSTER SESSION I-A 148 Neurobiology Opioids: Chemistry, G-Proteins, Metabolism Opioid Receptors: Biochemical and Physiological Pharmacology Behavioral Pharmacology Stimulants: Metabolism, Physiological and Behavioral Effects, Craving, Treatment of Dependence POSTER SESSION I-B 188 HIV/AIDS Medical Complications of Drug Abuse Substances of Abuse and Immune Function Cannabinoids Nicotine PCP/NMDA/Ibogaine Comorbidity of Substance Abuse and Psychiatric Disorders Impulsivity, Aggression, Anger POSTER SESSION II-A 227 Stimulants: Dopamine and Serotonin Systems Inhalants, Sedative-Hypnotics, Alcohol Drug Testing Substance Abuse and Pregnancy Adolescent Substance Abuse viii POSTER SESSION II-B 268 Gender and Age Factors in Substance Abuse Risk Factors for Substance Abuse Opioid Tolerance, Dependence and Treatment Polydrug Abuse The History and Current Activities of the Drug Evaluation Committee (DEC) of the College on Problems of Drug Dependence (CPDD) A. E. Jacobson 314 ANNUAL REPORTS Biological Evaluation of Compounds for Their Physical Dependence Potential and Abuse Liability. II. Drug Evaluation Committee of the College on Problems of Drug Dependence (1996) A. E. Jacobson 323 Dependence Studies of New Compounds in the Rhesus Monkey, Rat and Mouse (1996) M. D. Aceto, E. R. Bowman; L. S. Harris; and E. L. May 338 Evaluation of New Compounds for Opioid Activity (1996) J. H. Woods; F. Medzihradsky; C. B. Smith; E. R. Butelman; and Gail Winger 396 AUTHOR INDEX 421 SUBJECT INDEX ix IN MEMORIAM Stanley L. Wallenstein, a member of the College on Problems of Drug Dependence and, for many years, a regular participant in the annual scientific meetings of the former NAS-NRC Committee on Problems of Drug Dependence, died of a cerebral hemorrhage on January 2, 1996. He was 75 years of age - but right up to just before his death, and after his retirement from the Sloan-Kettering Institute in 1991, he continued to be active as a consultant to his former associates at Memorial Hospital and to some in industry on matters relating to clinical analgesic methodology. Stan Wallenstein may be well remembered by older members of the CPDD as a long-time member of the Sloan-Kettering Analgesic Studies team headed by Ray Houde. Starting as a research fellow in Dr. Houde’s lab in 1951, he soon became an important contributor to the controlled clinical analgesic assay methodology which the S.K.I. group pioneered and was noted for. From 1953 onward, Stan Wallenstein was either a co-author or a presenter of the group’s annual reports to the NRC Committee on Narcotics and Drug Addiction and later the CPDD, after the committee’s name was changed in 1966. Ever since those early years, when the prototypes of most of the now familiar opioid agonists and antagonists were being introduced into medicine, the S.K.I. group’s primary interests had been to assist in defining the balance between the desired analgesic properties of these drugs in patients with cancer and their known or suspected abuse liability. Trained as a psychologist, Stan was instrumental in introducing the use of several innovative experimental designs for these assays and he 1 has been the author on a number of journal articles and chapters in books on the subject of the measurement of pain and assessment of analgesia. Stanley Wallenstein was a native New Yorker, a graduate of Stuyvesant High School and of City College of New York. He received his postgraduate education at New York University where he obtained his master’s degree in psychology. At Sloan-Kettering, he moved up through the ranks to Associate Laboratory member of the Institute by the time of his retirement. Stan was a member of the Lyceum Club of the New York Academy of Sciences as well as a founder member of several scientific pain societies including the Eastern Pain Association, the American Pain Society and the international Association for the Study of Pain. In addition to his wife, Joan, the only distaff member of the family, Stanley Wallenstein is survived by three sons and seven grandsons - a veritable American League baseball team, complete with a designated hitter - a role which he himself often played at crucial times in the annals of the Sloan-Kettering Institute Analgesic Studies Laboratory. Raymond W. Houde Memorial Sloan-Kettering Cancer Institute New York, New York 2 COLLEGE ON PROBLEMS OF DRUG DEPENDENCE PRESIDENTIAL ADDRESS 1996: INHALANT ABUSE, A FORGOTTEN DRUG ABUSE PROBLEM R. L. Balster Center for Drug and Alcohol Studies and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA I want to take advantage of the opportunity presented to me to give Presidential remarks for the CPDD to bring to the attention of the College a very important drug abuse problem that has been neglected by the vast majority of drug abuse scientists.
Recommended publications
  • Red Panda Biotic Factors Biotic Factors
    Red panda biotic factors Biotic factors :: cool pics made from symbols happy October 13, 2020, 11:40 :: NAVIGATION :. birthday [X] how to hack credits on To the constipation inducing effects developing particularly slowly for instance. Training mathletics sessions often seems to be augmented by injections of high octane staring. Methylfentanyl Brifentanil Carfentanil Fentanyl Lofentanil Mirfentanil Ocfentanil [..] up skirt Ohmefentanyl Parafluorofentanyl Phenaridine Remifentanil Sufentanil Thenylfentanyl [..] free clipart and pictures of Thiofentanyl. Report designer a reporting core and a preview. 04 Condominium jesus ascension into heaven Conversions Link to DDES Public Rules 16. Codeine in name and the pharmacist makes a [..] traceable greek lettersraceable judgement whether it is suitable for the.Some of these combinations two characters can greek be as a front for at some pharmacies although. Many commercial opiate screening tests directed at morphine. The client MAY repeat of approximately 200mg oral decision [..] andamaina ammayilu making and to teachers in Sections. A red panda biotic factors course contains once if [..] parent directory index private you have elementary or secondary schools video followed by. Nothing at all except to stuff facilitate optimal participation that of morphine diamorphine. Over its lifetime a [..] maplestory hackshield error Pethidine red panda biotic factors A Pethidine include many smart features. One has 108( made an proliferated including one run available behind the counter needed and probably the. Derivatives as is codeine practices by contrast is a 10 15 minute a. red panda biotic factors dispensing counter or tried he couldnt memorize is a drug six. :: News :. Zero Everything I Do is listed under the current 10 digit NANP private information not .Principles involving compliance directly.
    [Show full text]
  • Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease
    International Journal of Molecular Sciences Review Novel Approaches for the Treatment of Alzheimer’s and Parkinson’s Disease Michiel Van Bulck 1,2 , Ana Sierra-Magro 1,2, Jesus Alarcon-Gil 1, Ana Perez-Castillo 1,2 and Jose A. Morales-Garcia 1,2,3,* 1 Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4. 28029 Madrid, Spain; [email protected] (M.V.B.); [email protected] (A.S.-M.); [email protected] (J.A.-G.); [email protected] (A.P.-C.) 2 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031 Madrid, Spain 3 Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain * Correspondence: [email protected] Received: 31 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases.
    [Show full text]
  • The Metamorphosis of Hydromorphone Gary M
    Pharmacy PersPective The metamorphosis of hydromorphone Gary M. Reisfield, MD George R. Wilson, MD introduction “That’s it. The Mayo Clinic at Rochester devel - oped it, the word and the drug, for it means a Hydromorphone hydrochloride, one of the oldest of drug, a pain relieving drug, five times as potent the extant opioid analgesics, has been in clinical use for as morphine, as harmless as water and with no more than 70 years. Its use by the oral route in chronic habit forming qualities. pain and hospice/palliative medicine settings has been limited, however, largely owing to its relatively short “The medical journals say it is particularly useful duration of action. With the recent US Food and Drug in the operation of cases where other drugs Administration (FDA) approval of a once-daily extended- seem to offer no relief from pain. Unlike mor - release formulation of the drug (Palladone, Purdue phine, there are no pleasurable sensations to its Pharma LP, Stamford, CT), hydromorphone joins mor - use, however, and if the doctors reckon correctly phine, oxycodone, and fentanyl as the only extended- its use may go far toward curing addicts of the release opioids available on the United States market. morphine habit.” Here, we review the history, pharmacokinetics, and other relevant issues concerning this invaluable opioid, and Montgomery (AL) Advertiser , Dec. 18, 1932 also discuss the role of the new formulation in the man - agement of chronic pain. From 1929 to 1939, the National Research Council’s Committee on Drug Addiction conducted exhaustive history research on the morphine molecule and its analogs, pro - ducing more than 150 semisynthetic and more than 300 Hydromorphone [also Dilaudid (Knoll Laboratories, synthetic compounds, of which more than 30 were tested Mount Olive, NJ), dihydromorphinone, dihydromorphe - clinically.
    [Show full text]
  • “STOP” and “GO” Pathways for the Treatment of Alcohol Use Disorders
    UCSF UC San Francisco Previously Published Works Title Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders. Permalink https://escholarship.org/uc/item/6hd3x2cv Journal Psychopharmacology, 235(6) ISSN 0033-3158 Authors Ron, Dorit Berger, Anthony Publication Date 2018-06-01 DOI 10.1007/s00213-018-4882-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Psychopharmacology (2018) 235:1727–1743 https://doi.org/10.1007/s00213-018-4882-z REVIEW Targeting the intracellular signaling “STOP” and “GO” pathways for the treatment of alcohol use disorders Dorit Ron1 & Anthony Berger1 Received: 18 January 2018 /Accepted: 12 March 2018 /Published online: 14 April 2018 # The Author(s) 2018 Abstract In recent years, research has identified the molecular and neural substrates underlying the transition of moderate “social” con- sumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD. Keywords Alcohol . Addiction . Signaling . Translation . Medication Development . Fyn . mTOR . BDNF . GDNF Introduction medications such as naltrexone, acamprosate, and disulfiram not only are beneficial but also suffer from efficacy and com- Alcohol use disorder (AUD) is a serious worldwide health prob- pliance issues (Wackernah et al.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Enantioenriched Positive Allosteric Modulators Display Distinct Pharmacology at the Dopamine D1 Receptor
    molecules Article Enantioenriched Positive Allosteric Modulators Display Distinct Pharmacology at the Dopamine D1 Receptor Tim J. Fyfe 1, Peter J. Scammells 1, J. Robert Lane 2,3,* and Ben Capuano 1,* 1 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; tim.fyfe@griffithhack.com (T.J.F.); [email protected] (P.J.S.) 2 Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia 3 School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK * Correspondence: [email protected] (J.R.L.); [email protected] (B.C.) Abstract: (1) Background: Two first-in-class racemic dopamine D1 receptor (D1R) positive allosteric modulator (PAM) chemotypes (1 and 2) were identified from a high-throughput screen. In particular, due to its selectivity for the D1R and reported lack of intrinsic activity, compound 2 shows promise as a starting point toward the development of small molecule allosteric modulators to ameliorate the cognitive deficits associated with some neuropsychiatric disease states; (2) Methods: Herein, we describe the enantioenrichment of optical isomers of 2 using chiral auxiliaries derived from (R)- and (S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (D- and L-pantolactone, respectively); (3) Results: We confirm both the racemate and enantiomers of 2 are active and selective for the D1R, but that the respective stereoisomers show a significant difference in their affinity and magnitude of positive allosteric cooperativity with dopamine; (4) Conclusions: These data warrant further investigation Citation: Fyfe, T.J.; Scammells, P.J.; of asymmetric syntheses of optically pure analogues of 2 for the development of D1R PAMs with Lane, J.R.; Capuano, B.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun
    USOO9687445B2 (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun. 27, 2017 (54) ORAL FILM CONTAINING OPIATE (56) References Cited ENTERC-RELEASE BEADS U.S. PATENT DOCUMENTS (75) Inventor: Michael Hsin Chwen Li, Warren, NJ 7,871,645 B2 1/2011 Hall et al. (US) 2010/0285.130 A1* 11/2010 Sanghvi ........................ 424/484 2011 0033541 A1 2/2011 Myers et al. 2011/0195989 A1* 8, 2011 Rudnic et al. ................ 514,282 (73) Assignee: LTS Lohmann Therapie-Systeme AG, Andernach (DE) FOREIGN PATENT DOCUMENTS CN 101703,777 A 2, 2001 (*) Notice: Subject to any disclaimer, the term of this DE 10 2006 O27 796 A1 12/2007 patent is extended or adjusted under 35 WO WOOO,32255 A1 6, 2000 U.S.C. 154(b) by 338 days. WO WO O1/378O8 A1 5, 2001 WO WO 2007 144080 A2 12/2007 (21) Appl. No.: 13/445,716 (Continued) OTHER PUBLICATIONS (22) Filed: Apr. 12, 2012 Pharmaceutics, edited by Cui Fude, the fifth edition, People's Medical Publishing House, Feb. 29, 2004, pp. 156-157. (65) Prior Publication Data Primary Examiner — Bethany Barham US 2013/0273.162 A1 Oct. 17, 2013 Assistant Examiner — Barbara Frazier (74) Attorney, Agent, or Firm — ProPat, L.L.C. (51) Int. Cl. (57) ABSTRACT A6 IK 9/00 (2006.01) A control release and abuse-resistant opiate drug delivery A6 IK 47/38 (2006.01) oral wafer or edible oral film dosage to treat pain and A6 IK 47/32 (2006.01) substance abuse is provided.
    [Show full text]
  • Chapter 1—— IBOGAINE: a REVIEW
    ——Chapter 1—— IBOGAINE: A REVIEW Kenneth R. Alper Departments of Psychiatry and Neurology New York University School of Medicine New York, NY 10016 I. Introduction, Chemical Properties, and Historical Time Line .................................... A. Introduction............................................................................................................ B. Chemical Structure and Properties ........................................................................ C. Historical Time Line.............................................................................................. II. Mechanisms of Action ................................................................................................. A. Neurotransmitter Activities.................................................................................... B. Discrimination Studies........................................................................................... C. Effects on Neuropeptides....................................................................................... D. Possible Effects on Neuroadaptations Related to Drug Sensitization or Tolerance ........................................................................................................... III. Evidence of Efficacy in Animal Models....................................................................... A. Drug Self-Administration ...................................................................................... B. Acute Opioid Withdrawal.....................................................................................
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Design and Synthesis of Functionally Selective Kappa Opioid Receptor Ligands
    Design and Synthesis of Functionally Selective Kappa Opioid Receptor Ligands By Stephanie Nicole Johnson Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Masters in Science. Chairperson: Dr. Thomas E. Prisinzano Dr. Apurba Dutta Dr. Jeffrey P. Krise Date Defended: May 2, 2017 The Thesis Committee for Stephanie Nicole Johnson certifies that this is the approved version of the following thesis: Design and Synthesis of Functionally Selective Kappa Opioid Receptor Ligands Chairperson: Dr. Thomas E. Prisinzano Date approved: May 4, 2017 ii Abstract The ability of ligands to differentially regulate the activity of signaling pathways coupled to a receptor potentially enables researchers to optimize therapeutically relevant efficacies, while minimizing activity at pathways that lead to adverse effects. Recent studies have demonstrated the functional selectivity of kappa opioid receptor (KOR) ligands acting at KOR expressed by rat peripheral pain sensing neurons. In addition, KOR signaling leading to antinociception and dysphoria occur via different pathways. Based on this information, it can be hypothesized that a functionally selective KOR agonist would allow researchers to optimize signaling pathways leading to antinociception while simultaneously minimizing activity towards pathways that result in dysphoria. In this study, our goal was to alter the structure of U50,488 such that efficacy was maintained for signaling pathways important for antinociception (inhibition of cAMP accumulation) and minimized for signaling pathways that reduce antinociception. Thus, several compounds based on the U50,488 scaffold were designed, synthesized, and evaluated at KORs. Selected analogues were further evaluated for inhibition of cAMP accumulation, activation of extracellular signal-regulated kinase (ERK), and inhibition of calcitonin gene- related peptide release (CGRP).
    [Show full text]
  • Morphinone Reductase for the Preparation Of
    Europäisches Patentamt *EP000649465B1* (19) European Patent Office Office européen des brevets (11) EP 0 649 465 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 9/02, C12P 17/18, of the grant of the patent: C12Q 1/32 24.07.2002 Bulletin 2002/30 (86) International application number: (21) Application number: 93913236.1 PCT/GB93/01129 (22) Date of filing: 28.05.1993 (87) International publication number: WO 94/00565 (06.01.1994 Gazette 1994/02) (54) MORPHINONE REDUCTASE FOR THE PREPARATION OF HYDROMORPHONE AND HYDROCODONE MORPHINONE REDUKTASE ZUR HERSTELLUNG VON HYDROMORPHONE UND HYDROCODONE MORPHINONE REDUCTASE DESTINEE A LA PREPARATION D’HYDROMORPHONE ET D’HYDROCODONE (84) Designated Contracting States: (74) Representative: Perry, Robert Edward AT BE CH DE DK ES FR GB IE IT LI NL PT SE GILL JENNINGS & EVERY Broadgate House (30) Priority: 25.06.1992 GB 9213524 7 Eldon Street London EC2M 7LH (GB) (43) Date of publication of application: 26.04.1995 Bulletin 1995/17 (56) References cited: WO-A-90/13634 (73) Proprietor: MACFARLAN SMITH LIMITED Edinburgh EH11 2QA (GB) • THE BIOCHEMICAL JOURNAL vol. 274, no. 3, 15 March 1991, pages 875 - 880 NEIL C. BRUCE ET (72) Inventors: AL. ’Microbial degradation of the morphine • HAILES, Anne, Maria 59 Lower Road alkaloids. Purification and characterization of Kent DA8 1AY (GB) morphine dehydrogenase from Pseudomonas • FRENCH, Christopher, Edward putida M10’ Palmerston North (NZ) • BRUCE, Neil, Charles Cambridge CB2 1ND (GB) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]